Skip to main content

Bioremediation of Nutrients and Heavy Metals from Wastewater by Microalgal Cells: Mechanism and Kinetics

  • Chapter
  • First Online:
Microbial Genomics in Sustainable Agroecosystems

Abstract

Conventional chemical and physical treatment methods applied for the treatment of wastewater tend to be complicated, energy demanding and expensive. Biological waste treatment process involving microalgae provides an economical, sustainable and alternate means of advanced wastewater treatment process coupled with simultaneous recovery of nutrients and manufacture of commercially valuable products like single-cell protein, biofuel, etc. Updated information regarding the advancements made in the treatment process, mechanism and kinetic models involved in nutrient removal by microalgae are provided in this review. Advancements such ultrasonic treatment, use of algal-bacterial symbiosis system, blending of two different wastewater and use of photo-sequencing batch bioreactors for the treatment of municipal, domestic, livestock and industrial wastewater are discussed in brief. The present work focuses mainly on the primary mechanisms involved in the assimilation of nitrogen, carbon and phosphorus inside the microalgal cell. Not only a brief description of metal-ion uptake by processes such as ion exchange, complex formation, precipitation and physical adsorption and role of the plasma membrane, cell wall, vacuoles, chloroplast and mitochondria is discussed in this investigation, but also the various kinetic models of nutrient removal such as Stover-Kincannon, Michaelis-Menten, Gompertz model and Luedeking-Piret model with their experimental curve fitting results obtained from microalgal cell-mediated treatment process are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ADP:

Adenosine diphosphate

ATP:

Adenosine triphosphate

BOD:

Biological oxygen demand

Cd2+:

Cadmium ion

Co:

Cobalt

CO2 :

Carbon dioxide

COD:

Chemical oxygen demand

Conc.:

Concentration

Cr2O72-:

Chromate ion

Cr3+& Cr6+:

Chromium ions

Cu2+:

Copper ion

DW:

Domestic wastewater

Fe3+:

Ferrous ion

H2O:

Water molecule

H2PO4 − :

Dihydrogen phosphate

HCO3 − :

Bicarbonate

Hg2+:

Mercury ion

HMs:

Heavy metal

HPO4 :

Hydrogen phosphate

HRT:

Hydraulic retention time

N:

Nitrogen

NADP:

Nicotinamide adenine dinucleotide phosphate

NH4 +-N:

Ammonium nitrogen

Ni2+:

Nickel ion

NO3 −-N:

Nitrate nitrogen

O2 :

Oxygen

P:

Phosphorus

Pb2+:

Lead ion

PO4 3−-P:

Phosphate phosphorus

RE:

Removal efficiency

RuBisco:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

Temp.:

Temperature

TKN:

Total Kjeldahl nitrogen

TN:

Total nitrogen

TOC:

Total organic carbon

TP:

Total phosphorus

Zn2+:

Zinc ion

References

  • Abu Al-Rub FA, El-Naas MH, Benyahia F, Ashour I (2004) Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Process Biochem 39(11):1767–1773

    Article  CAS  Google Scholar 

  • Ahayla N, Ramachandra TV (1995) Biosorption of heavy metals. Biotechnol Prog 11(3):235–250

    Article  Google Scholar 

  • Ahmad A, Bhat AH, Buang A (2018) Biosorption of transition metals by freely suspended and ca-alginate immobilised with Chlorella vulgaris: kinetic and equilibrium modeling. J Clean Prod 171:1361–1375

    Article  CAS  Google Scholar 

  • Ahner BA, Morel FMM (1995) Phytochelatin production in marine algae. 2. Induction by various metals. Limnol Oceanogr 40(4):658–665

    Article  CAS  Google Scholar 

  • Ajayan KV, Selvaraju M, Thirugnanamoorthy K (2011) Growth and heavy metals accumulation potential of microalgae grown in sewage wastewater and petrochemical effluents. Pak J Biol Sci 14(16):805–811

    Article  CAS  PubMed  Google Scholar 

  • Aksu Z, Sag Y, Kutsal T (1992) The biosorption of copper by C. vulgaris and Z. ramigera. Environ Technol 13(6):579–586

    Article  CAS  Google Scholar 

  • Ansari FA, Singh P, Guldhe A, Bux F (2017) Microalgal cultivation using aquaculture wastewater: integrated biomass generation and nutrient remediation. Algal Res 21:169–177

    Article  Google Scholar 

  • Arica MY, Tuzun I, Yalcin E, Ince O, Bayramoglu G (2005) Utilisation of native, heat and acid-treated microalgae Chlamydomonas reinhardtii preparations for biosorption of Cr(VI) ions. Process Biochem 40(7):2351–2358

    Article  CAS  Google Scholar 

  • Arunakumara KKIU, Zhang X, Song X (2008) Bioaccumulation of Pb2+ and its effects on growth, morphology and pigment contents of Spirulina (Arthrospira) platensis. J Ocean Univ China 7(4):397–403

    Article  CAS  Google Scholar 

  • Aslan S, Kapdan IK (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol Eng 28(1):64–70

    Article  Google Scholar 

  • Baglieri A, Sidella S, Barone V, Fragala F, Silkina A, Negre M, Gennari M (2016) Cultivating Chlorella vulgaris and Scenedesmus quadricauda microalgae to degrade inorganic compounds and pesticides in water. Environ Sci Pollut R 23(18):18165–18174

    Article  CAS  Google Scholar 

  • Bai X, Gu H, Li Y (2016) Coimmobilized microalgae and nitrifying Bacteria for ammonium removal. Int J Environ Sustain Dev 7(6):406–409

    CAS  Google Scholar 

  • Ballan-Dufrancais C, Marcaillou C, Amiard-Triquet C (1991) Response of the phytoplanctonic alga Tetraselmis suecica to copper and silver exposure: vesicular metal bioaccumulation and lack of starch bodies. Biol Cell 72(1–2):103–112

    Article  CAS  Google Scholar 

  • Bayramoglu G, Tuzun I, Celik G, Yilmaz M, Arica MY (2006) Biosorption of mercury(II), cadmium(II) and lead(II) ions from aqueous system by microalgae Chlamydomonas reinhardtii immobilized in alginate beads. Int J Miner Process 81(1):35–43

    Article  CAS  Google Scholar 

  • Blaby-Haas CE, Merchant SS (2012) The ins and outs of algal metal transport. Biochim Biophys Acta 1823(9):1531–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabanelas ITD, Arbib Z, Chinalia FA, Souza CO, Perales JA, Almeida PF, Druzian JI, Nascimento IA (2013) From waste to energy: microalgae production in wastewater and glycerol. Appl Energy 109:283–290

    Article  CAS  Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369

    Article  CAS  Google Scholar 

  • Campbell BJ, Engel AS, Porter ML, Takai K (2006) The versatile ε-proteobacteria: key players in sulphidic habitats. Nat Rev Microbiol 4:458

    Article  CAS  PubMed  Google Scholar 

  • Cembella AD, Antia NJ, Harrison PJ (1984) The utilization of inorganic and organic phosphorus compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: part 1. CRC Crit Rev Microbiol 10(4):317–391

    Article  CAS  Google Scholar 

  • Cetinkaya Donmez G, Aksu Z, Ozturk A, Kutsal T (1999) A comparative study on heavy metal biosorption characteristics of some algae. Process Biochem 34(9):885–892

    Article  Google Scholar 

  • Chen G, Zhao L, Qi Y (2015) Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review. Appl Energy 137:282–291

    Article  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101(9):3097–3105

    Article  CAS  PubMed  Google Scholar 

  • Correll DL (1998) The role of phosphorus in the eutrophication of receiving waters: a review. J Environ Qual 27(2):261

    Article  CAS  Google Scholar 

  • Crist RH, Oberholser K, Shank N, Nguyen M (1981) Nature of bonding between metallic ions and algal cell walls. Environ Sci Technol 15(10):1212–1217

    Article  CAS  Google Scholar 

  • da Fontoura JT, Rolim GS, Farenzena M, Gutterres M (2017) Influence of light intensity and tannery wastewater concentration on biomass production and nutrient removal by microalgae Scenedesmus sp. Process Saf Environ 111:355–362

    Article  CAS  Google Scholar 

  • de la Noue J, de Pauw N (1988) The potential of microalgal biotechnology: a review of production and uses of microalgae. Biotechnol Adv 6(4):725–770

    Article  PubMed  Google Scholar 

  • Deboer JA, Harry JG, Eliaj CFD, Bprgesen F, Wynne K, Bdrgesen F, Wynne K (1978) Nutritional studies of two red algae. I. Growth rate as a function of nitrogen source and concentration. J Phycol 266:261–266

    Article  Google Scholar 

  • Di Iaconi C, Del Moro G, De Sanctis M, Rossetti S (2010) A chemically enhanced biological process for lowering operative costs and solid residues of industrial recalcitrant wastewater treatment. Water Res 44(12):3635–3644

    Article  PubMed  CAS  Google Scholar 

  • Dirbaz M, Roosta A (2018) Adsorption, kinetic and thermodynamic studies for the biosorption of cadmium onto microalgae Parachlorella sp. J Environ Chem Eng 6(2):2302–2309

    Article  CAS  Google Scholar 

  • Doshi H, Ray A, Kothari IL (2007) Bioremediation potential of live and dead Spirulina: spectroscopic, kinetics and SEM studies. Biotechnol Bioeng 96(6):1051–1063

    Article  CAS  PubMed  Google Scholar 

  • Doshi H, Seth C, Ray A, Kothari IL (2008) Bioaccumulation of heavy metals by green algae. Curr Microbiol 56(3):246–255

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimian A, Kariminia HR, Vosoughi M (2014) Lipid production in mixotrophic cultivation of Chlorella vulgaris in a mixture of primary and secondary municipal wastewater. Renew Energy 71:502–508

    Article  CAS  Google Scholar 

  • Falkowski PG, Raven J a (1997) Aquatic photosynthesis. Freshw Biol 69(10):375

    Google Scholar 

  • Farooq W, Lee YC, Ryu BG, Kim BH, Kim HS, Choi YE, Yang JW (2013) Two-stage cultivation of two chlorella sp. strains by simultaneous treatment of brewery wastewater and maximizing lipid productivity. Bioresour Technol 132:230–238

    Article  CAS  PubMed  Google Scholar 

  • Ferreira LS, Rodrigues MS, de Carvalho JCM, Lodi A, Finocchio E, Perego P, Converti A (2011) Adsorption of Ni2+, Zn2+and Pb2+onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris. I. Single metal systems. Chem Eng J 173(2):326–333

    Article  CAS  Google Scholar 

  • Foladori P, Petrini S, Andreottola G (2018) Evolution of real municipal wastewater treatment in photobioreactors and microalgae-bacteria consortia using real-time parameters. Chem Eng J 345:507–516

    Article  CAS  Google Scholar 

  • Franzini AKLJB, Cairncross S, Carruthers I, Curtis D, Feachem R, Baldwin BG, Wiley J (1980) Water resources engineering t ~ Boher and R. wastewater engineering: treatment, disposal and reuse edited by Geor, qe Tchohano, qlous evaluation for village water supply planning hydraulics of groundwater a sourcebook of basic hydrologic and ecologic, 3, p 1980

    Google Scholar 

  • Garcia D, Posadas E, Grajeda C, Blanco S, Martinez-Paramo S, Acien G, Garcia-Encina P, Bolado S, Munoz R (2017) Comparative evaluation of piggery wastewater treatment in algal-bacterial photobioreactors under indoor and outdoor conditions. Bioresour Technol 245((August)):483–490

    Article  CAS  PubMed  Google Scholar 

  • Garnham GW, Codd GA, Gadd GM (1992) Kinetics of uptake and intracellular location of cobalt, manganese and zinc in the estuarine green alga Chlorella salina. Appl Microbiol Biotechnol 37(2):270–276

    Article  CAS  Google Scholar 

  • Gaur JP, Rai LC (2001) Heavy metal tolerance in algae. In: Rai LC, Gaur JP (eds) Algal adaptation to environmental stresses: physiological, biochemical and molecular mechanisms. Springer Berlin Heidelberg, Berlin, pp 363–388

    Chapter  Google Scholar 

  • Gaurav K, Srivastava R, Sharma JG, Singh R, Singh V (2016) Molasses-based growth and lipid production by Chlorella pyrenoidosa: a potential feedstock for biodiesel. Int J Green Energy 13(3):320–327

    Article  CAS  Google Scholar 

  • Gekeler W, Grill E, Winnacker E-L, Zenk MH (1989) Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins. Z Naturforsch C J Biosci 44(5–6):361–369

    Article  CAS  Google Scholar 

  • Goncalves AL, Pires JCM, Simoes M (2016) Biotechnological potential of Synechocystis salina co-cultures with selected microalgae and cyanobacteria: nutrients removal, biomass and lipid production. Bioresour Technol 200:279–286

    Article  CAS  PubMed  Google Scholar 

  • Goncalves AL, Pires JCM, Simoes M (2017) A review on the use of microalgal consortia for wastewater treatment. Algal Res 24:403–415

    Article  Google Scholar 

  • Gonzalez LE, Canizares RO, Baena S (1997) Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour Technol 60(3):259–262

    Article  CAS  Google Scholar 

  • Guldhe A, Kumari S, Ramanna L, Ramsundar P, Singh P, Rawat I, Bux F (2017) Prospects, recent advancements and challenges of different wastewater streams for microalgal cultivation. J Environ Econ Manag 203:299–315

    CAS  Google Scholar 

  • He Y, Chen L, Zhou Y, Chen H, Zhou X, Cai F, Huang J, Wang M, Chen B, Guo Z (2016) Analysis and model delineation of marine microalgae growth and lipid accumulation in flat-plate photobioreactor. Biochem Eng J 111:108–116

    Article  CAS  Google Scholar 

  • Hernandez D, Riano B, Coca M, Garcia-Gonzalez MC (2013) Treatment of agro-industrial wastewater using microalgae-bacteria consortium combined with anaerobic digestion of the produced biomass. Bioresour Technol 135:598–603

    Article  CAS  PubMed  Google Scholar 

  • Heuillet E, Noreau A, Halpern S, Jeanne N, Puiseux-Dao S (1986) Cadmium binding to a thiol molecule in vacuoles of Dunaliella bioculata contaminated with cadmium chloride electron probe microanalysis. Biol Cell 58(1):79–85

    CAS  Google Scholar 

  • Hoffmann JP (1998) Wastewater treatment with suspended and non-suspended algae. J Phycol 34(5):757–763

    Article  CAS  Google Scholar 

  • Hongyang S, Yalei Z, Chunmin Z, Xuefei Z, Jinpeng L (2011) Cultivation of Chlorella pyrenoidosa in soybean processing wastewater. Bioresour Technol 102(21):9884–9890

    Article  PubMed  CAS  Google Scholar 

  • Hu Z, Duan S, Xu N, Mulholland MR (2014) Growth and nitrogen uptake kinetics in cultured Prorocentrum donghaiense. PLoS One 9(3):1–11

    Google Scholar 

  • Huan L, Su H, Duan C, Gao S, Xie X, Wang G (2018) Ulva prolifera (Chlorophyta): a suitable material to remove Cd2+ from aquatic environments. Water Environ J 32:26–33

    Article  CAS  Google Scholar 

  • Hulsen T, Hsieh K, Lu Y, Tait S, Batstone DJ (2018) Simultaneous treatment and single cell protein production from Agri-industrial wastewaters using purple phototrophic bacteria or microalgae – a comparison. Bioresour Technol 254(January):214–223

    Article  CAS  PubMed  Google Scholar 

  • Karapinar Kapdan I, Aslan S (2008) Application of the Stover–Kincannon kinetic model to nitrogen removal by Chlorella vulgaris in a continuously operated immobilized photobioreactor system. J Chem Technol Biotechnol 83(7):998–1005

    Article  CAS  Google Scholar 

  • Katam K, Bhattacharyya D (2019) Simultaneous treatment of domestic wastewater and bio-lipid synthesis using immobilized and suspended cultures of microalgae and activated sludge. J Ind Eng Chem 69:295–303

    Article  CAS  Google Scholar 

  • Kellogg R, Lander C, Moffitt D, Gollehon N (2000) Manure nutrients relative to the capacity of cropland and pastureland to assimilate nutrients: spatial and temporal trends for the United States. In: Proceedings of the Water Environment Federation. Water Environment Federation, Anaheim, pp 18–157

    Google Scholar 

  • Khan M, Yoshida N (2008) Effect of L-glutamic acid on the growth and ammonium removal from ammonium solution and natural wastewater by Chlorella vulgaris NTM06. Bioresour Technol 99(3):575–582

    Article  CAS  PubMed  Google Scholar 

  • Knauer K, Behra R, Sigg L (1997) Adsorption and uptake of copper by the green alga Scenedesmus subspicatus (chlorophyta). J Phycol 33(4):596–601

    Article  CAS  Google Scholar 

  • Komolafe O, Velasquez Orta SB, Monje-Ramirez I, Noguez IY, Harvey AP, Orta Ledesma MT (2014) Biodiesel production from indigenous microalgae grown in wastewater. Bioresour Technol 154:297–304

    Article  CAS  PubMed  Google Scholar 

  • Koncagul E, Tran M, Connor R, S. U. and A. R. C. O. (2017) Wastewater: generation and impact on environment and human health. Accessed on-1/06/2018 Available at: http://unesdoc.unesco.org/images/0024/002471/247153e.pdf

  • Kong QX, Li L, Martinez B, Chen P, Ruan R (2010) Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol 160(1):9–18

    Article  CAS  PubMed  Google Scholar 

  • Kuenzler EJ (1965) Glucose-6-phosphate utilization by marine algae. J Phycol 1(4):156–164

    Article  Google Scholar 

  • Kumar G, Huy M, Bakonyi P, Belafi-Bako K, Kim S-H (2018) Evaluation of gradual adaptation of mixed microalgae consortia cultivation using textile wastewater via fed batch operation. Biotechnol Rep 20:e00289

    Article  Google Scholar 

  • Kuyucak N, Volesky B (1988) Biosorbents for recovery of metals from industrial solutions. Biotechnol Lett 10(2):137–142

    Article  CAS  Google Scholar 

  • Larsdotter K (2006) Wastewater treatment with microalgae – a literature review. Vatten 62:31–38

    CAS  Google Scholar 

  • Lee JC, Baek K, Kim HW (2018) Semi-continuous operation and fouling characteristics of submerged membrane photobioreactor (SMPBR) for tertiary treatment of livestock wastewater. J Clean Prod 180:244–251

    Article  CAS  Google Scholar 

  • Levine RB, Costanza-Robinson MS, Spatafora GA (2011) Neochloris oleoabundans grown on anaerobically digested dairy manure for concomitant nutrient removal and biodiesel feedstock production. Biomass Bioenergy 35(1):40–49

    Article  CAS  Google Scholar 

  • Li Y, Chen YF, Chen P, Min M, Zhou W, Martinez B, Zhu J, Ruan R (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour Technol 102(8):5138–5144

    Article  CAS  PubMed  Google Scholar 

  • Li F, Chang C, Zhang Q, Bai J, Fang S (2017) Cultivation of chlorella mutant in cellulosic ethanol wastewater using a static mixing airlift photo-bioreactor for simultaneous wastewater treatment. Environ Prog Sustain Energy 36(5):1274–1281

    Article  CAS  Google Scholar 

  • Lizzul AM, Hellier P, Purton S, Baganz F, Ladommatos N, Campos L (2014) Combined remediation and lipid production using Chlorella sorokiniana grown on wastewater and exhaust gases. Bioresour Technol 151:12–18

    Article  CAS  PubMed  Google Scholar 

  • Lv J, Liu Y, Feng J, Liu Q, Nan F, Xie S (2018) Nutrients removal from undiluted cattle farm wastewater by the two-stage process of microalgae-based wastewater treatment. Bioresour Technol 264(May):311–318

    Article  CAS  PubMed  Google Scholar 

  • Macfie SM, Welbourn PM (2000) The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae). Arch Environ Contam Toxicol 39(4):413–419

    Article  CAS  PubMed  Google Scholar 

  • Martínez Sancho M, Jimenez Castillo JM, El Yousfi F (1997) Influence of phosphorus concentration on the growth kinetics and stoichiometry of the microalga Scenedesmus obliquus. Process Biochem 32(8):657–664

    Article  Google Scholar 

  • Megharaj M, Ragusa SR, Naidu R (2003) Metal-algae interactions: implications of bioavailability. In: Bioavailability, toxicity and risk relationships in ecosystems, pp 109–144

    Google Scholar 

  • Mehra RK, Kodati VR, Abdullah R (1995) Chain length-dependent Pb(II)-coordination in phytochelatins. Biochem Biophys Res Commun 215(2):730–736

    Article  CAS  PubMed  Google Scholar 

  • Mehta SK, Gaur JP (2001) Removal of Ni and Cu from single and binary metal solutions by free and immobilized chlorella vulgaris. Eur J Protistol 37(3):261–271

    Article  Google Scholar 

  • Mendoza-Cozatl D, Loza-Tavera H, Hernandez-Navarro A, Moreno-Sanchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiol Rev 29(4):653–671

    Article  CAS  PubMed  Google Scholar 

  • Metcalf E, Eddy M (2014) Wastewater engineering: treatment and resource recovery. Mc Graw-Hill, New York, pp 1530–1533

    Google Scholar 

  • Metting B, Pyne JW (1986) Biologically active compounds from microalgae. Enzym Microb Technol 8(7):386–394

    Article  CAS  Google Scholar 

  • Miranda J, Krishnakumar G, D’Silva A (2012) Removal of Pb2+ from aqueous system by live Oscillatoria laete-virens (Crouan and Crouan) Gomont isolated from industrial effluents. World J Microbiol Biotechnol 28(10):3053–3065

    Article  CAS  PubMed  Google Scholar 

  • Mitra M, Melis A (2008) Optical properties of microalgae for enhanced biofuels production. Opt Express 16(26):21807–21820

    Article  CAS  PubMed  Google Scholar 

  • Mobin S, Alam F (2014) Biofuel production from algae utilizing wastewater. Australasian Fluid Mechanics Conference, 2014 (December)

    Google Scholar 

  • Monteiro CM, Castro PML, Malcata FX (2009) Use of the microalga Scenedesmus obliquus to remove cadmium cations from aqueous solutions. World J Microbiol Biotechnol 25(9):1573–1578

    Article  CAS  Google Scholar 

  • Monteiro CM, Castro PML, Malcata FX (2010) Cadmium removal by two strains of Desmodesmus pleiomorphus cells. Water Air Soil Pollut 208(1):17–27

    Article  CAS  Google Scholar 

  • Monteiro CM, Castro PML, Malcata FX (2012) Metal uptake by microalgae: underlying mechanisms and practical applications. Biotechnol Prog 28(2):299–311

    Article  CAS  PubMed  Google Scholar 

  • Murwanashyaka T, Shen L, Ndayambaje JD, Wang Y, He N, Lu Y (2017) Kinetic and transcriptional exploration of Chlorella sorokiniana in heterotrophic cultivation for nutrients removal from wastewaters. Algal Res 24:467–476

    Article  Google Scholar 

  • Nagel K, Adelmeier U, Voigt J (1996) Subcellular distribution of cadmium in the unicellular green alga Chlamydomonas reinhardtii. J Plant Physiol 149(1–2):86–90

    Article  CAS  Google Scholar 

  • Nalimova AA, Popova VV, Tsoglin LN, Pronina NA (2005) The effects of copper and zinc on Spirulina platensis growth and heavy metal accumulation in its cells. Russ J Plant Physiol 52(2):229–234

    Article  CAS  Google Scholar 

  • Nassiri Y, Mansot JL, Wery J, Ginsburger-Vogel T, Amiard JC (1997) Ultrastructural and electron energy loss spectroscopy studies of sequestration mechanisms of cd and cu in the marine diatom Skeletonema costatum. Arch Environ Contam Toxicol 33(2):147–155

    Article  CAS  PubMed  Google Scholar 

  • Olguin EJ (2012) Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnol Adv 30(5):1031–1046

    Article  CAS  PubMed  Google Scholar 

  • Oswald WJ (2003) My sixty years in applied algology. J Appl Phycol 15(2):99–106

    Article  CAS  Google Scholar 

  • Pandey P (2017) Assessing nutrient removal kinetics in flushed manure using chlorella vulgaris biomass production. Front Bioeng Biotechnol 5:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Pawlik-SkowroÅ„ska B (2003a) Resistance, accumulation and allocation of zinc in two ecotypes of the green alga Stigeoclonium tenue Kutz. coming from habitats of different heavy metal concentrations. Aquat Bot 75(3):189–198

    Article  Google Scholar 

  • Pawlik-SkowroÅ„ska B (2003b) When adapted to high zinc concentrations the periphytic green alga Stigeoclonium tenue produces high amounts of novel phytochelatin-related peptides. Aquat Toxicol 62(2):155–163

    Article  PubMed  Google Scholar 

  • Pawlik-Skowronska B, Pirszel J, Kalinowska R, Skowronski T (2004) Arsenic availability, toxicity and direct role of GSH and phytochelatins in As detoxification in the green alga Stichococcus bacillaris. Aquat Toxicol 70(3):201–212

    Article  CAS  PubMed  Google Scholar 

  • Pelczar MJ, ChanECS K (1993) Microbiology: concepts and applications, 6th edn. McGraw-Hill Companies, NewYork

    Google Scholar 

  • Perales-Vela HV, Pena-Castro JM, Canizares-Villanueva RO (2006) Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64(1):1–10

    Article  CAS  PubMed  Google Scholar 

  • Perpetuo EA, Souza CB, Nascimento CAO (2011) Engineering bacteria for bioremediation. In: Carpi A (ed) Progress in molecular and environmental bioengineering from analysis and modeling to technology applications. InTech Publishers, Rijeka, pp 605–632

    Google Scholar 

  • Phang SM, Miah MS, Yeoh BG, Hashim MA (2000) Spirulina cultivation in digested sago starch factory wastewater. J Appl Phycol 12(3):395–400

    Article  Google Scholar 

  • Picardo MC, De Medeiros JL, Araujo O d QF, Chaloub RM (2013) Effects of CO2enrichment and nutrients supply intermittency on batch cultures of Isochrysis galbana. Bioresour Technol 143:242–250

    Article  CAS  PubMed  Google Scholar 

  • Priyadarshani I, Sahu D, Rath B (2011) Microalgal bioremediation: current practices and perspectives. J Biochem Technol 3(3):299–304

    CAS  Google Scholar 

  • Qin L, Wang Z, Sun Y, Shu Q, Feng P, Zhu L, Xu J, Yuan Z (2016) Microalgae consortia cultivation in dairy wastewater to improve the potential of nutrient removal and biodiesel feedstock production. Environ Sci Pollut Res 23(9):8379–8387

    Article  CAS  Google Scholar 

  • Ramsundar P, Guldhe A, Singh P, Bux F (2017) Assessment of municipal wastewaters at various stages of treatment process as potential growth media for Chlorella sorokiniana under different modes of cultivation. Bioresour Technol 227(November):82–92

    Article  CAS  PubMed  Google Scholar 

  • Raven H, Peter H, Ray F, E. S. (1999) Biology of plants, 6th edn. W.H. Freeman and Company Publishers, NewYork

    Google Scholar 

  • Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2011) Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy 88(10):3411–3424

    Article  CAS  Google Scholar 

  • Razzak SA, Hossain MM, Lucky RA, Bassi AS, De Lasa H (2013) Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing – a review. Renew Sust Energ Rev 27:622–653

    Article  CAS  Google Scholar 

  • Ren HY, Zhu JN, Kong F, Xing D, Zhao L, Ma J, Ren NQ, Liu BF (2019) Ultrasonic enhanced simultaneous algal lipid production and nutrients removal from non-sterile domestic wastewater. Energy Convers Manag 180:680–688

    Article  CAS  Google Scholar 

  • Rengefors K, Karlsson I, Hansson L (1998) Algal cyst dormancy: a temporal escape from herbivory. Proc Biol Sci 265(1403):1353–1358

    Article  PubMed Central  Google Scholar 

  • Renuka N, Sood A, Ratha SK, Prasanna R, Ahluwalia AS (2013) Evaluation of microalgal consortia for treatment of primary treated sewage effluent and biomass production. J Appl Phycol 25(5):1529–1537

    Article  CAS  Google Scholar 

  • Robinson NJ (1989a) Algal metallothioneins: secondary metabolites and proteins. J Appl Phycol 1(1):5–18

    Article  CAS  Google Scholar 

  • Robinson NJ (1989b) Metal-binding polypeptides in plants. In: Heavy metal tolerance higher plants. Evol Aspen, pp 195–214

    Google Scholar 

  • Rojsitthisak P (2017) Repeated phosphate removal from recirculating aquaculture system using cyanobacterium remediation and chitosan flocculation. Water Environ J 31:598–602

    Article  CAS  Google Scholar 

  • Romera E, Gonzalez F, Ballester A, Bazquez ML, Munoz JA (2006) Biosorption with algae: a statistical review. Crit Rev Biotechnol 26(4):223–235

    Article  CAS  PubMed  Google Scholar 

  • Ruiz J, Alvarez-Diaz PD, Arbib Z, Garrido-Perez C, Barragan J, Perales JA (2013a) Performance of a flat panel reactor in the continuous culture of microalgae in urban wastewater: prediction from a batch experiment. Bioresour Technol 127:456–463

    Article  CAS  PubMed  Google Scholar 

  • Ruiz J, Arbib Z, Alvarez-Diaz PD, Garrido-Perez C, Barragan J, Perales JA (2013b) Photobiotreatment model (PhBT): a kinetic model for microalgae biomass growth and nutrient removal in wastewater. Environ Technol 34(8):979–991

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Martinez A, Martin Garcia N, Romero I, Seco A, Ferrer J (2012) Microalgae cultivation in wastewater: nutrient removal from anaerobic membrane bioreactor effluent. Bioresour Technol 126:247–253

    Article  CAS  PubMed  Google Scholar 

  • Runcie JW, Ritchie RJ, Larkum AWD (2003) Uptake kinetics and assimilation of inorganic nitrogen by Catenella nipae and Ulva lactuca. Aquat Bot 76(2):155–174

    Article  CAS  Google Scholar 

  • Saavedra R, Munoz R, Taboada ME, Vega M, Bolado S (2018) Comparative uptake study of arsenic, boron, copper, manganese and zinc from water by different green microalgae. Bioresour Technol 263:49–57

    Article  CAS  PubMed  Google Scholar 

  • Saidu H, Jamaluddin H, Mohamad SE (2017) Nutrient removal and biokinetic study of freshwater microalgae in Palm Oil Mill Effluent (POME). INDJSRT 10(24)

    Google Scholar 

  • Salama E-S, Kurade MB, Abou-Shanab RAI, El-Dalatony MM, Yang I-S, Min B, Jeon B-H (2017) Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renew Sust Energ Rev 79:1189–1211

    Article  CAS  Google Scholar 

  • Sanchez Miron A, Ceron Garcia MC, Contreras Gomez A, Garcia Camacho F, Molina Grima E, Chisti Y (2003) Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. Biochem Eng J 16(3):287–297

    Article  CAS  Google Scholar 

  • Sanz-Luque E, Chamizo-Ampudia A, Llamas A, Galvan A, Fernandez E (2015) Understanding nitrate assimilation and its regulation in microalgae. Front Plant Sci 6:899. (October)

    Article  PubMed  PubMed Central  Google Scholar 

  • Sayre R (2010) Microalgae: the potential for carbon capture. Bioscience 60(9):722–727

    Article  Google Scholar 

  • Sbihi K, Cherifi O, El Gharmali A, Oudra B, Aziz F (2012) Accumulation and toxicological effects of cadmium, copper and zinc on the growth and photosynthesis of the freshwater diatom Planothidium lanceolatum (Brebisson) Lange-Bertalot: a laboratory study. J Mater Environ Sci 3(3):497–506

    CAS  Google Scholar 

  • Schmitt D, Muller A, Csogor Z, Frimmel FH, Posten C (2001) The adsorption kinetics of metal ions onto different microalgae and siliceous earth. Water Res 35(3):779–785

    Article  CAS  PubMed  Google Scholar 

  • Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21(3):277–286

    Article  CAS  PubMed  Google Scholar 

  • Shanab S, Essa A, Shalaby E (2012) Bioremoval capacity of three heavy metals by some microalgae species (Egyptian isolates). Plant Signal Behav 7(3):392–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shokri Khoubestani R, Mirghaffari N, Farhadian O (2015) Removal of three and hexavalent chromium from aqueous solutions using a microalgae biomass-derived biosorbent. Environ Prog Sustain Energy 34(4):949–956

    Article  CAS  Google Scholar 

  • Singh S, Pradhan S, Rai LC (1998) Comparative assessment of Fe3+ and Cu2+ biosorption by field and laboratory-grown Microcystis. Process Biochem 33(5):495–504

    Article  CAS  Google Scholar 

  • Sjahrul M, Arifin D (2012) Phytoremediation of Cd2+ by Marine Phytoplanktons, Tetracelmis chuii and Chaetoceros calcitrans. Int J Chem 4(1):69–74

    Article  CAS  Google Scholar 

  • Soldo D, Hari R, Sigg L, Behra R (2005) Tolerance of Oocystis nephrocytioides to copper: intracellular distribution and extracellular complexation of copper. Aquat Toxicol 71(4):307–317

    Article  CAS  PubMed  Google Scholar 

  • Stillman MJ (1995) Metallothioneins. Coord Chem Rev 144(C):461–511

    Article  CAS  Google Scholar 

  • Suganya T, Varman M, Masjuki HH, Renganathan S (2016) Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew Sust Energ Rev 55:909–941

    Article  CAS  Google Scholar 

  • Sun X, Wang C, Li Z, Wang W, Tong Y, Wei J (2013) Microalgal cultivation in wastewater from the fermentation effluent in riboflavin (B2) manufacturing for biodiesel production. Bioresour Technol 143:499–504

    Article  CAS  PubMed  Google Scholar 

  • Sydney EB, da Silva TE, Tokarski A, Novak AC, de Carvalho JC, Woiciecohwski AL, Larroche C, Soccol CR (2011) Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage. Appl Energy 88(10):3291–3294

    Article  CAS  Google Scholar 

  • Sydney EB, Novak AC, de Carvalho JC, Soccol CR (2014) Chapter 4 – Respirometric balance and carbon fixation of industrially important algae’. In: Pandey A, Lee D-J, Chisti Y, Soccol CR (eds) Biofuels from algae. Elsevier, Amsterdam, pp 67–84

    Chapter  Google Scholar 

  • Tang CC, Tian Y, Liang H, Zuo W, Wang ZW, Zhang J, He ZW (2018) Enhanced nitrogen and phosphorus removal from domestic wastewater via algae-assisted sequencing batch biofilm reactor. Bioresour Technol 250:185–190

    Article  CAS  PubMed  Google Scholar 

  • Taylor P, Ruiz J, Alvarez P, Arbib Z, Garrido C, Barragan J (2011) Effect of nitrogen and phosphorus concentration on their removal kinetic in treated urban wastewater by chlorella vulgaris. Int J Phytoremediation 13(9):37–41

    Google Scholar 

  • Tien C-J, Sigee DC, White KN (2005) Copper adsorption kinetics of cultured algal cells and freshwater phytoplankton with emphasis on cell surface characteristics. J Appl Phycol 17(5):379–389

    Article  CAS  Google Scholar 

  • Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380(1–3):48–65

    Article  CAS  PubMed  Google Scholar 

  • Wahal S, Viamajala S (2016) Uptake of inorganic and organic nutrient species during cultivation of a chlorella isolate in anaerobically digested dairy waste. Biotechnol Prog 32(5):1336–1342

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Lan CQ (2011) Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent. Bioresour Technol 102(10):5639–5644

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79(5):707–718

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Min M, Li Y, Chen P, Chen Y, Liu Y, Wang Y, Ruan R (2010) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl Biochem Biotechnol 162(4):1174–1186

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Kuo-Dahab WC, Dolan S, Park C (2014) Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, chlorella sp. and Micractinium sp., in wastewater treatment. Bioresour Technol 154:131–137

    Article  CAS  PubMed  Google Scholar 

  • Whitton BA, Potts M (2007) The ecology of cyanobacteria: their diversity in time and space. Springer

    Google Scholar 

  • Williams P, Laurens LM (2010) Microalgae as biodiesel and biomass feedstocks: review and analysis of the biochemistry, energetics and economics. Energy Environ Sci 3:554–590

    Article  CAS  Google Scholar 

  • Wong JPK, Wong YS, Tam NFY (2000) Nickel biosorption by two chlorella species, C. Vulgaris (a commercial species) and C. Miniata (a local isolate). Bioresour Technol 73(2):133–137

    Article  CAS  Google Scholar 

  • Wu LF, Chen PC, Huang AP, Lee CM (2012) The feasibility of biodiesel production by microalgae using industrial wastewater. Bioresour Technol 113:14–18

    Article  CAS  PubMed  Google Scholar 

  • Wu JY, Lay CH, Chen CC, Wu SY (2017) Lipid accumulating microalgae cultivation in textile wastewater: environmental parameters optimization. J Taiwan Inst Chem Eng 79:1–6

    Article  CAS  Google Scholar 

  • Xu Y, Wang Y, Yang Y, Zhou D (2016) The role of starvation in biomass harvesting and lipid accumulation: co-culture of microalgae–bacteria in synthetic wastewater. Environ Prog Sustain Energy 35(1):103–109

    Article  CAS  Google Scholar 

  • Yanagi M, Watanabe Y, Saiki H (1995) CO2 fixation by Chlorella sp. HA-1 and its utilization. Energy Convers Manag 36(6–9):713–716

    Article  CAS  Google Scholar 

  • Yang JS, Rasa E, Tantayotai P, Scow KM, Yuan HL, Hristova KR (2011) Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions. Bioresour Technol 102(3):3077–3082

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Tan X, Li D, Chu H, Zhou X, Zhang Y, Yu H (2015) Nutrients removal and lipids production by Chlorella pyrenoidosa cultivation using anaerobic digested starch wastewater and alcohol wastewater. Bioresour Technol 181:54–61

    Article  CAS  PubMed  Google Scholar 

  • Zhai J, Li X, Li W, Rahaman MH, Zhao Y, Wei B, Wei H (2017) Optimization of biomass production and nutrients removal by Spirulina platensis from municipal wastewater. Ecol Eng 108:83–92

    Article  Google Scholar 

  • Zheng H, Liu M, Lu Q, Wu X, Ma Y, Cheng Y, Addy M, Liu Y, Ruan R (2018) Balancing carbon/nitrogen ratio to improve nutrients removal and algal biomass production in piggery and brewery wastewaters. Bioresour Technol 249:479–486

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Li Y, Min M, Hu B, Zhang H, Ma X, Li L, Cheng Y, Chen P, Ruan R (2012a) Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production. Appl Energy 98:433–440

    Article  CAS  Google Scholar 

  • Zhou W, Min M, Li Y, Hu B, Ma X, Cheng Y, Liu Y, Chen P, Ruan R (2012b) A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresour Technol 110:448–455

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Chen P, Min M, Ma X, Wang J, Griffith R, Hussain F, Peng P, Xie Q, Li Y, Shi J, Meng J, Ruan R (2014) Environment-enhancing algal biofuel production using wastewaters. Renew Sust Energ Rev 36:256–269

    Article  Google Scholar 

  • Zhou W, Wang Z, Xu J, Ma L (2018) Cultivation of microalgae Chlorella zofingiensis on municipal wastewater and biogas slurry towards bioenergy. J Biosci Bioeng 126(5):644–648

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Wang Z, Shu Q, Takala J, Hiltunen E, Feng P, Yuan Z (2013) Nutrient removal and biodiesel production by integration of freshwater algae cultivation with piggery wastewater treatment. Water Res 47(13):4294–4302

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, V., Mishra, V. (2019). Bioremediation of Nutrients and Heavy Metals from Wastewater by Microalgal Cells: Mechanism and Kinetics. In: Tripathi, V., Kumar, P., Tripathi, P., Kishore, A., Kamle, M. (eds) Microbial Genomics in Sustainable Agroecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-32-9860-6_16

Download citation

Publish with us

Policies and ethics