Skip to main content

Effect of Ni and Mn on the Interaction of an Edge Dislocation with Cu-rich Precipitates in Bcc Fe

  • Conference paper
  • First Online:
High-Performance Computing Applications in Numerical Simulation and Edge Computing (HPCMS 2018, HiDEC 2018)

Abstract

The interactions of a 1/2 <111> {110} edge dislocation with nano-sized Cu, Cu-Ni and Cu-Mn precipitates have been investigated by using of molecular dynamics method. It is found that the increase of precipitates size enhances their obstacle strength, while, the rise of temperature causes the reducing of obstacle strength. The results prove that Cu-Mn precipitates will have maximum resistance for dislocation gliding, followed by Cu-Ni and Cu precipitates. It is originated from Mn atoms in Cu-rich precipitate that exhibit attractive to dislocation segment. And Mn atoms can improve the fraction of transformed atoms from bcc structure to 9R structure for Cu-Mn precipitates with a diameter of 4 nm. These will lead to the increase of obstacle strength of Cu-Mn precipitates. For 4 nm Cu-Ni precipitate, the critical resolved shear stress is much bigger than that of 4 nm Cu precipitate, due to Ni atoms promoting the phase transition from bcc to 9R structure. Moreover, the fraction of transformed atoms is inversely proportional to temperature. Eventually, these features are confirmed that the appearance of Ni or Mn atoms enhances the obstacle strength of Cu precipitates for dislocation gliding in bcc Fe matrix, especially for Mn atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fukuya, K., Ohno, K., Nakata, H., Dumbill, S., Hyde, J.M.: Microstructural evolution in medium copper low alloy steels irradiated in a pressurized water reactor and a material test reactor. J. Nucl. Mater. 312, 163–173 (2003). https://doi.org/10.1016/S0022-3115(02)01675-6

    Article  Google Scholar 

  2. Miller, M.K., Russell, K.F., Sokolov, M.A., Nanstad, R.K.: APT characterization of irradiated high nickel RPV steels. J. Nucl. Mater. 361, 248–261 (2007). https://doi.org/10.1016/j.jnucmat.2006.12.015

    Article  Google Scholar 

  3. Glade, S.C., Wirth, B.D., Odette, G.R., Asoka-Kumar, P.: Positron annihilation spectroscopy and small angle neutron scattering characterization of nanostructural features in high-nickel model reactor pressure vessel steels. J. Nucl. Mater. 351, 197–208 (2006). https://doi.org/10.1016/j.jnucmat.2006.02.012

    Article  Google Scholar 

  4. Meslin, E., Radiguet, B., Pareige, P., Barbu, A.: Kinetic of solute clustering in neutron irradiated ferritic model alloys and a French pressure vessel steel investigated by atom probe tomography. J. Nucl. Mater. 399(2-3), 137–145 (2010). https://doi.org/10.1016/j.jnucmat.2009.11.012

    Article  Google Scholar 

  5. Miller, M.K., Sokolov, M.A., Nanstad, R.K., Russell, K.F.: APT characterization of high nickel RPV steels. J. Nucl. Mater. 351(1–3), 187–196 (2006). https://doi.org/10.1016/j.jnucmat.2006.02.013

    Article  Google Scholar 

  6. Vaynman, S., Isheim, D., Kolli, R.P., Bhat, S.P., Seidman, D.N., Fine, M.E.: Temperature dependence of irradiation hardening due to dislocation loops and precipitates in RPV steels and model alloys. J. Nucl. Mater. 464(2), 6–15 (2015). https://doi.org/10.1016/j.jnucmat.2015.04.014

    Article  Google Scholar 

  7. Vaynman, S., Isheim, D., Kolli, R.P., Bhat, S.P., Seidman, D.N., Fine, M.E.: High-strength low-carbon ferritic steel containing Cu-Fe-Ni-Al-Mn precipitates. Metall. Mater. Trans. A 39(2), 363–373 (2008). https://doi.org/10.1007/s11661-007-9417-x

    Article  Google Scholar 

  8. Jiao, Z.B., Luan, J.H., Zhang, Z.W., Miller, M.K., Ma, W.B., Liu, C.T.: Synergistic effects of cu and ni on nanoscale precipitation and mechanical properties of high-strength steels. Acta Mater. 61(16), 5996–6005 (2013). https://doi.org/10.1016/j.actamat.2013.06.040

    Article  Google Scholar 

  9. Yu, X., Caron, J.L., Babu, S.S., Lippold, J.C., Isheim, D., Seidman, D.N.: Characterization of microstructural strengthening in the heat-affected-zone of a blast-resistant naval steel. Acta Mater. 58(17), 5596–5609 (2010). https://doi.org/10.1016/j.actamat.2010.06.031

    Article  Google Scholar 

  10. Nakamichi, H., Yamada, K., Sato, K.: Sub-nanometre elemental analysis of cu cluster in fe–cu–ni alloy using aberration corrected stem-eds. J. Microsc. 242(1), 55 (2011). https://doi.org/10.1111/j.1365-2818.2010.03438.x

    Article  Google Scholar 

  11. He, S.M., et al.: In situ determination of aging precipitation in deformed Fe-Cu and Fe-Cu-B-N alloys by time-resolved small-angle neutron scattering. Phys Rev B 82(17), 174111 (2010). https://doi.org/10.1103/PhysRevB.82.174111

    Article  Google Scholar 

  12. Kar’kina, L.E., Kar’kin, I.N., Gornostyrev, Y.N.: Computer simulation of the interaction between an edge dislocation and Cu precipitates in bcc iron. Bull. Russ. Acad. Sci. Phys. 74(5), 650–652 (2010). https://doi.org/10.3103/S1062873810050187

    Article  Google Scholar 

  13. Shim, J.H., Kim, D.I., Jung, W.S., Cho, Y.W., Hong, K.T., Wirth, B.D.: Atomistic study of temperature dependence of interaction between screw dislocation and nanosized bcc Cu precipitate in bcc Fe. J. Appl. Phys. 104(8), 083523–083523-4 (2008). https://doi.org/10.1063/1.3003083

    Article  Google Scholar 

  14. Harry, T., Bacon, D.J.: Computer simulation of the core structure of the <111> screw dislocation in α-iron containing copper precipitates: II. dislocation–precipitate interaction and the strengthening effect. Acta Mater. 50(1), 209–222 (2002). https://doi.org/10.1016/S1359-6454(01)00332-9

    Article  Google Scholar 

  15. Lehtinen, A., Granberg, F., Laurson, L., Nordlund, K., Alava, M.J.: Multiscale modeling of dislocation-precipitate interactions in Fe: from molecular dynamics to discrete dislocations. Phys. Rev. E 93(1), 013309 (2016). https://doi.org/10.1103/PhysRevE.93.013309

    Article  Google Scholar 

  16. Chen, Z., Kioussis, N., Ghoniem, N.: Influence of nanoscale Cu precipitates in α-Fe on dislocation core structure and strengthening. Phys. Rev. B 80(18), 184104 (2009). https://doi.org/10.1103/PhysRevB.80.184104

    Article  Google Scholar 

  17. Osetsky, Yu.N., Bacon, D.J., Mohles, V.: Atomic modelling of strengthening mechanisms due to voids and copper precipitates in α-iron. Philos. Mag. 83(31-34), 3623–3641 (2003). https://doi.org/10.1080/14786430310001603364

    Article  Google Scholar 

  18. Liao, Y., Ye, C., Gao, H., Kim, B.J.: Dislocation pinning effects induced by nano-precipitates during warm laser shock peening: dislocation dynamic simulation and experiments. J. Appl. Phys. 110(2), 291 (2011). https://doi.org/10.1063/1.3609072

    Article  Google Scholar 

  19. Bacon, D.J., Osetsky, Y.N.: Mechanisms of hardening due to copper precipitates in α-iron. Philos. Mag. 89(34–36), 3333–3349 (2009). https://doi.org/10.1080/14786430903271377

    Article  Google Scholar 

  20. Kohler, C., Kizler, P., Schmauder, S.: Atomistic simulation of precipitation hardening in α-iron: influence of precipitate shape and chemical composition. Model. Simul. Mater. Sci. 13(1), 35 (2004). https://doi.org/10.1088/0965-0393/13/1/003

    Article  Google Scholar 

  21. Grammatikopoulos, P., Bacon, D.J., Osetsky, Y.N.: The influence of interaction geometry on the obstacle strength of voids and copper precipitates in iron. Model. Simul. Mater. Sci. 19(19), 015004 (2011). https://doi.org/10.1088/0965-0393/19/1/015004

    Article  Google Scholar 

  22. Harry, T., Bacon, D.J.: Computer simulation of the core structure of the, screw dislocation in α-iron containing copper precipitates: I structure in the matrix and a precipitate. Acta Mater. 50(1), 195–208 (2002). https://doi.org/10.1016/S1359-6454(01)00331-7

    Article  Google Scholar 

  23. Isheim, D., Gagliano, M.S., Fine, M.E., Seidman, D.N.: Interfacial segregation at Cu-rich precipitates in a high-strength low-carbon steel studied on a sub-nanometer scale. Acta Mater. 54(3), 841–849 (2006). https://doi.org/10.1016/j.actamat.2005.10.023

    Article  Google Scholar 

  24. Edmondson, P.D., Miller, M.K., Powers, K.A., Nanstad, R.K.: Atom probe tomography characterization of neutron irradiated surveillance samples from the RE Ginna reactor pressure vessel. J. Nucl. Mater. 470, 147–154 (2016). https://doi.org/10.1016/j.jnucmat.2015.12.038

    Article  Google Scholar 

  25. Wen, Y.R., Hirata, A., Zhang, Z.W., Fujita, T., Liu, C.T., Jiang, J.H.: Microstructure characterization of Cu-rich nanoprecipitates in a Fe-2.5 Cu-1.5 Mn-4.0 Ni-1.0 Al multicomponent ferritic alloy. Acta Mater. 61(6), 2133–2147 (2013). https://doi.org/10.1016/j.actamat.2012.12.034

    Article  Google Scholar 

  26. Zhang, C., Enomoto, M.: Study of the influence of alloying elements on Cu precipitation in steel by non-classical nucleation theory. Acta Mater. 54(16), 4183–4191 (2006). https://doi.org/10.1016/j.actamat.2006.05.006

    Article  Google Scholar 

  27. Terentyev, D., Malerba, L., Bonny, G., Al-Motasem, A.T., Posselt, M.: Interaction of an edge dislocation with Cu–Ni-vacancy clusters in bcc iron. J. Nucl. Mater. 419(1–3), 134–139 (2011). https://doi.org/10.1016/j.jnucmat.2011.08.021

    Article  Google Scholar 

  28. Lv, G., Zhang, H., He, X., Yang, W., Su, Y.: Atomistic simulation of Cu–Ni precipitates hardening in α-iron. J. Phys. D Appl. Phys. 48(11), 115302 (2015). https://doi.org/10.1088/0022-3727/48/11/115302

    Article  Google Scholar 

  29. Xie, Y.P., Zhao, S.J.: The segregation behavior of manganese and silicon at the coherent interfaces of copper precipitates in ferritic steels. J. Nucl. Mater. 445(1–3), 43–49 (2014). https://doi.org/10.1016/j.jnucmat.2013.10.054

    Article  Google Scholar 

  30. Osetsky, Y.N., Bacon, D.J.: An atomic-level model for studying the dynamics of edge dislocations in metals. Model. Simul. Mater. Sci. 11(4), 427–446 (2003). https://doi.org/10.1088/0965-0393/11/4/302

    Article  Google Scholar 

  31. Jenkins, M.L.: High-resolution electron microscopy studies of the structure of Cu precipitates in α-Fe. Philos. Mag. A 70(1), 1–24 (1994). https://doi.org/10.1080/01418619408242533

    Article  Google Scholar 

  32. Terentyev, D., Haghighat, S.M.H., Schäublin, R.: Strengthening due to Cr-rich precipitates in Fe–Cr alloys: effect of temperature and precipitate composition. J. Appl. Phys. 107(6), 061806 (2010). https://doi.org/10.1063/1.3340522

    Article  Google Scholar 

  33. Bonny, G., Terentyev, D., Bakaev, A., Zhurkin, E.E., Hou, M., Neck, D.V.: On the thermal stability of late blooming phases in reactor pressure vessel steels: an atomistic study. J. Nucl. Mater. 442(1–3), 282–291 (2013). https://doi.org/10.1016/j.jnucmat.2013.08.018

    Article  Google Scholar 

  34. Pasianot, R.C., Malerba, L.: Interatomic potentials consistent with thermodynamics: the Fe–Cu system. J. Nucl. Mater. 360(2), 118–127 (2007). https://doi.org/10.1016/j.jnucmat.2006.09.008

    Article  Google Scholar 

  35. Bonny, G., Pasianot, R.C., Malerba, L.: Fe-Ni many-body potential for metallurgical applications. Model. Simul. Mater. Sci. 17(2), 025010 (2009). https://doi.org/10.1088/0965-0393/17/2/025010

    Article  Google Scholar 

  36. Terentyev, D., Malerba, L., Bacon, D.J., Osetsky, Y.N.: The effect of temperature and strain rate on the interaction between an edge dislocation and an interstitial dislocation loop in α-iron. J. Phys. Condens. Matter 19(45), 456211 (2007). https://doi.org/10.1088/0953-8984/19/45/456211

    Google Scholar 

  37. Olsson, P., Klaver, T.P.C., Domain, C.: Ab initio study of solute transition-metal interactions with point defects in bcc Fe. Phys. Lett. B 81(5), 054102 (2010). https://doi.org/10.1103/PhysRevB.81.054102

    Article  Google Scholar 

  38. Barashev, A.V., Arokiam, A.C.: Monte Carlo modelling of Cu atom diffusion in α-Fe via the vacancy mechanism. Phil. Mag. Lett. 86(5), 321–332 (2006). https://doi.org/10.1080/09500830600788927

    Article  Google Scholar 

  39. Bakaev, A., Terentyev, D., Bonny, G., Klaver, T.P.C., Olsson, P., Van Neck, D.: Interaction of minor alloying elements of high-Cr ferritic steels with lattice defects: an ab initio study. J. Nucl. Mater. 444(1–3), 237–246 (2014). https://doi.org/10.1016/j.jnucmat.2013.09.053

    Article  Google Scholar 

  40. Varschasky, A.: Ordering and solute segregation to dislocations in Cu-20at.%Mn. Mater. Sci. Eng. 89, 119–128 (1987). https://doi.org/10.1016/0025-5416(87)90255-2

    Article  Google Scholar 

  41. Bacon, D.J., Osetsky, Y.N.: Hardening due to copper precipitates in α-iron studied by atomic-scale modeling. J. Nucl. Mater. 329, 1233–1237 (2004). https://doi.org/10.1016/j.jnucmat.2004.04.256

    Article  Google Scholar 

  42. Lee, T.H., Kim, Y.O., Kim, S.J.: Crystallographic model for bcc-to-9R martensitic transformation of Cu precipitates in ferritic steel. Phil. Mag. 87(2), 209–224 (2007). https://doi.org/10.1080/14786430600909014

    Article  Google Scholar 

  43. Hu, S.Y., Li, Y.L., Watanabe, K.: Calculation of internal stresses around Cu precipitates in the bcc Fe matrix by atomic simulation. Model. Simul. Mater. Sci. 7(4), 641 (1999). https://doi.org/10.1088/0965-0393/7/4/312

    Article  Google Scholar 

  44. Scattergood, R.O., Bacon, D.J.: The strengthening effect of voids. Acta Metall. 30(8), 1665–1677 (1982). https://doi.org/10.1016/0001-6160(82)90188-2

    Article  Google Scholar 

  45. Bacon, D.J., Kocks, U.F., Scattergood, R.O.: The effect of dislocation self-interaction on the Orowan stress. Philos. Mag. 28(6), 1241–1263 (1973). https://doi.org/10.1080/14786437308227997

    Article  Google Scholar 

  46. Lozano-Perez, S., Jenkins, M.L., Titchmarsh, J.M.: Titchmarsh, Evidence for deformation-induced transformations of Cu-rich precipitates in an aged FeCu alloy. Philos. Mag. Lett. 86(6), 367–374 (2006). https://doi.org/10.1080/09500830600815365

    Article  Google Scholar 

  47. Heo, Y.U., Kim, Y.K., Kim, J.S., Kim, J.K.: Phase transformation of Cu precipitates from bcc to fcc in Fe–3Si–2Cu alloy. Acta Mater. 61(2), 519–528 (2013). https://doi.org/10.1016/j.actamat.2012.09.068

    Article  Google Scholar 

  48. Erhart, P., Marian, J., Sadigh, B.: Thermodynamic and mechanical properties of copper precipitates in α-iron from atomistic simulations. Phys. Rev. B 88(2), 024116 (2013). https://doi.org/10.1103/PhysRevB.88.024116

    Article  Google Scholar 

  49. Shim, J.H., Kim, D.I., Jung, W.S., Cho, Y.W., Wirth, B.D.: Strengthening of nanosized bcc Cu precipitate in bcc Fe: a molecular dynamics study. Mater. Trans. 50(9), 2229–2234 (2009). https://doi.org/10.2320/matertrans.M2009040

    Article  Google Scholar 

  50. Shim, J.H., Cho, Y.W., Kwon, S.C., Kim, W.W., Wirth, B.D.: Screw dislocation assisted martensitic transformation of a bcc cu precipitate in bcc Fe. Appl. Phys. Lett., 90(2), 021906–021906-3 (2007). https://doi.org/10.1063/1.2429902

    Article  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the financial support of the National Key Research and Development Program of China (Grant Number. 2017YFB0202300), The China National Nuclear Corporation Centralized Research and Development Project (Grant Number. FA16100820) and the National Natural Science Foundation of China (Grants Number. 11375270).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yankun Dou or Xinfu He .

Editor information

Editors and Affiliations

Appendix

Appendix

Two methods of creating Cu-rich precipitates are carried out in the present paper. The first one is developed by Osetsky and Bacon [30]. It introduces the Cu precipitate directly in modes. Cu-Mn and Cu-Ni precipitates are built by randomly replacing 40% Cu atoms in Cu precipitate by Mn or Ni atoms. The second method is to create precipitates according to experiment results. The Cu precipitates detected by Atom probe tomography in ref.8, contains some amount of Fe and Cu, as well as a little of Mn and Ni atoms. We first attain the contents of Fe, Cu, Mn and Ni elements in Cu-rich precipitates at different distances from the precipitate core to the interface. The precipitates are divided into as many isometric layers as possible, and with each layer filled using corresponding contents according to the distribution of different elements in Cu precipitates from the core to the interface. The precipitates will be introduced into the calculation models to relax adequately. The precipitates after relaxation are stable enough and interface effect between different layers in precipitates can be ignored. The corresponding pure Cu precipitate is created by substitution of the Mn and Ni atoms for Cu atoms in order to study the influence of Mn and Ni atoms on the obstacle strength of Cu-rich precipitates.

Figure A1 presents the stress-strain curves for interaction of dislocation with 4 nm Cu, Cu-Mn and Cu-Ni precipitates created by the first method. It can be seen that the Mn or Ni atoms enhance the critical resolved shear stresses of Cu-rich precipitates.

Fig. A1.
figure 8

Stress–strain curves for 4 nm precipitates created by the first method at 100K

Figure A2 shows the stress-strain curves for interaction of dislocation with 4 nm pure Cu precipitate and Cu-rich precipitate containing Fe, Mn and Ni atoms built by the second method. The critical resolved shear stress for Cu-rich precipitate built by experimental results is more than 450 MPa, which is much bigger than that of pure Cu precipitate (~260 MPa). More strain (about 3%) should be applied before the dislocation departure from the Cu-rich precipitate. It reveals that the Mn and Ni atoms can improve the obstacle strength of the Cu-rich precipitate built by experimental results. It agrees with the conclusion obtained in the Fig. A1 and the dependence of stress-strain curves on strain is similar in the Figs. A1 and A2. Therefore, the first method of creating Cu-rich precipitates can be applied to qualitatively study the separate influence of Mn and Ni on the obstacle strength of Cu-rich precipitate.

Fig. A2.
figure 9

Stress–strain curves for 4 nm precipitates created by the second methods at 100K

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dou, Y. et al. (2019). Effect of Ni and Mn on the Interaction of an Edge Dislocation with Cu-rich Precipitates in Bcc Fe. In: Hu, C., Yang, W., Jiang, C., Dai, D. (eds) High-Performance Computing Applications in Numerical Simulation and Edge Computing. HPCMS HiDEC 2018 2018. Communications in Computer and Information Science, vol 913. Springer, Singapore. https://doi.org/10.1007/978-981-32-9987-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9987-0_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9986-3

  • Online ISBN: 978-981-32-9987-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics