Skip to main content

Bioinformatics Resources for Microbial Research in Biological Systems

  • Chapter
  • First Online:
Microbial Genomics in Sustainable Agroecosystems

Abstract

Bioinformatics is a continuously evolving field since it came into existence and contributing significantly in all major areas of biological sciences. Advanced sequencing technologies and exponential growth in computational resources have facilitated the high-end bioinformatics application in various research areas such as microbiome research in biological system. Bioinformatics contributed significantly in the development of powerful methods and tools in metagenomics research through direct inspection of targeted and nontargeted DNA in environmental samples. Advances in metagenomics, high-throughput methods, tools, software, pipelines, databases and analysis products for the microbes and microbiome-related studies have shifted the field of microbiology from culturing and microscopy studies to DNA sequencing and bioinformatics analyses. In the last decade, various long-term research projects and studies have flooded the microbiome sequencing data and analyses. Now, microbial community is realized that the next decade of microbial research will need data management, sharing, mining and networking skills to enhance knowledge discovery and regulation of microbial communities in ecosystem. Here, we are describing the microbiome researches in different biological domains, microbial databases and tools, which can be useful for application of microbes in emerging applied fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agler MT, Ruhe J, Kroll S, Morhenn C, Kim ST, Weigel D, Kemen EM (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14(1):e1002352

    Article  Google Scholar 

  • Azuaje FJ, Heymann M, Ternes AM, Wienecke-Baldacchino A, Struck D, Moes D, Schneider R (2012) Bioinformatics as a driver, not a passenger, of translational biomedical research: perspectives from the 6th Benelux bioinformatics conference. J Clin Bioinf 2(1):7

    Article  Google Scholar 

  • Badri DV, Zolla G, Bakker MG, Manter DK, Vivanco JM (2013) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol 198(1):264–273

    Article  CAS  Google Scholar 

  • Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

    Article  CAS  Google Scholar 

  • Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J, Pan Y, McHardy AC, Schulze-Lefert P (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17(3):392–403

    Article  CAS  Google Scholar 

  • Burr TJ, Caesar A, Schrolh MN (1984) Beneficial plant bacteria. Crit Rev Plant Sci 2(1):1–20

    Article  Google Scholar 

  • Cha JY, Han S, Hong HJ, Cho H, Kim D, Kwon Y, Kwon SK, Crüsemann M, Lee YB, Kim JF, Giaever G (2016) Microbial and biochemical basis of a Fusarium wilt-suppressive soil. ISME J 10(1):119

    Article  CAS  Google Scholar 

  • Dragosits M, Mattanovich D (2013) Adaptive laboratory evolution–principles and applications for biotechnology. Microb Cell Factories 12(1):64

    Article  Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005 Jun 10) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638

    Article  Google Scholar 

  • Erickson AR, Cantarel BL, Lamendella R, Darzi Y, Mongodin EF, Pan C, Shah M, Halfvarson J, Tysk C, Henrissat B, Raes J (2012) Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn's disease. PLoS One 7(11):e49138

    Article  CAS  Google Scholar 

  • Ferrari J, Vavre F (2011) Bacterial symbionts in insects or the story of communities affecting communities. Philos Trans R Soc B Biol Sci 366(1569):1389–1400

    Article  Google Scholar 

  • Gilbert JA, Meyer F, Antonopoulos D, Balaji P, Brown CT, Brown CT, Desai N, Eisen JA, Evers D, Field D, Feng W (2010) Meeting report: the terabase metagenomics workshop and the vision of an earth microbiome project. Stand Genomic Sci 3(3):243

    Article  Google Scholar 

  • Gordon JI, Ley RE, Wilson R, Mardis E, Xu J, Fraser CM, Relman DA (2005) Extending our view of self: the human gut microbiome initiative (HGMI). National Human Genome Research Institute

    Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27(5):1231–1240

    Article  Google Scholar 

  • Hiraoka S, Yang CC, Iwasaki W (2016) Metagenomics and bioinformatics in microbial ecology: current status and beyond. Microbes Environ 31:204. ME16024

    Article  Google Scholar 

  • Hugenholtz P (2002) Exploring prokaryotic diversity in the genomic era. Genome Biol 3(2):reviews0003-1

    Article  Google Scholar 

  • Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, Chinwalla AT, Creasy HH, Earl AM, FitzGerald MG, Fulton RS, Giglio MG (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207

    Article  CAS  Google Scholar 

  • Iniesta RR, Rush R, Paciarotti I, Rhatigan EB, Brougham FH, McKenzie JM, Wilson DC (2016) Systematic review and meta-analysis: prevalence and possible causes of vitamin D deficiency and insufficiency in pediatric cancer patients. Clin Nutr 35(1):95–108

    Article  Google Scholar 

  • Jansson JK, Hofmockel KS (2018) The soil microbiome—from metagenomics to metaphenomics. Curr Opin Microbiol 43:162–168

    Article  CAS  Google Scholar 

  • Knietsch A, Waschkowitz T, Bowien S, Henne A, Daniel R (2003) Metagenomes of complex microbial consortia derived from different soils as sources for novel genes conferring formation of carbonyls from short-chain polyols on Escherichia coli. J Mol Microbiol Biotechnol 5(1):46–56

    Google Scholar 

  • Levy A, Gonzalez IS, Mittelviefhaus M, Clingenpeel S, Paredes SH, Miao J, Wang K, Devescovi G, Stillman K, Monteiro F, Alvarez BR (2018) Genomic features of bacterial adaptation to plants. Nat Genet 50(1):138

    Article  CAS  Google Scholar 

  • Luscombe NM, Greenbaum D, Gerstein M (2001) What is bioinformatics? A proposed definition and overview of the field. Methods Inf Med 40(04):346–358

    Article  CAS  Google Scholar 

  • Manoharan L, Kushwaha SK, Ahrén D, Hedlund K (2017) Agricultural land use determines functional genetic diversity of soil microbial communities. Soil Biol Biochem 115:423–432

    Article  CAS  Google Scholar 

  • Marsh AJ, O’Sullivan O, Ross RP, Cotter PD, Hill C (2010 Dec) In silico analysis highlights the frequency and diversity of type 1 lantibiotic gene clusters in genome sequenced bacteria. BMC Genomics 11(1):679

    Article  CAS  Google Scholar 

  • Martijn J, Lind AE, Spiers I, Juzokaite L, Bunikis I, Pettersson OV, Ettema TJ (2017) Amplicon sequencing of the 16S-ITS-23S rRNA operon with long-read technology for improved phylogenetic classification of uncultured prokaryotes. bioRxiv:234690

    Google Scholar 

  • Martínez MM (2015) Microbial bioproducts for agriculture. In: III international symposium on organic matter management and compost use in horticulture 1076 2013, pp 71–76

    Google Scholar 

  • Monteiro CC, Villegas LE, Campolina TB, Pires AC, Miranda JC, Pimenta PF, Secundino NF (2016) Bacterial diversity of the American sand fly Lutzomyia intermedia using high-throughput metagenomic sequencing. Parasit Vectors 9(1):480

    Article  Google Scholar 

  • Mundt CC (2014) Durable resistance: a key to sustainable management of pathogens and pests. Infect Genet Evol 27:446–455

    Article  Google Scholar 

  • Musilova L, Ridl J, Polivkova M, Macek T, Uhlik O (2016) Effects of secondary plant metabolites on microbial populations: changes in community structure and metabolic activity in contaminated environments. Int J Mol Sci 17(8):1205

    Article  Google Scholar 

  • Nallanchakravarthula S, Mahmood S, Alström S, Finlay RD (2014) Influence of soil type, cultivar and Verticillium dahliae on the structure of the root and rhizosphere soil fungal microbiome of strawberry. PLoS One 9(10):e111455

    Article  Google Scholar 

  • Nesme J, Achouak W, Agathos SN, Bailey M, Baldrian P, Brunel D, FrostegÃ¥rd Ã…, Heulin T, Jansson JK, Jurkevitch E, Kruus KL (2016) Back to the future of soil metagenomics. Front Microbiol 7:73

    Article  Google Scholar 

  • Ni Y, Wan D, He K (2008) 16S rDNA and 16S–23S internal transcribed spacer sequence analyses reveal inter-and intraspecific Acidithiobacillus phylogeny. Microbiology 154(8):2397–2407

    Article  CAS  Google Scholar 

  • Oulas A, Pavloudi C, Polymenakou P, Pavlopoulos GA, Papanikolaou N, Kotoulas G, Arvanitidis C, Iliopoulos L (2015) Metagenomics: tools and insights for analyzing next-generation sequencing data derived from biodiversity studies. Bioinf Biol Insights 9:BBI-S12462

    Article  Google Scholar 

  • Portnoy VA, Bezdan D, Zengler K (2011) Adaptive laboratory evolution—harnessing the power of biology for metabolic engineering. Curr Opin Biotechnol 22(4):590–594

    Article  CAS  Google Scholar 

  • Pylro VS, Roesch LF, Ortega JM, do Amaral AM, Tótola MR, Hirsch PR, Rosado AS, Góes-Neto A, da Silva AL, Rosa CA, Morais DK (2014) Brazilian microbiome project: revealing the unexplored microbial diversity—challenges and prospects. Microb Ecol 67(2):237–241

    Article  Google Scholar 

  • Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59

    Article  CAS  Google Scholar 

  • Reuß DR, Commichau FM, Stülke J (2017) The contribution of bacterial genome engineering to sustainable development. Microb Biotechnol 10(5):1259–1263

    Article  Google Scholar 

  • Schirawski J, Perlin M (2017) Plant–microbe interaction—the good, the bad and the diverse. Int J Mol Sci 19:1374

    Article  Google Scholar 

  • Su C, Lei L, Duan Y, Zhang KQ, Yang J (2012) Culture-independent methods for studying environmental microorganisms: methods, application, and perspective. Appl Microbiol Biotechnol 93(3):993–1003

    Article  CAS  Google Scholar 

  • Verma D, Garg PK, Dubey AK (2018) Insights into the human oral microbiome. Arch Microbiol 23:1–6

    Google Scholar 

  • Vogel TM, Simonet P, Jansson JK, Hirsch PR, Tiedje JM, Van Elsas JD, Bailey MJ, Nalin R, Philippot L (2009) TerraGenome: a consortium for the sequencing of a soil metagenome. Nat Rev Microbiol 7:252

    Article  CAS  Google Scholar 

  • Wenda S, Illner S, Mell A, Kragl U (2011) Industrial biotechnology—the future of green chemistry? Green Chem 13(11):3007–3047

    Article  CAS  Google Scholar 

  • Woyke T, Teeling H, Ivanova NN, Huntemann M, Richter M, Gloeckner FO, Boffelli D, Anderson IJ, Barry KW, Shapiro HJ, Szeto E (2006) Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 443(7114):950

    Article  CAS  Google Scholar 

  • Yadav BS, Singh AK, Kushwaha SK (2017) Systems-based approach to the analyses of plant functions: conceptual understanding, implementation, and analysis. In: Plant bioinformatics. Springer, Cham, pp 107–133

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Kushwaha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadev, B.S., Chauhan, P., Kushwaha, S. (2019). Bioinformatics Resources for Microbial Research in Biological Systems. In: Tripathi, V., Kumar, P., Tripathi, P., Kishore, A., Kamle, M. (eds) Microbial Genomics in Sustainable Agroecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-32-9860-6_3

Download citation

Publish with us

Policies and ethics