Skip to main content

Functional Genomics of Microbial Pathogens for Crop Improvement

  • Chapter
  • First Online:
Microbial Genomics in Sustainable Agroecosystems

Abstract

Sequencing bacterial genomes over the past two decades has opened a new era in the analysis of pathogenic bacteria. Analyses of genomic sequences provided important insights into evolution of pathogenicity and antibiotic resistance. Genomic comparison between pathogenic bacteria and their less harmful relatives showed that virulence factors may be acquired by horizontal transfer of pathogenicity islands. Therefore, in addition to the presence of virulence and antivirulence genes, several features of the bacterial genome such as the GþC content, the genome size, and the proportion of genes encoding specific functions could help identify pathogens and assess their intrinsic virulence. Genomic information provides a background for additional high-throughput functional studies such as in silico metabolic modelling and wet-lab experimentation at the RNA and protein levels. Transcriptome studies of microbial pathogens using microarrays and RNA sequencing are particularly focused on changes in gene expression. Genome-wide targeted gene inactivation has been used to construct mutants and identify those with an altered phenotype. Targeted inactivation has been difficult to do in bacteria showing barriers to transformation. Although the role of bacteriophages in the evolution, virulence, and antibiotic resistance of bacteria has been recognized, only a few functional genomics studies of these viruses have been performed so far. Such studies are important for use of bacteriophages and their proteins in bacterial identification and infection control. It has been shown that several human diseases and disorders correlate with changes in microbiota profiles, suggesting that bacterial communities may play a causative role of disease. In conclusion, the expanding field of functional genomics provides powerful tools and insights for assessing the contribution of pathogens and microbial communities to disease as well as the characteristics of the host response and will contribute to development of new prevention and therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahemad, M., Kibret, M., 2014. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci. 26, 1–20

    Article  Google Scholar 

  • Andrews RE, Faust RM, Wabiko H, Raymond KC, Bulla LA (1987) The biotechnology of Bacillus thuringiensis. Crit Rev Biotechnol 6(2):163–232

    Article  CAS  PubMed  Google Scholar 

  • Banga SK, Bhaskar PB, Banga SS (2006) Genetically engineered systems of male sterility. J Oilseeds Res 23:1–7

    Google Scholar 

  • Barry G, Kishore G, Padgette S, Taylor M, Kolacz K, Weldon M, Re D, Eichholtz D, Fincher D, Hallas L (1992) Inhibitors of amino acid biosynthesis: strategies for imparting glyphosate tolerance to crop plants. In: Singh BK, Flores HE, Shannon JC (eds) Biosynthesis and molecular regulation of amino acids in plants. American Society of Plant Physiologists, Rockville, pp 139–145

    Google Scholar 

  • Baulcombe D (1999a) Viruses and gene silencing in plants. In: Calisher CH, Horzinek MC (eds) 100 years of virology: the birth and growth of a discipline. Springer Vienna, Vienna, pp 189–201

    Chapter  Google Scholar 

  • Baulcombe DC (1999b) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2(2):109–113

    Article  CAS  PubMed  Google Scholar 

  • Beyer P et al (2002) Golden rice: introducing the β-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J Nutr 132(3):506S–510S

    Article  PubMed  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Brasier CM (2001) Rapid evolution of introduced plant pathogens via interspecific hybridization. Bioscience 51:123–133

    Article  Google Scholar 

  • Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J et al (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147:446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Constantin GD et al (2004) Virus-induced gene silencing as a tool for functional genomics in a legume species. Plant J 40(4):622–631

    Article  CAS  PubMed  Google Scholar 

  • Crickmore N (2006) Beyond the spore–past and future developments of Bacillus thuringiensis as a biopesticide. J Appl Microbiol 101(3):616–619

    Article  CAS  PubMed  Google Scholar 

  • Croll D, Zala M, McDonald BA (2013) Breakage-fusion-bridge cycles and large insertions contribute to the rapid evolution of accessory chromosomes in a fungal pathogen. PLoS Genet 9(6):e1003567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuomo CA, Gueldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, Walton JD, Ma LJ, Baker SE, Rep M, Adam G, Antoniw J et al (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400–1402

    Article  CAS  PubMed  Google Scholar 

  • Dean RA et al (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986

    Article  CAS  PubMed  Google Scholar 

  • Dean R, Van Kan JAL, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, Foster GD (2012) The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol 13:414–430

    Article  PubMed  PubMed Central  Google Scholar 

  • Dill GM, CaJacob CA, Padgette SR (2008) Glyphosate-resistant crops: adoption, use and future considerations. Pest Manag Sci 64(4):326–331

    Article  CAS  PubMed  Google Scholar 

  • Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130(3):413–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faivre-Rampant O et al (2004) Potato virus X-induced gene silencing in leaves and tubers of potato. Plant Physiol 134(4):1308–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fofana IBF, Sangare A, Collier R, Taylor C, Fauquet CM (2004) A geminivirus-induced gene silencing system for gene function validation in cassava. Plant Mol Biol 56(4):613–624

    Article  CAS  PubMed  Google Scholar 

  • George GM et al (2010) Virus-induced gene silencing of plastidial soluble inorganic pyrophosphatase impairs essential leaf anabolic pathways and reduces drought stress tolerance in nicotiana benthamiana. Plant Physiol 154(1):55–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonsalves D, Gonsalves C, Ferreira S, Pitz K, Fitch M, Manshardt R, Slightom J, (2004) Transgenic virus-resistant papaya: from hope to reality in controlling papaya ringspot virus in Hawaii. APSnet Features. https://doi.org/10.1094/APSnetFeature-2004-0704

  • Green JM (2012) The benefits of herbicide-resistant crops. Pest Manag Sci 68(10):1323–1331

    Article  CAS  PubMed  Google Scholar 

  • Greenland A, Bell P, Hart C, Jepson I, Nevshemal T, Register J III, Wright S (1997) Reversible male-sterility: a novel system for the production of hybrid corn. In: Greenland AJ, Meyerowitz EM, Steers M (eds) Control of Plant development: genes and signals. Company of Biologists, Cambridge, pp 141–147

    Google Scholar 

  • Gregory TR, Nicol JA, Tamm H, Kullman B, Kullman K, Leitch IJ, Murray BG, Kapraun DF, Greilhuber J, Bennett MD (2007) Eukaryotic genome size databases. Nucleic Acids Res 35:D332–D338

    Article  CAS  PubMed  Google Scholar 

  • Guttman DS, McHardy AC, Schulze-Lefert P (2014) Microbial genome-enabled insights into plant-microorganism interactions. Nat Rev Genet 15(12):797–813

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Estrella L, Depicker A, Van-Montagu M, Schell J (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303:209–213

    Article  CAS  Google Scholar 

  • Hilder VA, Gatehouse AMR, Sheerman SE, Barker RF, Boulter D (1987) A novel mechanism of insect resistance engineered into tobacco. Nature 330(6144):160–163

    Article  CAS  Google Scholar 

  • Hittinger CT, Rokas A, Carroll SB (2004) Parallel inactivation of multiple GAL pathway genes and ecological diversification in yeasts. Proc Natl Acad Sci U S A 101:14144–14149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holzberg S, Brosio P, Gross C, Pogue GP (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J 30(3):315–327

    Article  CAS  PubMed  Google Scholar 

  • Hou H, Qiu W (2003) A novel co-delivery system consisting of a tomato bushy stunt virus and a defective interfering RNA for studying gene silencing. J Virol Methods 111(1):37–42

    Article  CAS  PubMed  Google Scholar 

  • Igarashi A et al (2009) Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology 386(2):407–416

    Article  CAS  PubMed  Google Scholar 

  • James C (2015) 20th anniversary (1996 to 2015) of the global commercialization of biotech crops and biotech crop highlights in 2015. ISAAA Brief 51

    Google Scholar 

  • Kim S, Kim J-S (2011) Targeted genome engineering via zinc finger nucleases. Plant Biotechnol Rep 5(1):9–17

    Article  PubMed  Google Scholar 

  • Kim MJ et al (2012) Genetic modification of the soybean to enhance the β-carotene content through seed-specific expression. PLoS One 7(10):e48287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klahre U, Crete P, Leuenberger SA, Iglesias VA, Meins F (2002) High molecular weight RNAs and small interfering RNAs induce systemic posttranscriptional gene silencing in plants. Proc Natl Acad Sci 99(18):11981–11986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumagai MH et al (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci 92(5):1679–1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larriba G (2004) Genome instability, recombination, and adaptation in Candida albicans. In: San-Blas G, Calderone R (eds) Pathogenic fungi: host interactions and emerging strategies for control. Horizon Press, Poole, pp 285–334

    Google Scholar 

  • Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP (2002a) Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J 30(4):415–429

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Schiff M, Dinesh-Kumar SP (2002b) Virus-induced gene silencing in tomato. Plant J 31(6):777–786

    Article  CAS  PubMed  Google Scholar 

  • Lu R, Martin-Hernandez AM, Peart JR, Malcuit I, Baulcombe DC (2003) Virus-induced gene silencing in plants. Methods 30(4):296–303

    Article  CAS  PubMed  Google Scholar 

  • Maeder ML, Gersbach CA (2016) Genome-editing technologies for gene and cell therapy. Mol Ther 24:430–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantelin S et al (2011) The receptor-like kinase SlSERK1 is required for Mi-1-mediated resistance to potato aphids in tomato. Plant J 67(3):459–471

    Article  CAS  PubMed  Google Scholar 

  • Mao Z et al (2011) The new CaSn gene belonging to the snakin family induces resistance against root-knot nematode infection in pepper. Phytoparasitica 39(2):151–164

    Article  CAS  Google Scholar 

  • Mariani C, Beuckeleer MD, Truettner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Science 347:737–741

    CAS  Google Scholar 

  • Mariani C, Gossele V, Beuckeler MD, Block MD, Goldberg RB, Greef WD, Leemans J (1992) A chimeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Science 357:384–387

    CAS  Google Scholar 

  • Martin F, Aerts A, Ahren D, Brun A, Danchin EGJ, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro HJ et al (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    Article  CAS  PubMed  Google Scholar 

  • Mazid S, Kalita JC, Rajkhowa RC (2011) A review on the use of biopesticides in insect pest management. Int J Sci Adv Technol 1(7):169–178

    Google Scholar 

  • McDonald, M.C., McGinness, L., Hane, J.K., Williams, A.H., Milgate, A., Solomon, P.S., 2016. Utilizing gene tree variation to identify candidate effector genes in Zymoseptoria tritici. G3 (Bethesda) 6, 779–791. https://doi.org/10.1534/g3.115.025197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muthamilarasan H, Therriappan P, Prasad M (2013) Recent advances in crop genomics for ensuring food security. Curr Sci 105(2):155–158

    Google Scholar 

  • Qu, J., et al., 2016. Agrobacterium-mediated transformation of the beta-subunit gene in 7S globulin protein in soybean using RNAi technology. Genet Mol Res 15(2)

    Google Scholar 

  • Raffaele S, Kamoun S (2012) Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol 10:417–430

    Article  CAS  PubMed  Google Scholar 

  • Ramesh SV, Mishra AK, Praveen S (2007) Hairpin RNA-mediated strategies for silencing of tomato leaf curl virus AC1 and AC4 genes for effective resistance in plants. Oligonucleotides 17:251–257

    Article  CAS  PubMed  Google Scholar 

  • Rausch MA, Chougule NP, Deist BR, Bonning BC (2016) Modification of Cry4Aa toward improved toxin processing in the gut of the pea aphid, acyrthosiphon pisum. PLoS One 11(5):e0155466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rustchenko E (2007) Chromosome instability in Candida albicans. FEMS Yeast Res 7:2–11

    Article  CAS  PubMed  Google Scholar 

  • Scholthof KBG, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Ahlquist P, Hemenway C, Foster GD (2011) Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol 12:938–954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senthil-Kumar M, Mysore KS (2011a) New dimensions for VIGS in plant functional genomics. Trends Plant Sci 16(12):656–665

    Article  CAS  PubMed  Google Scholar 

  • Senthil-Kumar M, Mysore KS (2011b) Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. Plant Biotechnol J 9(7):797–806

    Article  CAS  PubMed  Google Scholar 

  • Senthil-Kumar M, Rame Gowda HV, Hema R, Mysore KS, Uday Kumar M (2008) Virus-induced gene silencing and its application in characterizing genes involved in water-deficit-stress tolerance. J Plant Physiol 165(13):1404–1421

    Article  CAS  PubMed  Google Scholar 

  • Shah DM et al (1986) Engineering herbicide tolerance in transgenic plants. Science 233(4762):478–481

    Article  CAS  PubMed  Google Scholar 

  • Sharma KK (2016) Fungal genome sequencing: basic biology to biotechnology. Crit Rev Biotechnol 36(4):743–759

    CAS  PubMed  Google Scholar 

  • Sonoda S, Nishiguchi M (2000) Delayed activation of post-transcriptional gene silencing and de novo transgene methylation in plants with the coat protein gene of sweet potato feathery mottle potyvirus. Plant Sci 156(2):137–144

    Article  CAS  Google Scholar 

  • Tao X, Zhou X (2004) A modified viral satellite DNA that suppresses gene expression in plants. Plant J 38(5):850–860

    Article  CAS  PubMed  Google Scholar 

  • Thomas, C.L., Jones, L., Baulcombe, D.C., Maule, A.J., 2001. Size constraints for targeting post-transcriptional gene silencing and for RNA-directed methylation in Nicotiana benthamiana using a potato virus × vector. Plant J. 25, 417

    Article  CAS  PubMed  Google Scholar 

  • Tohidfar M, Zare N, Jouzani GS, Eftekhari SM (2013) Agrobacterium-mediated transformation of alfalfa (Medicago sativa) using a synthetic cry3a gene to enhance resistance against alfalfa weevil. Plant Cell Tissue Organ Cult 113(2):227–235

    Article  CAS  Google Scholar 

  • Unver T, Budak H (2009) Virus-induced gene silencing, a post transcriptional gene silencing method. Int J Plant Genom:2009

    Google Scholar 

  • van der Linde K, Kastner C, Kumlehn J, Kahmann R, Doehlemann G (2011) Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis. New Phytol 189(2):471–483

    Article  PubMed  CAS  Google Scholar 

  • van Kammen A (1997) Virus-induced gene silencing in infected and transgenic plants. Trends Plant Sci 2(11):409–411

    Article  Google Scholar 

  • Waltz E (2014) Beating the heat. Nat Biotechnol 32:610–613

    Article  CAS  PubMed  Google Scholar 

  • Williams S, Friedrich L, Dincher S, Carozzi N, Kessmann H, Ward E, Rylas J (1992) Chemical regulation of Bacillus thuringiensis δ-endotoxin expression in transgenic plants. Nat Biotechnol 10(5):540–543

    Article  Google Scholar 

  • Yu Q et al (2015) Evolution of a double amino acid substitution in the 5-enolpyruvylshikimate-3-phosphate synthase in eleusine indica conferring high-level glyphosate resistance. Plant Physiol 167(4):1440–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuen K, Pascal G, Wong SSY, Glaser P, Woo PCY, Kunst F, Cai JJ, Cheung EYL, Medigue C, Danchin A (2003) Exploring the Penicillium marneffei genome. Arch Microbiol 179:339–353

    Article  CAS  PubMed  Google Scholar 

  • Zahran HH (2001) Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91:143–153

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Ghabrial SA (2006) Development of bean pod mottle virus-based vectors for stable protein expression and sequence-specific virus-induced gene silencing in soybean. Virology 344(2):401–411

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Liu M, Tan M, Gao J, Shen Z (2014) Expression of Cry1Ab and Cry2Ab by a polycistronic transgene with a self-cleavage peptide in rice. PLoS One 9(10):e110006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaudhary, N., Kumar, A., Bharti, B. (2019). Functional Genomics of Microbial Pathogens for Crop Improvement. In: Tripathi, V., Kumar, P., Tripathi, P., Kishore, A., Kamle, M. (eds) Microbial Genomics in Sustainable Agroecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-32-9860-6_9

Download citation

Publish with us

Policies and ethics