Skip to main content

Prospects for CVR-0: A Prototype of China Virtual Reactor

  • Conference paper
  • First Online:
High-Performance Computing Applications in Numerical Simulation and Edge Computing (HPCMS 2018, HiDEC 2018)

Abstract

A virtual nuclear reactor is a simulation environment, which has lately received great attention due to its contributions to improving nuclear safety and extending the life of the world’s aging nuclear fleet at low cost. CVR-0, the prototype of China Virtual Reactor, is a virtual nuclear reactor being developed for Generation-III and Generation-IV reactors. The CVR program was established for the purpose of performing multi-physics simulations on high-fidelity geometry at large spatial and temporal scales and leveraging the next-generation supercomputers under development in China. Recent efforts to develop the simulation capabilities of CVR-0 has been made to achieve the near-term goal. In this work, we propose the main focuses and preliminary architecture of CVR-0. The overall goals and milestones of the CVR program are given in brief, as well as the estimated computational resources required for high-fidelity simulations. The estimates indicate that improving parallel efficiency on supercomputers remains an ongoing challenge due to the large scale of full-core calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hong-yi, Y., et al..: Technical progress of 600 MW demonstration fast reactor (CFR600). Annual Report of China Institute of Atomic Energy (00), pp. 42–45 (2016)

    Google Scholar 

  2. Chen, Y., Martin, G., Chabert, C., Eschbach, R., He, H., Ye, G.-a.: Prospects in China for nuclear development up to 2050. Prog. Nucl. Energy 103, 81–90 (2018)

    Article  Google Scholar 

  3. TOP500 List Statistics. https://www.top500.org/statistics/list/. Accessed 5 Mar 2018

  4. Fu, H., et al.: The Sunway TaihuLight supercomputer: system and applications. Sci. China Inf. Sci. 59(7), 072001 (2016)

    Article  Google Scholar 

  5. Liao, X., Xiao, L., Yang, C., Lu, Y.: MilkyWay-2 supercomputer: system and application. Front. Comput. Sci. 8(3), 345–356 (2014)

    Article  MathSciNet  Google Scholar 

  6. IAEA Homepage. https://www.iaea.org/. Accessed 25 Apr 2018

  7. Chauliac, C., et al.: NURESIM – a European simulation platform for nuclear reactor safety: Multi-scale and multi-physics calculations, sensitivity and uncertainty analysis. Nucl. Eng. Des. 241(9), 3416–3426 (2011)

    Article  Google Scholar 

  8. SALOME platform. https://www.salome-platform.org/. Accessed 5 Mar 2018

  9. Chanaron, B., et al.: Advanced multi-physics simulation for reactor safety in the framework of the NURESAFE project. Ann. Nucl. Energy 84, 166–177 (2015)

    Article  Google Scholar 

  10. NURESAFE Homepage. http://www.nuresafe.eu/. Accessed 5 Mar 2018

  11. Simulation Softwares - EDF R&D. https://www.edf.fr/en/the-edf-group/world-s-largest-power-company/activities/research-and-development/scientific-communities/simulation-softwares. Accessed 5 Mar 2018

  12. Turner, J.A., et al.: The virtual environment for reactor applications (VERA): design and architecture. J. Comput. Phys. 326, 544–568 (2016)

    Article  Google Scholar 

  13. CASL Homepage. https://www.casl.gov/. Accessed 5 Mar 2018

  14. Kothe, D.B.: CASL: the consortium for advanced simulation of light water reactors. Bull. Am. Phys. Soc. 55 (2010)

    Google Scholar 

  15. Newman, C., Hansen, G., Gaston, D.: Three dimensional coupled simulation of thermomechanics, heat, and oxygen diffusion in UO2 nuclear fuel rods. J. Nucl. Mater. 392(1), 6–15 (2009)

    Article  Google Scholar 

  16. Gaston, D., Newman, C., Hansen, G., Lebrun-Grandié, D.: MOOSE: a parallel computational framework for coupled systems of nonlinear equations. Nucl. Eng. Des. 239(10), 1768–1778 (2009)

    Article  Google Scholar 

  17. Schmidt, R.: Introduction to LIME: a lightweight integrating multi-physics environment for coupling codes. Technical report, Sandia National Laboratories (2010)

    Google Scholar 

  18. Heroux, M.A., Willenbring, J.M.: A new overview of the Trilinos project. Sci. Program. 20(2), 83–88 (2012)

    Google Scholar 

  19. Knoll, D.A., Keyes, D.E.: Jacobian-free Newton-Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193(2), 357–397 (2004)

    Article  MathSciNet  Google Scholar 

  20. Franceschini, F., et al.: AP1000 PWR Startup core modeling and simulation with VERA-CS. In: Advances in Nuclear Fuel Management V. ANS, Illinois, USA (2015)

    Google Scholar 

  21. Godfrey, A.T., Collins, B.S., Gentry, C.A., Stimpson, S.G., Ritchie, J.A.: Watts Bar Unit 2 Startup Results with VERA. Technical report, Oak Ridge National Laboratory (2017)

    Google Scholar 

  22. Bradley, K.: NEAMS: the nuclear energy advanced modeling and simulation program. Technical report, Argonne National Laboratory (2013)

    Google Scholar 

  23. Sofu, T., Thomas, J.: U.S. DOE NEAMS program and SHARP multi-physics toolkit for high-fidelity SFR core design and analysis. In: International Conference on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development. IAEA, Vienna (2017)

    Google Scholar 

  24. Rearden, B.T., Lefebvre, R.A., Thompson, A.B., Langley, B.R., Stauff, N.E.: Introduction to the nuclear energy advanced modeling and simulation workbench. In: International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, pp. 16–20. ANS, Illinois (2017)

    Google Scholar 

  25. Nuclear Fuels. https://www.energy.gov/ne/advanced-modeling-simulation/nuclear-fuels. Accessed 25 Apr 2018

  26. Siegel, A., et al.: Software design of SHARP. In: Joint International Topical Meeting on Mathematics and Computation and Supercomputing in Nuclear Applications. ANS, Illinois (2007)

    Google Scholar 

  27. CESAR Homepage. https://cesar.mcs.anl.gov/. Accessed 5 Mar 2018

  28. GAIN Homepage. https://gain.inl.gov/. Accessed 5 Mar 2018

  29. Li, G., Zhang, B., Deng, L., Hu, Z., Ma, Y.: Development of Monte Carlo particle transport code JMCT. High Power Laser Part. Beams 25(1), 158–162 (2013)

    Article  Google Scholar 

  30. Li, D., et al.: JMCT Monte Carlo simulation analysis of BEAVRS and SG-III shielding. EPJ Web Conf. 153, 06017 (2017)

    Article  Google Scholar 

  31. Chen, J., et al.: A new high-fidelity neutronics code NECP-X. Ann. Nucl. Energy 116, 417–428 (2018)

    Article  Google Scholar 

  32. NECP-Bamboo Homepage. http://bamboo.xjtu.edu.cn/page/introduction. Accessed 5 Mar 2018

  33. Li, Z., et al.: Development and validation of a PWR on-line power-distribution monitoring system NECP-ONION. Nucl. Eng. Des. 322, 104–115 (2017)

    Article  Google Scholar 

  34. Smith, K., Forget, B.: Challenges in the development of high-fidelity LWR core neutronics tools. In: International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering. ANS, Illinois (2013)

    Google Scholar 

  35. Downar, T., Kochunas, B., Collins, B.: MPACT verification and validation: status and plans. Technical report, Oak Ridge National Laboratory (2015)

    Google Scholar 

  36. Sly, N.C.: Verification of the shift Monte Carlo code using the C5G7 and CASL benchmark Problems. Master’s thesis, University of Tennessee (2014)

    Google Scholar 

  37. Kucukboyaci, V., Sung, Y., Salko, R.: COBRA-TF parallelization and application to PWR reactor core subchannel DNB analysis. In: Joint International Conference on Mathematics and Computation, Supercomputing in Nuclear Applications and the Monte Carlo Method, pp. 1–18. ANS, Illinois (2015)

    Google Scholar 

  38. Christon, M.A.: Overview of thermal hydraulics and hydra-TH capabilities. Technical report, Los Alamos National Laboratory (2014)

    Google Scholar 

  39. Perez, D.M., Williamson, R., Novascone, S., Pastore, G., Hales, J., Spencer, B.: Assessment of BISON: a nuclear fuel performance analysis code. Technical report, Idaho National Laboratory (2013)

    Google Scholar 

  40. Deshon, J., Hussey, D., Kendrick, B., McGurk, J., Secker, J., Short, M.: Pressurized water reactor fuel crud and corrosion modeling. JOM 63(8), 64 (2011)

    Article  Google Scholar 

  41. Short, M.P., Hussey, D., Kendrick, B.K., Besmann, T.M., Stanek, C.R., Yip, S.: Multiphysics modeling of porous CRUD deposits in nuclear reactors. J. Nucl. Mater. 443(1), 579–587 (2013)

    Article  Google Scholar 

  42. Jung, Y., Lee, C., Smith, M.: Verification of high-fidelity neutronics code PROTEUS for C5G7 benchmark problems. Trans. Am. Nucl. Soc. 116, 1042–1044 (2017)

    Google Scholar 

  43. Shemon, E., Yu, Y., Kim, T.: Application of the SHARP toolkit to Sodium-cooled fast reactor challenge problems. Technical report, Argonne National Lab (2017)

    Google Scholar 

  44. Scalable Spectral Element Methods. http://www.mcs.anl.gov/~fischer/sem1b/. Accessed 25 Apr 2018

  45. Yu, Y., Shemon, E., Thomas, J., Mahadevan, V.S., Rahaman, R.O., Solberg, J.: SHARP user manual. Technical report, Argonne National Lab (2016)

    Google Scholar 

  46. Trilinos. https://trilinos.org/. Accessed 5 Mar 2018

  47. PETSc. https://www.mcs.anl.gov/petsc/. Accessed 5 Mar 2018

  48. Ibanez, D.A., Seol, E.S., Smith, C.W., Shephard, M.S.: PUMI: parallel unstructured mesh infrastructure. ACM Trans. Math. Softw. (TOMS) 42(3), 17 (2016)

    Article  MathSciNet  Google Scholar 

  49. Adams, B.M., et al.: Dakota, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: Version 5.0 user’s manual. Technical report, Sandia National Laboratories (2009)

    Google Scholar 

  50. Li, S., Hu, C., Zhang, J., Zhang, Y.: Automatic tuning of sparse matrix-vector multiplication on multicore clusters. Sci. China Inf. Sci. 58(9), 1–14 (2015)

    Google Scholar 

  51. Říha, L., Brzobohatý, T., Markopoulos, A., Meca, O., Kozubek, T.: Massively parallel hybrid total FETI (HTFETI) solver. In: Platform for Advanced Scientific Computing Conference (PASC 2016), Artical No. 7. ACM, New York (2016)

    Google Scholar 

  52. Wirth, B., Odette, G., Marian, J., Ventelon, L., Young-Vandersall, J., Zepeda-Ruiz, L.: Multiscale modeling of radiation damage in Fe-based alloys in the fusion environment. J. Nucl. Mater. 329, 103–111 (2004)

    Article  Google Scholar 

  53. Hu, C., et al.: Kernel optimization for short-range molecular dynamics. Comput. Phys. Commun. 211, 31–40 (2017)

    Article  Google Scholar 

  54. Wu, B., Li, S., Zhang, Y., Nie, N.: Hybrid-optimization strategy for the communication of large-scale Kinetic Monte Carlo simulation. Comput. Phys. Commun. 211, 113–123 (2017)

    Article  Google Scholar 

  55. Hu, C., et al.: Crystal MD: The massively parallel molecular dynamics software for metal with BCC structure. Comput. Phys. Commun. 211, 73–78 (2017)

    Article  Google Scholar 

  56. Li, S., Zhang, Y., Hoefler, T.: Cache-oblivious MPI all-to-all communications based on Morton order. IEEE Trans. Parallel Distrib. Syst. 29(3), 542–555 (2018)

    Article  Google Scholar 

  57. Plimpton, S., et al.: Crossing the mesoscale no-man’s land via parallel kinetic Monte Carlo. Technical report, Sandia National Laboratories (2009)

    Google Scholar 

  58. Li, S., Hoefler, T., Hu, C., Snir, M.: Improved MPI collectives for MPI processes in shared address spaces. Cluster Comput. 17(4), 1139–1155 (2014)

    Article  Google Scholar 

  59. Ashi, H.: Numerical methods for stiff systems. Master’s thesis, University of Nottingham (2008)

    Google Scholar 

  60. Terrier, P., Athènes, M., Jourdan, T., Adjanor, G., Stoltz, G.: Cluster dynamics modelling of materials: a new hybrid deterministic/stochastic coupling approach. J. Comput. Phys. 350, 280–295 (2017)

    Article  MathSciNet  Google Scholar 

  61. Kochunas, B.M.: A hybrid parallel algorithm for the 3-d method of characteristics solution of the boltzmann transport equation on high performance compute clusters. Ph.D. thesis, University of Michigan (2013)

    Google Scholar 

  62. Patera, A.T.: A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54(3), 468–488 (1984)

    Article  Google Scholar 

  63. NEK5000 Homepage, https://nek5000.mcs.anl.gov/, last accessed 2018/4/25

  64. Zheng, F., Li, H.-L., Lv, H., Guo, F., Xu, X.-H., Xie, X.-H.: Cooperative computing techniques for a deeply fused and heterogeneous many-core processor architecture. J. Comput. Sci. Technol. 30(1), 145–162 (2015)

    Article  Google Scholar 

  65. Patzák, B., Bittnar, Z.: Design of object oriented finite element code. Adv. Eng. Softw. 32(10–11), 759–767 (2001)

    Article  Google Scholar 

  66. Radatz, J., Geraci, A., Katki, F.: IEEE standard glossary of software engineering terminology. IEEE Std 610121990(121990), 3 (1990)

    Google Scholar 

  67. Oberkampf, W.L., Sindir, M., Conlisk, A.: Guide for the verification and validation of computational fluid dynamics simulations. Standard, American Institute of Aeronautics and Astronautics (1998)

    Google Scholar 

  68. Schwer, L.E.: An overview of the PTC 60/V&V 10: guide for verification and validation in computational solid mechanics. Eng. Comput. 23(4), 245–252 (2007)

    Article  Google Scholar 

  69. Kanewala, U., Bieman, J.M.: Testing scientific software: a systematic literature review. Inf. Softw. Technol. 56(10), 1219–1232 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2017YFB0202303 and No. 2017YFB0202300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, A. et al. (2019). Prospects for CVR-0: A Prototype of China Virtual Reactor. In: Hu, C., Yang, W., Jiang, C., Dai, D. (eds) High-Performance Computing Applications in Numerical Simulation and Edge Computing. HPCMS HiDEC 2018 2018. Communications in Computer and Information Science, vol 913. Springer, Singapore. https://doi.org/10.1007/978-981-32-9987-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9987-0_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9986-3

  • Online ISBN: 978-981-32-9987-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics