Skip to main content

Research on Large Scale Parallel Hydrological Simulation

  • Conference paper
  • First Online:
High-Performance Computing Applications in Numerical Simulation and Edge Computing (HPCMS 2018, HiDEC 2018)

Abstract

In recent years, hydrological simulation has become an effective and significant method for achieving accurate and effective flood forecasting to decreasing losses of human’s belongings caused by floods disaster. In this paper, we will analyse challenging problems in large scale parallel hydrological simulation. As an important data structure for effective channel routing, river network codification methods will be introduced in Sect. 2. And some issues about parallel tasks decomposition methods and parallel simulation strategies will also be discussed in this paper. As an significant part of parallel issues, the comparison of static parallel tasks decomposition method and dynamic parallel tasks decomposition methods will be presented. At last, we discussed the pipline parallel strategy of hydrological simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vivoni, E.R., et al.: Real-world hydrologic assessment of a fully-distributed hydrological model in a parallel computing environment. J. Hydrol. 409(1–2), 483–496 (2011)

    Article  Google Scholar 

  2. Junzhi, L.I.U., et al.: Review on parallel computing of distributed hydrological models. Prog. Geogr. 32(4), 538–547 (2013)

    Google Scholar 

  3. Liu, J., et al.: A two-level parallelization method for distributed hydrological models. Environ. Modell. Softw. 80, 175–184 (2016)

    Article  Google Scholar 

  4. Li, T., et al.: Dynamic parallelization of hydrological model simulations. Environ. Modell. Softw. 26(12), 1736–1746 (2011)

    Article  Google Scholar 

  5. Freeze, R.A., Harlan, R.L.: Blueprint for a physically-based, digitally-simulated hydrologic response model. J. Hydrol. 9(3), 237–258 (1969)

    Article  Google Scholar 

  6. Dehotin, J., Braud, I.: Which spatial discretization for distributed hydrological models? Proposition of a methodology and illustration for medium to large-scale catchments. Hydrol. Earth Syst. Sci. 12(3), 769–796 (2008)

    Article  Google Scholar 

  7. Apostolopoulos, T.K., Georgakakos, K.P.: Parallel computation for streamflow prediction with distributed hydrologic models. J. Hydrol. 197(1–4), 1–24 (1997)

    Article  Google Scholar 

  8. Li, T., Wang, G., Liu, J.: Drainage network codification method for digital watershed model. Adv. Water Sci. 17(5), 664 (2006)

    Google Scholar 

  9. Hao, W., et al.: Binary-tree coding for drainage network of large-scale basins. J. Hohai Univ. Nat. Sci. 37(5), 499–504 (2009)

    Google Scholar 

  10. Li, T., Wang, G., Chen, J.: A modified binary tree codification of drainage networks to support complex hydrological models. Comput. Geosci. 36(11), 1427–1435 (2010)

    Article  Google Scholar 

  11. Wang, H., Xudong, F., Wang, G.: Multi-tree coding method (MCM) for drainage networks supporting high-efficient search. Comput. Geosci. 52, 300–306 (2013)

    Article  Google Scholar 

  12. Vivoni, E.R., et al.: Parallelization of a fully-distributed hydrologic model using sub-basin partitioning. EOS Trans. AGU 86, 52 (2005)

    Article  Google Scholar 

  13. Cui, Z., et al.: Parallelisation of a distributed hydrologic model. Int. J. Comput. Appl. Technol. 22(1), 42–52 (2005)

    Article  Google Scholar 

  14. Wang, H., et al.: Maximum speedup ratio curve (MSC) in parallel computing of the binary-tree-based drainage network. Comput. Geosci. 38(1), 127–135 (2012)

    Article  Google Scholar 

  15. Wang, H., et al.: A common parallel computing framework for modeling hydrological processes of river basins. Parallel Comput. 37(67), 302–315 (2011)

    Article  Google Scholar 

  16. METIS - serial graph partitioning and fill-reducing matrix ordering. http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

  17. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  Google Scholar 

  18. Hao, W., et al.: Parallel characteristics of river basin based on temporal-spatial-discrete approach. Sciencepaper Online 7, 005 (2010)

    Google Scholar 

  19. Wang, H., et al.: A high-performance temporal-spatial discretization method for the parallel computing of river basins. Comput. Geosci. 58, 62–68 (2013)

    Article  Google Scholar 

  20. Liu, J., et al.: A layered approach to parallel computing for spatially distributed hydrological modeling. Environ. Modell. Softw. 51, 221–227 (2014)

    Article  Google Scholar 

  21. Xu, R., et al.: A new grid-associated algorithm in the distributed hydrological model simulations. Sci. China Ser. E: Technol. Sci. 53(1), 235–241 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The research is supported by National Key R&D Program of China No.2017YFB0203100 and 2017YFB0203103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjun Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chu, G., Hu, C., Qin, X., Wu, J., Wu, Y. (2019). Research on Large Scale Parallel Hydrological Simulation. In: Hu, C., Yang, W., Jiang, C., Dai, D. (eds) High-Performance Computing Applications in Numerical Simulation and Edge Computing. HPCMS HiDEC 2018 2018. Communications in Computer and Information Science, vol 913. Springer, Singapore. https://doi.org/10.1007/978-981-32-9987-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9987-0_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9986-3

  • Online ISBN: 978-981-32-9987-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics