Skip to main content

Impact of Microbial Genomics Approaches for Novel Antibiotic Target

  • Chapter
  • First Online:
Microbial Genomics in Sustainable Agroecosystems

Abstract

Infectious diseases are life-threatening and may lead to high mortality and morbidity rates. The existing danger of an increase and spread of multidrug resistance pathogens is a global concern. Therefore, the designing of novel antibiotics and vaccine to control and eliminate the disease is an utmost requirement. Traditional approaches for screening vaccine and drug targets are time-consuming and have been unsuccessful in controlling the spread of infectious diseases due to several reasons such as altered antigenic diversity, altered virulence potential, and antimicrobial resistance in the infectious agent population. To overcome this problem, there has been a paradigm shift from the conventional to microbial genomics approaches, as the availability of complete genome sequence of pathogenic microorganisms and multiple isolates of the same species provides a wealth of information on nearly all the potential drug targets. Microbial genomics approaches open up new avenues to pursuit novel antimicrobial agents that are highly conserved in a range of microbes, essential for the survival of pathogens and absent in humans. In this chapter, we present an overview of the microbial genomics approaches such as pan-genomics, comparative genomics, functional genomics, structural genomics, transcriptomics, and proteomics used in the discovery and development of novel antibiotics.

Hemant Joshi and Akanksha Verma are both considered as first author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelichio MJ, Camilli A (2002) In vivo expression technology. Infect Immun 70:6518–6523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ariel N, Zvi A, Makarova KS, Chitlaru T, Elhanany E, Velan B, Cohen S, Friedlander AM, Shafferman A (2003) Genome-based bioinformatics selection of chromosomal Bacillus anthracis putative vaccine candidates coupled with proteomic identification of surface-associated antigens. Infect Immun 71:4563–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arigoni F, Talabot F, Peitsch M, Edgerton MD, Meldrum E, Allet E, Fish R, Jamotte T, Curchod ML, Loferer H (1998) A genome-based approach for the identification of essential bacterial genes. Nat Biotechnol 16:851–856

    Article  CAS  PubMed  Google Scholar 

  • Bhagwat AA, Bhagwat M (2008) Methods and tools for comparative genomics of foodborne pathogens. Foodborne Pathog Dis 5:487–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boonjakuakul JK, Gerns HL, Chen YT, Hicks LD, Minnick MF, Dixon SE, Hall SC, Koehler JE (2007) Proteomic and immunoblot analyses of Bartonella quintana total membrane proteins identify antigens recognized by sera from infected patients. Infect Immun 75:2548–2561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Centers for Disease Control and Prevention (CDC) (2018) Antibiotic resistance: a global threat. https://www.cdc.gov/features/antibiotic-resistance-global/index.html

  • De Groot AS, Rivera DS, McMurry JA, Buus S, Martin W (2008a) Identification of immunogenic HLA-B7 “Achilles’ heel” epitopes within highly conserved regions of HIV. Vaccine 26:3059–3071

    Article  PubMed  CAS  Google Scholar 

  • De Groot AS, Moise L, McMurry JA, Martin W (2008b) Epitope-based immunome derived vaccines: a strategy for improved design and safety. In: Falus A (ed) Clinical applications of immunomics. Springer, New York, pp 39–69

    Google Scholar 

  • Dormitzer PR, Ulmer JB, Rappuoli R (2008) Structure-based antigen design: a strategy for next generation vaccines. Trends Biotechnol 26:659–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorrell N, Mangan JA, Laing KG, Hinds J, Linton D, Al-Ghusein H, Barrell BG, Parkhill J, Stoker NG, Karlyshev AV, Butcher PD, Wren BW (2001) Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res 11:1706–1715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eyles JE, Unal B, Hartley MG, Newstead SL, Flick-Smith H, Prior JL, Oyston PC, Randall A, Mu Y, Hirst S, Molina DM, Davies DH, Milne T, Griffin KF, Baldi P, Titball RW, Felgner PL (2007) Immunodominant Francisella tularensis antigens identified using proteome microarray. Proteomics 7:2172–2183

