Skip to main content

Alkaline Protease: A Tool to Manage Solid Waste and Its Utility in Detergent Industry

  • Chapter
  • First Online:
Microbial Genomics in Sustainable Agroecosystems

Abstract

Management of solid waste is an issue of contemporary interest worldwide. Nowadays most of the solid wastes are disposed on the land, and various anthropogenic sources like leather industry, poultry industry (feather), and other food processing industries generate a lot of biodegradable proteinaceous waste. Microorganisms have the ability to produce alkaline protease like bacteria, fungi, algae, plant and animal. This review suggests that various microorganisms are involved in the degradation of household and industrial waste by producing alkaline protease and degradation by this process not only solves the problem of waste management but also generates a source of animal feed as it yields proteinaceous by-product after degradation. Microbial sources of alkaline proteases are preferred over plant and animal sources since they have almost all characteristics which are prerequisite for biotechnological applications, like their high activity at alkaline pH (pH 10), thermostability and broad substrate specificity. Alkaline proteases are extracellular enzyme of metabolic process. This review mainly focuses on the utility of alkaline protease in management of solid waste and in detergent formulation. This review also focuses on the method to improve the capability of microorganism to increase the yield of alkaline protease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aftab MN, Hameed A, Ikram-ul-Haq SCR (2006) Biodegradation of leather waste by enzymatic treatment. Chin J Process Eng 6:1–3

    Google Scholar 

  • Ahamad J, Ansari TA (2013) Alkaline protease production using proteinaceous tannery solid. J Pet Environ Biotechnol 4:136–139

    Google Scholar 

  • Ahmed SA, Al-domany RA, El-Shayeb NMA, Radwan HH, Saleh SA (2008) Optimization, immobilization of extracellular alkaline protease and characterization of its enzymatic properties. Res J Agric Biol Sci 4:434–446

    CAS  Google Scholar 

  • Al-Abdalall MH, Al-Khaldi EM (2016) Recovery of silver from used X-ray film using alkaline protease from Bacillus subtilis sub sp. Subtilis. Afr J Biotechnol 15:1413–1416

    Article  CAS  Google Scholar 

  • Alessandro R, Silvia O, Adriano B (2003) Dehairing activity of extracellular proteases produced by keratinolytic bacteria. J Chem Technol Biotechnol 78:855–859

    Article  CAS  Google Scholar 

  • Alexander KTW, Corning DR, Cory NJ (1991) Environmental and safety issues clean technology and environmental auditing. J Soc Leather Technol Chem 76:17–23

    Google Scholar 

  • Anandan D, Marmer WN, Dudley RL (2007) Isolation, characterization and optimization of culture parameters for production of an alkaline protease isolated from Aspergillus tamari. J Ind Microbiol Biotechnol 34:339–347

    Article  CAS  PubMed  Google Scholar 

  • Anwar A, Saleemuddin M (1998) Alkaline protease: a review. Bioresour Technol 64:175–183

    Article  CAS  Google Scholar 

  • Arai M, Murao S (1977) Purification and some properties of two alkaline proteases from Penicillium liliacinum no. 2093. Agric Biol Chem 41:2293–2294

    CAS  Google Scholar 

  • Aunstrup K (1980) Proteinases. In: Rose AH (ed) Economic microbiology: microbial enzymes and bioconversions, vol 5. Academic, New York, pp 50–114

    Google Scholar 

  • Aunstrup K, Outtrup H, Andersen O, Damnmann C (1972) Proteases from alkalophilic Bacillus species. In: Terui G (ed) Fermentation technology today. Society of Fermentation Technology of Japan, Osaka, pp 299–305

    Google Scholar 

  • Banerjee R, Bhattacharyya BC (1992) Extracellular alkaline protease of a newly isolated Rhizopus oryzae. Biotechnol Lett 14:301–304

    Article  CAS  Google Scholar 

  • Barthomeuf C, Pourrat H, Pourrat A (1992) Collagenolytic activity of a new semi-alkaline protease from Aspergillus niger. J Ferment Bioeng 73:233–236

    Article  CAS  Google Scholar 

  • Beg QK, Saxena RK, Gupta R (2002) De-repression and subsequent induction of protease synthesis by Bacillus mojavensis under fed-batch operations. Process Biochem 37:1103–1109

    Article  CAS  Google Scholar 

  • Belder DE, Bonants PJM, Fitters PFL, Waalwijk C (1994) New alkaline serine protease of Paecilomyces lilacinus. European Patent Appl EP 0623672

    Google Scholar 

  • Bettel C, Klupsch S, Papendorf G, Hastrup S, Branner S, Wilson KS (1992) Crystal structure of the alkaline protease Savinase from Bacillus lentus at 1.4 angstrom resolution. J Mol Biol 223:427–445

    Article  Google Scholar 

  • Bhosale SH, Rao MV, Deshpande VV, Srinivasan MC (1995) Thermostability of high activity alkaline protease from Conidiobolus coronatus (NCL 86.8.20). Enz Microb Technol 17:136–139

    Article  CAS  Google Scholar 

  • Bhunia B, Basak B, Dey A (2012) A review on production of serine alkaline protease by Bacillus spp. J Biochem Technol 3:448–457

    CAS  Google Scholar 

  • Boyer EW, Byng GS (1996) Bacillus proteolyticus species which produce an alkaline protease. US Patent. 5518917

    Google Scholar 

  • Bryan PN, Rollence ML, Pantoliano MW, Wood J, Finzel BC, Gilliland GL, Howard AJ, Poulous TL (1986) Proteases of enhanced stability: characterization of a thermostable variant of subtilisin. Proteins 1:326–334

    Article  CAS  PubMed  Google Scholar 

  • Cabezaa LF, Taylora MM, DiMaioa GL, Browna EM, Marmera WN, Carrio R, Celmab PJ, Cotc J (1998) Processing of leather waste: pilot scale studies on chrome shavings. Isolation of potentially valuable protein products and chromium. Waste Manag 18:21–218

    Article  Google Scholar 

  • Cao L, Tan H, Liu Y, Xue X, Zhou S (2008) Characterization of a new ker-atinolytic Trichoderma atroviride strain F6 that completely degrades native chicken feather. Lett Appl Microbiol 46:389–394

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty R, Srinivasan M (1993) Production of a thermostable alkaline protease by a new Pseudomonas sp. By solid substrate fermentation. J Microbiol Biotechnol 8:7–16

    CAS  Google Scholar 

  • Chandrasekaran S, Dhar SC (1986) Utilization of a multiple proteinase concentrate to improve the nutritive value of chicken feather meal. J Leather Res 4:23–30

    CAS  Google Scholar 

  • Chao YP, Wen CS, Wang JY (2004) A facile and efficient method to achieve LacZ overproduction by the expression vector carrying the thermoregulated promoter and plasmid copy number. Biotechnol Prog 20:420–225

    Article  CAS  PubMed  Google Scholar 

  • Cortezi M, Cilli EM, Contiero J (2008) Bacillus amyloliquefaciens: a new keratinolytic feather-degrading bacteria. Curr Trends Biotechnol Pharm 2:170–177

    CAS  Google Scholar 

  • Dalev PG (1994) Utilisation of waste feathers from poultry slaughter for production of a protein concentrate. Bioresour Technol 48:265–267

    Article  CAS  Google Scholar 

  • Danno G (1970) Crystallization and some properties of alkaline proteinase from Aspergillus sulphureus. Agric Biol Chem 34:264–273

    Article  CAS  Google Scholar 

  • Danno G, Yoshimura S (1967) Studies on an alkaline proteinase of Aspergillus sydowi. Part I. purification and some properties of the proteinase. Agric Biol Chem 31:1151–1158

    CAS  Google Scholar 

  • Dhar SC, Sreenivasulu S (1984) Studies on the use of dehairing enzyme for its suitability in the preparation of improved animal feed. Leather Sci 31:261–267

    CAS  Google Scholar 

  • Do Nascimento WCA, Martins MLL (2006) Studies on the stability of protease from Bacillus sp. and its compatibility with commercial detergent. Braz J Microbiol 37:307–311

    Article  Google Scholar 

  • Dozie INS, Okeke CN, Unaeze NC (1994) A thermostable, alkaline-active, keratinolytic proteinase from Chrysosporiumkeratinophilum. Word J Microb Biotechnol 10:563–567

    Article  CAS  Google Scholar 

  • El-Beih FM, Abu-Shady MR, Gamal RF, Abd El-Rahim MKI (1991) Factors affecting the production of extracellular alkaline proteinase by two local isolates of B. amyloliquefaciens. Ann Agric Sci 36:363–376

    Google Scholar 

  • Ellaiah P, Srinivasulu B, Adinarayana K (2002) A review on microbial alkaline proteases. J Sci Ind Res 61:690–704

    CAS  Google Scholar 

  • Eschenburg S, Genov N, Peters K, Fittkau S, Stoeva S, Wilson KS, Betzel C (1988) Crystal structure of subtilisin DY, a random mutant of subtilisin Carlsberg. Eur J Biochem 257:309–318

    Article  Google Scholar 

  • Flores-Fernández CN, Cárdenas-Fernández M, Dobrijevic D, Jurlewicz K, Zavaleta AI, Ward JM, Lye GJ (2018) Novel Extremophilic proteases from Pseudomonas aeruginosa M211 and their application in the hydrolysis of dried Distiller’s grain with Solubles. Biotechnol Prog. https://doi.org/10.1002/btpr.2728

    Article  PubMed  CAS  Google Scholar 

  • Fukumori F, Kudo T, Narahashi Y, Horikoshi K (1986) Molecular cloning and nucleotide sequence of the alkaline cellulose gene from the alkalophilic Bacillus sp. strain 1139. J Gen Microbiol 132:2329–2335

    CAS  PubMed  Google Scholar 

  • Furhan J, Sharma S (2014) Microbial alkaline proteases: findings and applications. Int J Inv Pharm Sci 2:823–834

    CAS  Google Scholar 

  • Gajju H, Bhalla TC, Agarwal HO (1996) Utilization of thermostable alkaline protease from Bacillus coagulans PB-77 for silver recovery from used x-ray films. In: Proceedings of the 37th annual conference Association of Microbial India, Chennai, India, (Abstr no. IM-4), p 79

    Google Scholar 

  • Gessesse A, Hatti-Kaul R, Gashe B, Mattiasson BA (2003) Novel alkaline proteases from alkaliphilic bacteria grown on chicken feather. Enzym Microb Technol 32:519–524

    Article  CAS  Google Scholar 

  • Giongo JL, Lucas FS, Casarin F, Heeb P, Brandelli A (2007) Keratinolytic proteases of Bacillus species isolated from the Amazon basin showing remarkable de-hairing activity. World J Microbiol Biotechnol 23:375–382

    Article  CAS  Google Scholar 

  • Glazer AG, Nikaido H (1995) Microbial biotechnology: fundamental of applied microbiology. Freeman and Company, New York

    Google Scholar 

  • Godfrey T, West S (1996) Introduction to industrial enzymology. In: Godfrey T, West S (eds) Industrial enzymology, 2nd edn. Macmillan Press, London, pp 1–8

    Google Scholar 

  • Guleria S, Walia A, Chauhan A, Shirkot CK (2016) Purification and characterization of detergent stable alkaline protease from Bacillus amyloliquefaciens SP1 isolated from apple rhizosphere. J Basic Microbiol 56:138–152

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Beg K, Lorenz P (2002) Bacterial alkaline protease: molecular approaches and industrial application. Appl Micro Biotechnol 59:15–32

    Article  CAS  Google Scholar 

  • Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high- level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177:4121–4130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habbeche A, Saoudi B, Jaouadi B, Haberra S, Kerouaz B, Boudelaa M (2014) Purification and biochemical characterization of a detergent-stable keratinase from a newly thermophilic actinomycete Actinomadura keratinilytica strain Cpt29 isolated from poultry compost. J Biosci Bioeng 117:413–421

    Article  CAS  PubMed  Google Scholar 

  • Haddar A, Hmidet N, Ghorbel BO, Zouari NF, Kamoun SA, Nasri M (2011) Alkaline proteases produced by Bacillus licheniformis RP1 grown on shrimp wastes: application in chitin extraction, chicken feather-degradation and as a dehairing agent. Biotechnol Bioprocess Eng 16:669–678

    Article  CAS  Google Scholar 

  • Hakamada Y, Kobayashi T, Hitomi J, Kawai S, Ito S (1994) Molecular cloning and nucleotide sequencing of the gene for an alkaline protease from the alkalophilic Bacillus sp. KSM-K16. J Ferment Bioeng 78:105–108

    Article  CAS  Google Scholar 

  • Hamamoto T, Honda H, Kudo T, Horikoshi K (1987) Nucleotide sequence of the xylanase A gene of alkalophilic Bacillus sp. strain C-125. Agric Biol Chem 51:953–955

    CAS  Google Scholar 

  • Hameed A, Keshavarz T, Evans CS (1999) Effect of dissolved oxygen tension and pH on the production of extracellular protease from a new isolate of Bacillus subtilis K2, for use in leather processing. J Chem Technol Biotechnol 74:5–8

    Article  CAS  Google Scholar 

  • Harrar BS, Woods EF (1963) Soluble derivatives of feather keratin I. isolation, fractionation and amino acid composition. Biochem J 92:8–18

    Google Scholar 

  • Hayashi K, Fukushima D, Mogi K (1967) Isolation of alkaline proteinase from Aspergillus sojae in homogeneous form. Agric Biol Chem 31:1237–1241

    Article  CAS  Google Scholar 

  • Heinaru E, Truu J, Stottmeister U, Heinaru A (2000) Three types of phenol and p-cresol catabolism in phenol- and p-cresol-degrading bacteria isolated from river water continuously polluted with phenolic compounds. FEMS Microbiol Ecol 31:195–205

    Article  CAS  PubMed  Google Scholar 

  • Holmquist M, Martinelle M, Clausen IG, Patkar S, Svendsen A, Hult K (1994) Trp89 in the lid of Humicola lanuginosa lipase is important for efficient hydrolysis of tributyrin. Lipids 29:599–603

    Article  CAS  PubMed  Google Scholar 

  • Horikoshi K, Akiba T (1982) Alkalophilic microorganisms: a new microbial world. Japan Scientific Societies Press/Springer, Tokyo/Berlin

    Google Scholar 

  • Hotha S, Banik RM (1997) Production of alkaline protease by Bacillus thuringiensis H14 in aqueous two-phase systems. J Chem Technol Biotechnol 69:5–10

    Article  CAS  Google Scholar 

  • Huang Q, Yong P, Xin L, Haifeng W, Yizheng Z (2003) Purification and characterization of an extracellular alkaline serine protease with dehairing function from Bacillus pumilus. Curr Microbiol 46:169–173

    Article  CAS  PubMed  Google Scholar 

  • Hutterer KM, Zhang Z, Michaels ML, Belouski E, Hong RW, Shah B et al (2012) Targeted codon optimization improves translational fidelity for an Fc fusion protein. Biotechnol Bioeng 109:2770–2777

    Article  CAS  PubMed  Google Scholar 

  • Inventory of GRAS Notices: Summary of all GRAS Notices (2008-10-22) US FDA/CFSAN. Archived from the original on 11 October 2008. Retrieved 2008-10-31

    Google Scholar 

  • Itskovich EL, Znamenskaya LV, Balaban NP, Ershova TA, Leshchinskaya IB (1995) Biosynthesis of alkaline proteinase by Bacillus intermedius. Microbiology 64:530–536

    Google Scholar 

  • Jacobs M, Eliasson M, Uhlén M, Flock JI (1985) Cloning, sequencing and expression of subtilisin Carlsberg from Bacillus licheniformis. Nucleic Acids Res 13:8913–8926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobson JW, Glick JL, Madello KL (1985) Composition for cleaning drains clogged with deposits containing hairs. US Patent 4-540-506

    Google Scholar 

  • Jang JS, Kang DO, Chun MJ, Byun SM (1992) Molecular cloning of a subtilisin J from Bacillus stearothermophilus and its expression in Bacillus subtilis. Biochem Biophys Res Comm 184:277–282

    Article  CAS  PubMed  Google Scholar 

  • Jaouadi B, Ellouz-Chaabouni S, Rhimi M, Bejar S (2008) Biochemical and molecular characterization of a detergent-stable serine alkaline protease from Bacillus pumilus CBS with high catalytic efficiency. Biochimie 90:1291–1305

    Article  CAS  PubMed  Google Scholar 

  • Jaouadi B, Abdelmalek B, Jaouadib NZ, Bejar S (2011) The bioengineering and industrial applications of bacterial alkaline proteases: the case of SAPB and KERAB. In: Carpi A (ed) Progress in molecular and environmental bioengineering – from analysis and modeling to technology applications. isbn: 978-953-307-268-275

    Google Scholar 

  • Johnvesly B, Naik GR (2001) Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. J99 in a chemically defined medium. Process Biochem 37:139–144

    Article  CAS  Google Scholar 

  • Kalisz HM (1988) Microbial proteinases. Adv Biochem Eng Biotechnol 36:1–65

    CAS  PubMed  Google Scholar 

  • Kanehisa K (2000) Woven or knit fabrics manufactured using yarn dyed raw silk. US Patent 6,080,689

    Google Scholar 

  • Kaneko R, Koyama N, Tsai YC, Juang RY, Yoda K, Yamasaki M (1989) Molecular cloning of the structural gene for alkaline elastase YaB, a new subtilisin produced by an alkalophilic Bacillus strain. J Bacteriol 171:5232–5236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karn SK, Kumar A (2015) Hydrolytic enzyme protease in sludge: recovery and its application. Biotechnol Bioprocess Eng 20:652–661

    Article  CAS  Google Scholar 

  • Kobayashi T, Hakamada Y, Adachi S, Hitomi J, Yoshimatsu T, Koike K, Kawai S, Ito S (1995) Purification and properties ofan alkaline protease from alkalophilic Bacillus sp. KSM-K16. Appl Microbiol Biotechnol 43:473–478

    Article  CAS  PubMed  Google Scholar 

  • Koide Y, Nakamura A, Uozumi T, Beppu T (1986) Cloning and sequencing of the major intracellular serine protease gene of Bacillus subtilis. J Bacteriol 167:110–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krulwich TA, Guffanti AA (1983) Physiology of acidophilic and alkalophilic bacteria. Adv Microb Physiol 24:173–214

    Article  CAS  PubMed  Google Scholar 

  • Krulwich TA, Guffanti AA, Seto-Young D (1990) pH homeostasis and bioenergetic work in alkalophiles. FEMS Microbiol Rev 75:271–278

    Article  CAS  Google Scholar 

  • Kumar CG, Takagi H (1999) Microbial alkaline proteases: from a bioindustrial view point. Biotechnol Adv 17:561–594

    Article  CAS  PubMed  Google Scholar 

  • Kumar CG, Malik RK, Tiwari MP (1998) Novel enzyme-based detergents: an Indian perspective. Curr Sci 75:1312–1318

    CAS  Google Scholar 

  • Kumar D, Chand D, Sankhian UD, Bhalla TC (2002) Application of Bacillus sp. APR-4 protease in silver recovery from used X-ray films. Bull Biol Sci 1:39–41

    Google Scholar 

  • Lakshmi BKM, Hemalatha KPJ (2016) Production of alkaline protease from Bacillus licheniformis through statistical optimization of growth media by response surface methodology. Ferment Technol 5:130–336

    Article  CAS  Google Scholar 

  • Landau NS, Egorov NS, Gornova B, Krasovskaya SB, Virnik AD (1992) Immobilization of Bacillus firmus cells in cellulose triacetate fibres and films and their use in proteinase biosynthesis. Appl Biochem Microbiol 28:84–88

    Google Scholar 

  • Larcher G, Bouchara JP, Annaix V, Symoens F, Chabasse D, Tronchin G (1992) Purification and characterization of a fibrinogenolytic serine proteinase from Aspergillus fumigatus culture filtrate. FEBS Lett 308:65–69

    Article  CAS  PubMed  Google Scholar 

  • Larcher G, Cimon B, Symoens F, Tronchin G, Chabasse D, Bouchara JP (1996) A 33 kDa serine proteinase from Scedosporium apiospermum. Biochem J 315:119–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lesnik EA, Sampath R, Levene HB, Henderson TJ, McNeil JA, Ecker DJ (2001) Prediction of rho-independent transcriptional terminators in Escherichia coli. Nucleic Acids Res 29:3583–3594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Li Y, Zhang J, Zou W, Zhou Z, Liu J, Li X, Wang L, Chen J (2011) Complete genome sequence of the industrial strain Bacillus megaterium WSH-002. J Bacterial 193:6389–6390

    Article  CAS  Google Scholar 

  • Luisetti M, Piccioni PO, Dyne K, Donnini M, Bulgheroni A, Pasturenzi L, Donnetta AM, Peona V (1991) Some properties of the alkaline proteinase from Aspergillus melleus. Int J Tissue React 13:187–192

    CAS  PubMed  Google Scholar 

  • Mabrouk MEM (2008) Feather degradation by a new keratinolytic Streptomyces sp. MS-2. World J Microbiol Biotechnol 24:2331–2338

    Article  Google Scholar 

  • Macedo AJ, da Silva WOBD, Gava R, Driemeier D, Henriques JAP, Termignoni C (2005) Novel keratinase from Bacillus subtilis S14 exhibiting remarkable dehairing capabilities. Appl Environ Microbiol 71:594–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majumder R, Banik SP, Ramrakhiani L, Khowala S (2015) Bioremediation by alkaline protease (AkP) from edible mushroom Termitomyces clypeatus: optimization approach based on statistical design and characterization for diverse applications. Chem Technol Biotechnol 90:1886–1896

    Article  CAS  Google Scholar 

  • Makrides SC (1996) Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60:512–538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malathi S, Chakraborty R (1991) Production of alkaline protease by a new Aspergillus flavus isolate under solidsubstrate fermentation conditions for use as a depilation agent. Appl Environ Microbiol 57:712–716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Masui A, Yasuda M, Fujiwara N, Ishikawa H (2004) Enzymatic hydrolysis of gelatin layers on used lith film using thermostable alkaline protease for recovery of silver and PET film. Biotechnol Prog 20:1267–1269

    Article  CAS  PubMed  Google Scholar 

  • Matsubara H, Feder J (1971) The enzyme, vol 3. Academic, New York

    Google Scholar 

  • Mazotto AM, Coelho RRR, Cedrola SML, Lima MFD, Couri S, Souza EPD, Vermelho AB (2011) Keratinase production by three Bacillus spp. using feather meal and whole feather as substrate in a submerged fermentation. Enzym Res. https://doi.org/10.4061/2011/523780

    Article  CAS  Google Scholar 

  • Menandro NA (2010) Waste chicken feather as reinforcement in cement-bonded composites. Philipp J Sci 139:161–166

    Google Scholar 

  • Mikami Y, Miyashita K, Arai T (1986) Alkalophilic actinomycetes. Actinomycetes 19:76–191

    Google Scholar 

  • Monod M, Togni G, Rahalison L, Frenk E (1991) Isolation and characterisation of an extracellular alkaline protease of Aspergillus fumigatus. J Med Microbiol 35:23–28

    Article  CAS  PubMed  Google Scholar 

  • Moon SH, Parulekar SJ (1991) A parametric study of protease production in batch and fed- batch cultures of Bacillus firmus. Biotechnol Bioeng 37:467–483

    Article  CAS  PubMed  Google Scholar 

  • Najafi MF (2005) Potential application of protease isolated from Pseudomonas aeruginosa PD100. Electron J Biotechol 2:717–3458

    Google Scholar 

  • Nakadai T, Nasuno S, Iguchi N (1973) Purification and properties of alkaline proteinase from Aspergillus oryzae. Agric Biol Chem 37:2685–2694

    Article  CAS  Google Scholar 

  • Nasuno S, Ohara T (1971) Hyperproduction of proteinase and some hydrolytic enzymes by mutants of Aspergillus sojae. Agric Biol Chem 35:829–835

    Article  CAS  Google Scholar 

  • Newbury SF, Smith NH, Robinson EC, Hiles ID, Higgins CF (1987) Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell 48:297–310

    Article  CAS  PubMed  Google Scholar 

  • Novozymes report (2006). http://www.novozymes.com/en/MainStructure/AboutUs /Positions/Enzymes+prod uced+by+GMMs.htm

  • Outtrup H, Boyce C (1990) Microbial proteinases and biotechnology. In: Microbial enzymes and biotechnology, vol. 227, p 254

    Chapter  Google Scholar 

  • Papadopoulos MC, El Boushy AR, Roodbeen AE (1985) The effect of varying autoclaving conditions and added sodium hydroxide on amino acid content and nitrogen characteristics of feather meal. J Sci Food Agric 36:1219–1226

    Article  Google Scholar 

  • Papadopoulos MC, El Boushy AR, Roodbeen AE, Ketelaars EH (1986) Effects of processing time and moisture content on amino acid composition and nitrogen characterstics of feather meal. Anim Feed Sci Technol 14:279–290

    Article  Google Scholar 

  • Park GT, Son HJ (2009) Keratinolytic activity of Bacillus megaterium F7-1, a feather degrading mesophilic bacterium. Microbiol Res 164:478–485

    Article  CAS  PubMed  Google Scholar 

  • Pedersen KB, Christiansen M, Lindegaard P (1992) Novel proteases. PCT Patent Appl. 9218622

    Google Scholar 

  • Phadatare SU, Srinivasan MC, Deshpande VV (1993) High activity alkaline protease from Conidiobolus coronatus (NCL 86.8.20): enzyme production and compatibility with commercial detergents. Enzym Microb Technol 15:72–76

    Article  CAS  Google Scholar 

  • Pillai P, Archana G (2008) Hide depilation and feather disintegration studies with keratinolytic serine protease from a novel Bacillus subtilis isolate. Appl Microbiol Biotechnol 78:643–650

    Article  CAS  PubMed  Google Scholar 

  • Poole AJ, Church JS, Huson MG (2009) Environmentally sustainable fibers from regenerated protein. Biomacromolecules 10:1–8

    Article  CAS  PubMed  Google Scholar 

  • Prakasham RS, Rao SC, Rao RS, Sarma PN (2005a) Alkaline protease production by an isolated Bacillus circulans under solid state fermentation using agro industrial waste: process parameters optimization. Biotechnol Prog 21:1380–1388

    Article  CAS  PubMed  Google Scholar 

  • Prakasham RS, Rao SC, Rao SR, Rajesham S, Sarma PN (2005b) Optimization of alkaline protease production by Bacillus sp. using Taguchi methodology. Appl Biochem Biotechnol 120:133–144

    Article  CAS  PubMed  Google Scholar 

  • Prasanthi N, Bhargavi S, Machiraju PVS (2016) Chicken feather waste-a threat to the environment. Int J Innov Res Sci Eng Technol 5:9

    Google Scholar 

  • Puri S (2001) An alkaline protease from a Bacillus sp.: production and potential applications in detergent formulation and degumming of silk. MSc thesis, University of Delhi, New Delhi

    Google Scholar 

  • Puri S, Beg QK, Gupta R (2002) Optimization of alkaline protease production from Bacillus sp. by response surface methodology. Curr Microbiol 44:286–290

    Article  CAS  PubMed  Google Scholar 

  • Rahaman RS, Chee JY, Cabral JMS, Hatton TA (1988) Recovery of an extracellular alkaline protease from whole fermentation broth using reversed micelles. Biotechnol Prog 4:218–224

    Article  CAS  Google Scholar 

  • Rai SK, Mukherjee AK (2009) Ecological significance and some biotechnological application of an organic -solvent stable alkaline serine protease from Bacillus subtilis strain DM-04. Bioresour Technol 100:2642–2645

    Article  CAS  PubMed  Google Scholar 

  • Rai SK, Mukherjee AK (2011) Optimization of production of an oxidant and detergent-stable alkaline β-keratinase from Brevibacillus sp strain AS-S10-II: application of enzyme in laundry detergent formulations and in leather industry. Biochem Eng J 54:47–56

    Article  CAS  Google Scholar 

  • Sakai F, Takemoto A, Watanabe S, Aoyama K, Ohkubo T, Yanahira S, Igarashi H, Kozaki S, Hiramatsu K, Ito T (2008) Multiplex PCRs for assignment of Staphylocoagulase types and subtypes of type VI Staphylocoagulase. J Microbiol Methods 75:312–317

    Article  CAS  PubMed  Google Scholar 

  • Santos RMDB, Firmino AAP, de Sa CM, Felix CR (1996) Keratinolytic activity of Aspergillus fumigatus Fresenius. Curr Microbiol 33:364–370

    Article  CAS  PubMed  Google Scholar 

  • Sharma B, Khangarot P, Ahmed S (1994) Alkaline protease from Bacillus alcalophilus. In: Proceedings of Micon International, 94, 9–12 November 1994, Mysore, India, (Abstract) 88–89

    Google Scholar 

  • Son HJ, Park HC, Kim HS, Lee CY (2008) Nutritional regulation of keratinolytic activity in Bacillus pumilis. Biotechnol Lett 30:461–465

    Article  CAS  PubMed  Google Scholar 

  • Stahl ML, Ferrari E (1984) Replacement of the Bacillus subtilis subtilisin structural gene with an in vitro-derived deletion mutation. J Bacteriol 158:411–418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner RJ, Kellems RO, Church DC (1983) Feather and hair meals for ruminats. Part IV. Effect of chemical treatments of feather and processing time on digestibility. J Anim Sci 57:495–502

    Article  Google Scholar 

  • Takagi H, Kondou M, Hisatsuka T, Nakamori S, Tsai YC, Yamasaki M (1992) Effects of an alkaline elastase from an alkalophilic Bacillus strain on the tenderization of beef meat. J Agric Food Chem 40:2364–2368

    Article  CAS  Google Scholar 

  • Takami H, Kobayashi T, Kobayashi M, Yamamoto M, Nakamura S, Aono R, Horikoshi K (1992a) Molecular cloning, nucleotide sequence,and expression ofthe structural gene for alkaline serineprotease from alkaliphilic Bacillus sp. 221. Biosci Biotechnol Biochem 56:1455–1460

    Article  CAS  PubMed  Google Scholar 

  • Takami H, Nakamura S, Aono R, Horikoshi K (1992b) Degradation of human hair by a thermostable alkaline protease from alkalophilic Bacillus sp. no. AH-101. Biosci Biotechnol Biochem 56:1667–1669

    Article  CAS  Google Scholar 

  • Takekawa S, Uozumi N, Tsukagoshi N, Udaka S (1991) Proteases involved in generation of beta- and alpha-amylases from a large amylase precursor in Bacillus polymyxa. J Bacteriol 173:6820–6825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takii Y, Kuriyama N, Suzuki Y (1990) Alkaline serine protease produced from citric acid by Bacillus alcalophilus subsp. halodurans KP1239. Appl Microbiol Biotechnol 34:57–62

    Article  CAS  PubMed  Google Scholar 

  • Thankaswamy SR, Sundaramoorthy S, Palanivel S, Ramudu KN (2018) Improved microbial degradation of animal hair waste from leather industry using Brevibacterium luteolum (MTCC 5982). J Clean Prod 189:701–708

    Article  CAS  Google Scholar 

  • Tobe S, Takami T, Ikeda S, Horikoshi K (1976) Production and some enzymatic properties of alkaline proteinase of Candida lipolytica. Agric Biol Chem 40:1087–1092

    CAS  Google Scholar 

  • Trepod CM, Mott JE (2002) A spontaneous runaway vector for production-scale expression of bovine somatotropin from Escherichia coli. Appl Microbiol Biotechnol 58:84–88

    Article  CAS  PubMed  Google Scholar 

  • Tsai YC, Yamasaki M, Yamamoto-Suzuki Y, Tamura G (1983) A new alkaline elastase of an alkalophilic Bacillus. Biochem Int 7:577–583

    CAS  PubMed  Google Scholar 

  • Tsai YC, Lin YT, Li YF, Yamasaki M, Tamura G (1986) Characterization of an alkaline elastase from alkalophilic Bacillus Ya-B. Biochim Biophys Acta 883:439–447

    Article  CAS  Google Scholar 

  • Tsuru D, Kira H, Yamamoto T, Fukumoto J (1966) Studies on bacterial protease. Part XVI. Purification, crystallization and some properties of alkaline protease of Bacillus subtilis var. amylosacchariticus. Agric Biol Chem 30:1261–1268

    CAS  Google Scholar 

  • US Environmental Protection Agency (1991) Proposed regulation of land application of sludge from pulp and paper mills using chlorine and chlorine derivative bleaching processes. Environ Prot Agency Fed Reg 56(91): 40 CFR. Part 744, OPTS- 62100; FRL 3873

    Google Scholar 

  • Van der Laan JC, Gerristse G, Mulleners LJSM, Van der Hoek RAC, Quax WJ (1991) Cloning, characterization, and multiple chromosomal integration of a Bacillus alkaline protease gene. Appl Environ Microbiol 57:901–909

    PubMed  PubMed Central  Google Scholar 

  • Van der Laan JM, Teplyakov AV, Kelders H, Kalk KH, Misset O, Mulleners LJ, Dijkstra BW (1992) Crystal structure of the high-alkaline serine protease B 92 from Bacillus alcalophilus. Protein Eng 5:405–411

    Article  PubMed  Google Scholar 

  • Varela H, Ferrari MD, Belobradjic L et al (1996) Effect of medium composition on the production by a new Bacillus subtilis isolate of protease with promising unhairing activity. World J Microbiol Biotechnol 12:643–645

    Article  CAS  PubMed  Google Scholar 

  • Vasantha N, Thompson LD, Rhodes C, Banner C, Nagle J, Filpula D (1984) Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J Bacteriol 159:811–819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vedder A (1934) Bacillus alcalophilus n. sp.; benevens enkele ervaringen met sterk alcalische voedingsbodems. Anton Leeuw J Microbiol Serol 1:143–147

    Google Scholar 

  • Vijayalakshmi S, Venkatkumar S, Thankamani V (2011) Screening of alkalophilic thermophilic protease isolated from Bacillus RV.B2.90 for industrial applications. Res Biotechnol 2:32–41

    Google Scholar 

  • Wang ZQ, Wang YS, Shi H, Su ZG (2012) Expression and production of recombinant cis- epoxysuccinate hydrolase in Escherichia coli under the control of temperature dependent promoter. J Biotechnol 162:232–366

    Article  CAS  PubMed  Google Scholar 

  • Ward WH, Binkley CH, Snell SN (1995) Amino acid composition of normal wools, wool fractions, mohair, feather, and feather fractions. Feather Text Res J 25:314–325

    Article  Google Scholar 

  • Wells JA, Ferrari E, Henner DJ, Estell DA, Chen EY (1983) Cloning, sequencing, and secretion of Bacillus amyloliquefaciens subtilisin in Bacillus subtilis. Nucleic Acids Res 11:7911–7925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiubao Q, Hong D, Ying Y, Yu Y (1990) Studies on alkaline proteinase from alkalophilic Bacillus pumilus. I. Some properties and applications. Acta Microbiol Sin 30:445–449

    Google Scholar 

  • Yamagata Y, Ichishima E (1995) A new alkaline serine protease from alkalophilic Bacillus sp.: cloning , sequencing, and characterization of an intracellular protease. Curr Microbiol 30:357–366

    Article  CAS  PubMed  Google Scholar 

  • Yamagata Y, Sato T, Hanzawa S, Ichishima E (1995a) The structure of subtilisin ALP I from alkalophilic Bacillus sp. NKS-21. Curr Microbiol 30:201–209

    Article  CAS  PubMed  Google Scholar 

  • Yamagata Y, Isshiki K, Ichishima E (1995b) Subtilisin Sendai from alkalophilic Bacillus sp.: molecular and enzymatic properties of the enzyme and molecular cloning and characterization of the gene, aprS. Enzym Microb Technol 17:653–663

    Article  CAS  Google Scholar 

  • Yang HQ, Liu L, Wang MX, Li JH, Wang NS, Du GC et al (2012) Structure-based engineering of methionine residues in the catalytic cores of alkaline amylase from Alkalimonas amylolytica for improved oxidative stability. Appl Environ Microbiol 78:751–926

    Google Scholar 

  • Yoshimoto T, Oyama H, Honda T, Tone H, Takeshita T, Kamiyama T, Tsuru D (1988) Cloning and expression of subtilisin amylosacchariticus gene. J Biochem 103:1060–1065

    Article  CAS  PubMed  Google Scholar 

  • Zambare VP, Nilegaonkar SS, Kanekar PP (2007) Production of an alkaline protease by Bacillus cereus MCM B-326 and its application as a dehairing agent. World J Microbiol Biotechnol 23:1569–1574

    Article  CAS  Google Scholar 

  • Zamost BL, Brantley QI, Elm DD, Beck CM (1990) Production and characterization of a thermostable protease produced by an asporogenous mutant of Bacillus stearothermophilus. J Ind Microbiol 5:303–312

    Article  CAS  Google Scholar 

  • Zouari NF, Haddar A, Hmidet N, Frikha F, Nasri M (2010) Application of statistical experimental design for optimization of keratinases production by Bacillus pumilus A1 grown on chicken feather and some biochemical properties. Process Biochem 45:617–626

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors of this manuscript would like to thank the Council of Scientific & Industrial Research (CSIR), New Delhi, India, for financial support and the School of Biochemical Engineering IIT (BHU), Varanasi, for providing their technical support.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, V.K., Singh, V., Mishra, V. (2019). Alkaline Protease: A Tool to Manage Solid Waste and Its Utility in Detergent Industry. In: Tripathi, V., Kumar, P., Tripathi, P., Kishore, A., Kamle, M. (eds) Microbial Genomics in Sustainable Agroecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-32-9860-6_14

Download citation

Publish with us

Policies and ethics