Skip to main content

Role of Microbial Genomics in Crop Improvement

  • Chapter
  • First Online:
Microbial Genomics in Sustainable Agroecosystems

Abstract

Genomic sequencing and analysis are in a period of exponential growth. The nearly complete human genome sequence is the cornerstone of genome-based biology and provides the richest intellectual resource in the history of biology. The availability of entire genome sequences marks a new age in biology because it has the potential to open innovative and efficient research avenues. Determination of entire genome sequences is only the first step in understanding the inner workings of an organism. The next critical step is to elucidate the functions of these sequences and give biochemical, physiological, and ecological meaning to the information. Sequence analysis indicates that the biological functions of substantial portions of complete genomes are unknown. Defining the role of each gene in the complex cellular machine and network is a formidable task. In addition, genomes contain hundreds to thousands of genes many of which encode multiple proteins that interact and function together as multicomponent systems or apparatuses for accomplishing specific cellular processes. The products of many genes are often coregulated in complex signal transduction networks and understanding how the genome functions as a whole to give life to complete organisms presents an even greater challenge. In addition, gene functions, protein machinery, and regulatory networks cannot be identified solely by using traditional single-gene, single-protein approaches. Thus, many laboratories are addressing important questions in functional genomics research by integrating genomic, proteomic, genetic, biochemical, and bioinformatic approaches. Consequently, areas in functional genomics and associated genomic technology are developing very rapidly. Rapid exchange of knowledge and the establishment of critical collaborations are vital to remaining on the cutting edge of this field. All of these meetings have attracted leading scientists and institutions involved in genome sequencing, microbial functional genomics, and genomic and proteomic technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adediran GA, Ngwenya BT, Mosselmans JFW, Heal KV (2016) Bacteria-zinc co-localization implicates enhanced synthesis of cysteine-rich peptides in zinc detoxification when Brassica juncea is inoculated with Rhizobium leguminosarum. New Phytol 209:280–293

    Article  CAS  Google Scholar 

  • Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D et al (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front Plant Sci 6:868

    PubMed  PubMed Central  Google Scholar 

  • Altieri MA (2004) Linking ecologists and traditional farmers in the search for sustainable agriculture. Front Ecol Environ 2:35–42

    Article  Google Scholar 

  • Batzoglou S (2002) ARACHNE: a whole-genome shotgun assembler. Genome Res 12:177–189

    Article  CAS  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M, Barker GLA, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo M-C, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KFX, Edwards KJ, Bevan MW, Hall N (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    Article  CAS  Google Scholar 

  • Choulet F, Wicker T, Rustenholz C, Paux E, Salse J, Leroy P, Schlub S, Le Paslier M-C, Magdelenat G, Gonthier C, Couloux A, Budak H, Breen J, Pumphrey M, Liu S, Kong X, Jia J, Gut M, Brunel D, Anderson JA, Gill BS, Appels R, Keller B, Feuillet C (2010) Mega base level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell 22:1686–1701

    Article  CAS  Google Scholar 

  • Christou P, Ford TL, Kofron M (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Biotechnology 9:957–962

    Article  Google Scholar 

  • Daei G, Ardekani MR, Rejali F, Teimuri S, Miransari M (2009) Alleviation of salinity stress on wheat yield, yield components, and nutrient uptake using arbuscular mycorrhizal fungi under field conditions. J Plant Physiol 66:617–625

    Article  Google Scholar 

  • El-Daim IAA, Bejai S, Meijer J (2014) Improved heat stress tolerance of wheat seedlings by bacterial seed treatment. Plant Soil 379:337–350

    Article  Google Scholar 

  • Gill N, Findley S, Walling JG, Hans C, Ma J, Doyle J, Stacey G, Jackson SA (2009) Molecular and chromosomal evidence for allopolyploidy in soybean. Plant Physiol 151:1167–1174

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. Biotech 5:355–377

    Google Scholar 

  • Hayakawa T, Zhu Y, Itoh K, Kimura Y, Izawa T, Shimamoto K, Toriyama S (1992) Genetically engineered rice resistant to rice stripe virus, an insect-transmitted virus. Proc Natl Acad Sci USA 89(20):9865–9869

    Article  CAS  Google Scholar 

  • Hood L, Heath JR, Phelps ME, Lin B (2004) Systems biology and new technologies enable predictive and preventative medicine. Science 306:640–643

    Article  CAS  Google Scholar 

  • Hooykaas PJJ, Schilperoort RA (1985) The Ti plasmid of Agrobacterium tumefaciens: a natural genetic engineer. Trends Biochem Sci 10:307–309

    Article  CAS  Google Scholar 

  • Islam F, Yasmeen T, Ali Q, Ali S, Arif MS, Hussain S et al (2014) Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress. Ecotoxicol Environ Saf 104:285–293

    Article  CAS  Google Scholar 

  • Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  Google Scholar 

  • Jha Y, Sablok G, Subbarao N, Sudhakar R, Fazil MHUT, Subramanian RB et al (2014) Bacterial-induced expression of RAB18 protein in Oryza sativa salinity stress and insights into molecular interaction with GTP ligand. J Mol Recognit 27:521–527

    Article  CAS  Google Scholar 

  • Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in dryland. Ann Microbiol 66:35–42

    Article  CAS  Google Scholar 

  • Kaya C, Ashraf M, Sonmez O, Aydemir S, Tuna AL, Cullu MA (2009) The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic 121:1–6

    Article  CAS  Google Scholar 

  • Lugtenberg B (2015) Life of microbes in the rhizosphere. In: Principles of plant-microbe interactions. Springer, Cham, pp 7–15

    Google Scholar 

  • Mayer KFX, Waugh R, Langridge P, Close TJ, Wise RP, Graner A, Matsumoto T, Sato K, Schulman A, Muehlbauer GJ, Stein N, Ariyadasa R, Schulte D, Poursarebani N, Zhou R, Steuernagel B, Mascher M, Scholz U, Shi B, Langridge P, Madishetty K, Svensson JT, Bhat P, Moscou M, Resnik J, Close TJ, Muehlbauer GJ, Hedley P, Liu H, Morris J et al (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Article  CAS  Google Scholar 

  • Naveed M, Mitter B, Reichenauer TG, Wieczorek K, Sessitsch A (2014) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp FD17. Environ Exp Bot 97:30–39

    Article  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC et al (2009) The sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  Google Scholar 

  • Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J, Yoo M-J, Byers R, Chen W, Doron-Faigenboim A, Duke MV, Gong L, Grimwood J, Grover C, Grupp K, Hu G, Lee T-H, Li J, Lin L, Liu T, Marler BS, Page JT, Roberts AW, Romanel E, Sanders WS, Szadkowski E et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492:423–427

    Article  CAS  Google Scholar 

  • Patnail D, Khurana P (2001) Wheat biotechnology: a minireview. Electron J Biotechnol 2(4):7–8

    Google Scholar 

  • Prochnik S, Marri PR, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M, Rodriguez F, Fauquet C, Tohme J, Harkins T, Rokhsar DS, Rounsley S (2012) The cassava genome: current progress, future directions. Trop Plant Biol 5:88–94

    Article  CAS  Google Scholar 

  • Rabie GH (2005) Influence of arbuscular mycorrhizal fungi and kinetin on the response of Mungbean plants to irrigation with seawater. Mycorrhiza 15:225–230

    Article  CAS  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L et al (2010) Genome sequence of the paleopolyploidy soybean. Nature 463:178–183

    Article  CAS  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P, Reily AD, Courtney L, Kruchowski SS, Tomlinson C, Strong C, Delehaunty K, Fronick C, Courtney B, Rock SM, Belter E, Du F, Kim K, Abbott RM, Cotton M, Levy A, Marchetto P, Ochoa K, Jackson SM, Gillam B (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    Article  CAS  Google Scholar 

  • Serrani R, Gaxiola R (1994) Microbial models and salt tolerance in plants. Crit Rev Plant Sci 13:121–138

    Article  Google Scholar 

  • Souza RD, Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419

    Article  Google Scholar 

  • Srivastava S, Verma PC, Chaudhry V, Singh N, Abhilash PC, Kumar KV et al (2013) Influence of inoculation of arsenic-resistant Staphylococcus arlettae on growth and arsenic uptake in Brassica juncea (L.) Czern. Var. R-46. J Hazard Mater 262:1039–1047

    Article  CAS  Google Scholar 

  • Timmusk S, El-Daim IAA, Copolovici L, Tanilas T, Kannaste A, Behers L et al (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9:e96086

    Article  Google Scholar 

  • Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ, Vigouroux M, Trick M, Bancroft I (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348–1359

    Article  CAS  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  CAS  Google Scholar 

  • Vaishnav A, Kumari S, Jain S, Verma A, Tuteja N, Choudhary DK (2016) PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J Basic Microbiol 56:1274–1288

    Article  CAS  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J-H, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park B-S, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  Google Scholar 

  • Wunn J, Klo ti A, Burkhardt PK, Ghosh Biswas GC, Launis K, Iglesias VA, Potrykus I (1996) Transgenic indica rice breeding line IR58 expressing a synthetic cryIA (b) gene from Bacillus thuringiensis provides effective insect pest control. Biotechnology 14(2):171–176

    CAS  PubMed  Google Scholar 

  • Xu Q, Chen L-L, Ruan X, Chen D, Zhu A, Chen C, Bertrand D, Jiao W-B, Hao B-H, Lyon MP, Chen J, Gao S, Xing F, Lan H, Chang J-W, Ge X, Lei Y, Hu Q, Miao Y, Wang L, Xiao S, Biswas MK, Zeng W, Guo F, Cao H, Yang X, Xu X-W, Cheng Y-J, Xu J, Liu J-H et al (2012) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66

    Article  Google Scholar 

  • Zhang H, Kim MS, Sun Y, Dowd SE, Shi H, Pare PW (2008) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21:737–744

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, M., Chugh, P., Kumar, A. (2019). Role of Microbial Genomics in Crop Improvement. In: Tripathi, V., Kumar, P., Tripathi, P., Kishore, A., Kamle, M. (eds) Microbial Genomics in Sustainable Agroecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-32-9860-6_11

Download citation

Publish with us

Policies and ethics