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald JR, Sturdevant DE, Mackie SM, Gill SR, Musser JM (2001) Evolutionary genomics of Staphylococcus aureus: insights into the origin of methicillin-resistant strains and the toxic shock syndrome epidemic. Proc Natl Acad Sci U S A 98:8821–8826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukiya S, Mizoguchi H, Tobe T, Mori H (2004) Extensive genomic diversity in pathogenic Escherichia coli and Shigella strains revealed by comparative genomic hybridization microarray. J Bacteriol 186:3911–3921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giefing C, Meinke AL, Hanner M, Henics T, Bui MD, Gelbmann D, Lundberg U, Senn BM, Schunn M, Habel A, Henriques-Normark B, Ortqvist A, Kalin M, von Gabain A, Nagy E (2008) Discovery of a novel class of highly conserved vaccine antigens using genomic scale antigenic fingerprinting of pneumococcus with human antibodies. J Exp Med 205:117–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giuliani MM, Adu-Bobie J, Comanducci M, Aricò B, Savino S, Santini L, Brunelli B, Bambini S, Biolchi A, Capecchi B, Cartocci E, Ciucchi L, Di Marcello F, Ferlicca F, Galli B, Luzzi E, Masignani V, Serruto D, Veggi D, Contorni M, Morandi M, Bartalesi A, Cinotti V, Mannucci D, Titta F, Ovidi E, Welsch JA, Granoff D, Rappuoli R, Pizza M (2006) A universal vaccine for serogroup B meningococcus. Proc Natl Acad Sci U S A 103:10834–10839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grandi G (2001) Antibacterial vaccine design using genomics and proteomics. Trends Biotechnol 19(5):181–188

    Article  CAS  PubMed  Google Scholar 

  • Grandi G (2006) Genomics and proteomics in reverse vaccines. Methods Biochem Anal 49:379–393

    CAS  PubMed  Google Scholar 

  • Grifantini R, Bartolini E, Muzzi A, Draghi M, Frigimelica E, Berger J, Ratti G, Petracca R, Galli G, Agnusdei M, Giuliani MM, Santini L, Brunelli B, Tettelin H, Rappuoli R, Randazzo F, Grandi G (2002) Previously unrecognized vaccine candidates against group B meningococcus identified by DNA microarrays. Nat Biotechnol 20:914–921

    Article  CAS  PubMed  Google Scholar 

  • Hughes MJ, Moore JC, Lane JD, Wilson R, Pribul PK, Younes ZN, Dobson RJ, Everest P, Reason AJ, Redfern JM, Greer FM, Paxton T, Panico M, Morris HR, Feldman RG, Santangelo JD (2002) Identification of major outer surface proteins of Streptococcus agalactiae. Infect Immun 70:1254–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaushik DK, Sehgal D (2008) Developing antibacterial vaccines in genomic and proteomic era. Scand J Immunol 67:544–552

    Article  CAS  PubMed  Google Scholar 

  • Ling E, Feldman G, Portnoi M, Dagan R, Overweg K, Mulholland F, Chalifa-Caspi V, Wells J, Mizrachi-Nebenzahl Y (2004) Glycolytic enzymes associated with the cell surface of Streptococcus pneumoniae are antigenic in humans and elicit protective immune responses in the mouse. Clin Exp Immunol 138:290–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maione D, Margarit I, Rinaudo CD, Masignani V, Mora M, Scarselli M, Tettelin H, Brettoni C, Iacobini ET, Rosini R, D’Agostino N, Miorin L, Buccato S, Mariani M, Galli G, Nogarotto R, Nardi-Dei V, Vegni F, Fraser C, Mancuso G, Teti G, Madoff LC, Paoletti LC, Rappuoli R, Kasper DL, Telford JL, Grandi G (2005) Identification of a universal group B streptococcus vaccine by multiple genome screen. Science 309:148–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Målen H, Søfteland T, Wiker HG (2008) Antigen analysis of Mycobacterium tuberculosis H37Rv culture filtrate proteins. Scand J Immunol 67:245–252

    Article  PubMed  CAS  Google Scholar 

  • Martin DR, Ruijne N, McCallum L, O’hallahan J, Oster P (2006) The VR2 epitope on the PorA P1. 7-2, 4 protein is the major target for the immune response elicited by the strain-specific group B meningococcal vaccine MeNZB. Clin Vaccine Immunol 13(4):486–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinke A, Henics T, Hanner M, Minh DB, Nagy E (2005) Antigenome technology: a novel approach for the selection of bacterial vaccine candidate antigens. Vaccine 23:2035–2041

    Article  CAS  PubMed  Google Scholar 

  • Merrell DS, Butler SM, Qadri F, Dolganov NA, Alam A, Cohen MB, Calderwood SB, Schoolnik GK, Camilli A (2002) Host-induced epidemic spread of the cholera bacterium. Nature 417:642–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moir DT, Shaw KJ, Hare RS, Vovis GF (1999) Genomics and antimicrobial drug discovery. Antimicrob Agents Chemother 43(3):439–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moxon R, Rappuoli R (2002) Bacterial pathogen genomics and vaccines. Br Med Bull 62:45–58

    Article  PubMed  Google Scholar 

  • Muzzi A, Masignani V, Rappuoli R (2007) The pan-genome: towards a knowledge-based discovery of novel targets for vaccines and antibacterials. Drug Discov Today 12:429–439

    Article  CAS  PubMed  Google Scholar 

  • Nicola G, Abagyan R (2009) Structure-based approaches to antibiotic drug discovery. Curr Protoc Microbiol; Chapter 17:Unit 17.2

    Google Scholar 

  • Obert C, Sublett J, Kaushal D, Hinojosa E, Barton T, Tuomanen EI, Orihuela CJ (2006) Identification of a candidate Streptococcus pneumoniae core genome and regions of diversity correlated with invasive pneumococcal disease. Infect Immun 74:4766–4777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson SD, Aebersold RH (2003) Proteomics: the first decade and beyond. Nat Genet 33(Suppl):311–323

    Article  CAS  PubMed  Google Scholar 

  • Pizza M, Scarlato V, Masignani V, Giuliani MM, Aricò B, Comanducci M, Jennings GT, Baldi L, Bartolini E, Capecchi B, Galeotti CL, Luzzi E, Manetti R, Marchetti E, Mora M, Nuti S, Ratti G, Santini L, Savino S, Scarselli M, Storni E, Zuo P, Broeker M, Hundt E, Knapp B, Blair E, Mason T, Tettelin H, Hood DW, Jeffries AC, Saunders NJ, Granoff DM, Venter JC, Moxon ER, Grandi G, Rappuoli R (2000) Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 287:1816–1820

    Article  CAS  PubMed  Google Scholar 

  • Prabakaran P, Dimitrov AS, Fouts TR, Dimitrov DS (2007) Structure and function of the HIV envelope glycoprotein as entry mediator, vaccine immunogen, and target for inhibitors. Adv Pharmacol 55:33–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rappuoli R (2008) The application of reverse vaccinology, Novartis MenB vaccine developed by design. 16th International Pathogenic Neisseria Conference, Rotterdam, The Netherlands. http://www.IPNC2008.org. Abstract, 81 p

  • Rasko DA, Rosovitz MJ, Myers GS, Mongodin EF, Fricke WF, Gajer P, Crabtree J, Sebaihia M, Thomson NR, Chaudhuri R, Henderson IR, Sperandio V, Ravel J (2008) The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 190:6881–6893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Ortega MJ, Norais N, Bensi G, Liberatori S, Capo S, Mora M, Scarselli M, Doro F, Ferrari G, Garaguso I, Maggi T, Neumann A, Covre A, Telford JL, Grandi G (2006) Characterization and identification of vaccine candidate proteins through analysis of the group A Streptococcus surface proteome. Nat Biotechnol 24:191–197

    Article  PubMed  CAS  Google Scholar 

  • Rolfs A, Montor WR, Yoon SS, Hu Y, Bhullar B, Kelley F, McCarron S, Jepson DA, Shen B, Taycher E, Mohr SE, Zuo D, Williamson J, Mekalanos J, Labaer J (2008) Production and sequence validation of a complete full length ORF collection for the pathogenic bacterium Vibrio cholerae. Proc Natl Acad Sci U S A 105:4364–4369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scarselli M, Giuliani MM, Adu-Bobie J, Pizza M, Rappuoli R (2005) The impact of genomics on vaccine design. Trends Biotechnol 23:84–91

    Article  CAS  PubMed  Google Scholar 

  • Seib KL, Dougan G, Rappuoli R (2009) The key role of genomics in modern vaccine and drug design for emerging infectious diseases. PLoS Genet 5(10):e1000612

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sette A, Fleri W, Peters B, Sathiamurthy M, Bui HH, Wilson S (2005) A roadmap for the immunomics of category A-C pathogens. Immunity 22:155–161

    Article  CAS  PubMed  Google Scholar 

  • Shin GW, Palaksha KJ, Kim YR, Nho SW, Kim S, Heo GJ, Park SC, Jung TS (2007) Application of immunoproteomics in developing a Streptococcus iniae vaccine for olive flounder (Paralichthys olivaceus). J Chromatogr B Analyt Technol Biomed Life Sci 849:315–322

    Article  CAS  PubMed  Google Scholar 

  • Stoevesandt O, Taussig MJ, He M (2009) Protein microarrays: high-throughput tools for proteomics. Expert Rev Proteomics 6:145–157

    Article  CAS  PubMed  Google Scholar 

  • Talaat AM, Stemke-Hale K (2005) Expression library immunization: a road map for discovery of vaccines against infectious diseases. Infect Immun 73:7089–7098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637

    Article  CAS  PubMed  Google Scholar 

  • Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS, Deboy RT, Davidsen TM, Mora M, Scarselli M, Margarit y Ros I, Peterson JD, Hauser CR, Sundaram JP, Nelson WC, Madupu R, Brinkac LM, Dodson RJ, Rosovitz MJ, Sullivan SA, Daugherty SC, Haft DH, Selengut J, Gwinn ML, Zhou L, Zafar N, Khouri H, Radune D, Dimitrov G, Watkins K, O’Connor KJ, Smith S, Utterback TR, White O, Rubens CE, Grandi G, Madoff LC, Kasper DL, Telford JL, Wessels MR, Rappuoli R, Fraser CM (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A 102:13950–13955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todd AE, Marsden RL, Thornton JM, Orengo CA (2005) Progress of structural genomics initiatives: an analysis of solved target structures. J Mol Biol 348:1235–1260

    Article  CAS  PubMed  Google Scholar 

  • Vytvytska O, Nagy E, Blüggel M, Meyer HE, Kurzbauer R, Huber LA, Klade CS (2002) Identification of vaccine candidate antigens of Staphylococcus aureus by serological proteome analysis. Proteomics 2:580–590

    Article  CAS  PubMed  Google Scholar 

  • Zhou T, Xu L, Dey B, Hessell AJ, Van Ryk D, Xiang SH, Yang X, Zhang MY, Zwick MB, Arthos J, Burton DR, Dimitrov DS, Sodroski J, Wyatt R, Nabel GJ, Kwong PD (2007) Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature 445:732–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Bilgin M, Snyder M (2003) Proteomics. Annu Rev Biochem 72:783–812

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmendra Kumar Soni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joshi, H., Verma, A., Soni, D.K. (2019). Impact of Microbial Genomics Approaches for Novel Antibiotic Target. In: Tripathi, V., Kumar, P., Tripathi, P., Kishore, A., Kamle, M. (eds) Microbial Genomics in Sustainable Agroecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-32-9860-6_5

Download citation

Publish with us

Policies and ethics