Skip to main content

Part of the book series: Forum for Interdisciplinary Mathematics ((FFIM))

  • 615 Accesses

Abstract

Reaction–diffusion equations (RDEs) are nonlinear parabolic partial differential equations (PDEs). RDE arises in many applications which include physical sciences, biological sciences, ecology, physiology, finance, to name a few.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 29.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Chandrasekhar, An Introduction to the Study of Stellar Structure (Dover Publications, Clayton, 1967)

    Google Scholar 

  2. J.H. Lane, On the theoretical temperature of the sun under the hypothesis of a gaseous mass maintaining its internal heat and depending on the laws of gases known to terrestrial experiment, Am. J. Sci. Arts. 2, 57–74 (1870)

    Google Scholar 

  3. H.T. Davis, Introduction to Nonlinear Differential and Integral Equations (Dover, New York, 1962)

    Google Scholar 

  4. E.H. Doha, W.M. Abd- Elhameed, Y.H. Youssri, Second kind Chebyshev operational matrix algorithm for solving differential equations of Lane-Emden type. New Astron. 2324, 113–117 (2013)

    Google Scholar 

  5. G. Hariharan, An efficient wavelet based approximation method to water quality assessment model in a uniform channel. Ains Shams Eng. J. (2013 in press)

    Google Scholar 

  6. G. Hariharan, K. Kannan, K.R. Sharma, Haar wavelet in estimating the depth profile of soil temperature. Appl. Math. Comput. 210, 119–225 (2009)

    MathSciNet  MATH  Google Scholar 

  7. G. Hariharan, K. Kannan, Haar wavelet method for solving Fisher’s equation. Appl. Math. Comput. 211, 284–292 (2009)

    MathSciNet  MATH  Google Scholar 

  8. G. Hariharan, K. Kannan, A comparative study of a Haar wavelet method and a restrictive Taylor’s series method for solving convection-diffusion equations. Int. J. Comput. Methods Eng. Sci. Mech. 11(4), 173–184 (2010)

    Article  MathSciNet  Google Scholar 

  9. G. Hariharan, K. Kannan, Review of wavelet methods for the solution of reaction–diffusion problems in science and engineering. Appl. Math. Model. 38(1)7, 99–813 (2014)

    Article  MathSciNet  Google Scholar 

  10. D. Sathiyaseelan, M.B. Gumpu, N. Nesakumar, J.B.B. Rayappan, G. Hariharan, Wavelet based spectral approach for solving surface coverage model in an electrochemical arsenic sensor—an operational matrix approach. Electrochim. Acta 266, 27–33 (2018)

    Article  Google Scholar 

  11. M. Mahalakshmi, G. Hariharan, A new spectral approach on steady-state concentration of species in porous catalysts using wavelets. J. Membr. Biol. 250, 163–169 (2017)

    Article  Google Scholar 

  12. G. Hariharan, D. Sathyaseelan, Efficient spectral methods for a class of unsteady-state free-surface ship models using wavelets. Z. Angew. Math. Phys. 68, 31 (2017)

    Article  MathSciNet  Google Scholar 

  13. M.H. Heydari, M.R. Hooshmandas, C. Cattani, G. Hariharan, An optimization wavelet method for multi variable-order fractional differential equations. Fundam. Inf. 151(1–4), 255–273 (2017)

    Article  MathSciNet  Google Scholar 

  14. M. Salai Mathi Selvi, G. Hariharan, K. Kannan, M.H. Heydari, Two reliable computational methods pertaining to steady state substrate concentration of an immobilized enzyme system. Alexandria Eng. J. (2017 in press)

    Google Scholar 

  15. M. Salai Mathi Selvi, G. Hariharan, K. Kannan, A reliable spectral method to reaction-diffusion equations in entrapped-cell photobioreactor packed with gel granules using Chebyshev wavelets. J. Membr. Biol. 250(6, 1), 663–670 (2017)

    Article  Google Scholar 

  16. Vivek Kumar, Mani Mehra, Cubic spline adaptive wavelet scheme to solve singularly perturbed reaction-diffusion problems. Int. J. Wavelets Multiresolut. Inf. Process. 5(2), 317–331 (2007)

    Article  MathSciNet  Google Scholar 

  17. U. Lepik, Numerical solution of evolution equations by the Haar wavelet method. Appl. Math. Comput. 185, 695–704 (2007)

    MathSciNet  MATH  Google Scholar 

  18. U. Lepik, Application of the Haar wavelet transform to solving integral and differential Equations. Proc. Estonian Acad. Sci. Phys. Math. 56(1), 28–46 (2007)

    MathSciNet  MATH  Google Scholar 

  19. M. Mehra, N.K.-R. Kevlahan, An adaptive wavelet collocation method for the solution of partial differential equations on the sphere. J. Comput. Phys. 227, 5610–5632 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Hariharan .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hariharan, G. (2019). Reaction–Diffusion (RD) Problems. In: Wavelet Solutions for Reaction–Diffusion Problems in Science and Engineering. Forum for Interdisciplinary Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-32-9960-3_1

Download citation

Publish with us

Policies and ethics