Skip to main content

Fluid Flow Study of Circular Jet Impingement on Flat Plate

  • Conference paper
  • First Online:
  • 529 Accesses

Abstract

In this present study, the round jet impingement on flat plate is analyzed numerically using four different RANS turbulence models. The four turbulence models considered are k-ω SST, realizable k-ε, RNG k-ε and ν2f. The numerical results in terms of turbulent kinetic energy have been compared with the previously published experimental results for the purpose of validation. It has been observed that ν2f model predicted the variation in turbulent kinetic energy accurately in the wall jet region above the near wall as compared with other models.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

:

Model constant

d :

Nozzle diameter

f :

Elliptic relaxation function

h :

Nozzle to plate spacing

I :

Turbulent intensity

K :

Turbulent kinetic energy

K f :

Thermal conductivity of the fluid

\(\dot{m}\) :

Mass flow rate

P r :

Prandtl number

T j :

Jet exit air temperature

T w :

Local wall temperature

T :

Ambient temperature

ν 2 :

Velocity variance scale

X and Y:

Radial distance from stagnation point

Z :

Vertical distance from the plate

ε :

Turbulent dissipation rate

ε ss :

Emissivity of the stainless steel foil

µ :

Dynamic viscosity of air

µ t :

Turbulent viscosity

ρ :

Density of air

ω :

Specific dissipation rate

References

  1. Geers LFG, Hanjalic K, Tummers MJ (2006) Wall imprint of turbulent structures and heat transfer in multiple impinging jet arrays. J Fluid Mech 546:255–284

    Article  Google Scholar 

  2. Zuckerman N, Lion N (2006) Jet impingement heat transfer: physics, correlations, and numerical modeling. Adv Heat Transf 39:565–631

    Article  Google Scholar 

  3. Dewan A, Dutta R, Srinivasan B (2012) Recent trends in computation of turbulent jet impingement heat transfer. Heat Transfer Eng 33(4–5):447–460

    Article  Google Scholar 

  4. Colucci DW, Viskanta R (1996) Effect of nozzle geometry on local convective heat transfer to a confined impinging air jet. Exp Therm Fluid Sci 13:71–80

    Article  Google Scholar 

  5. Brignoni LA, Garimella SV (2000) Effects of nozzle-inlet chamfering on pressure drop and heat transfer in confined air jet impingement. Int J Heat Mass Transf 43:1133–1139

    Article  Google Scholar 

  6. Cooper D, Jackson DC, Launder BE, Liao GX (1993) Impinging jet studies for turbulence model assessment-l. Flow-field experiments. Int J Heat Mass Transf 36(10):2675–2684

    Article  Google Scholar 

  7. Tummers MJ, Jacobse J, Voorbrood SGJ (2011) Turbulent flow in the near field of a round impinging jet. Int J Heat Mass Transf 54:4939–4948

    Article  Google Scholar 

  8. Yao S, Guo Y, Jiang N, Liu J (2015) An experimental study of a turbulent jet impinging on a flat surface. Int J Heat Mass Transf 83:820–832

    Article  Google Scholar 

  9. Singh D, Premachandran B, Kohli S (2013) Numerical simulation of the jet impingement cooling of a circular cylinder. Numer Heat Transf, Part A: Appl 64(2):153–185

    Article  Google Scholar 

  10. Singh D, Premachandran B, Kohli S (2013) Experimental and numerical investigation of jet impingement cooling of a circular cylinder. Int J Heat Mass Transf 60:672–688

    Article  Google Scholar 

  11. Dutta R, Dewan A, Srinivasan B (2013) Comparison of various integration to wall (ITW) RANS models for predicting turbulent slot jet impingement heat transfer. Int J Heat Mass Transf 65:750–764

    Article  Google Scholar 

  12. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, Washington DC

    Google Scholar 

  13. OpenFOAM 5 User guide

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dushyant Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, D., Kango, S. (2020). Fluid Flow Study of Circular Jet Impingement on Flat Plate. In: Parwani, A., Ramkumar, P. (eds) Recent Advances in Mechanical Infrastructure. Lecture Notes in Intelligent Transportation and Infrastructure. Springer, Singapore. https://doi.org/10.1007/978-981-32-9971-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9971-9_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9970-2

  • Online ISBN: 978-981-32-9971-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics