Skip to main content

Role of Microbial Genomics in Plant Health Protection and Soil Health Maintenance

  • Chapter
  • First Online:
Microbial Genomics in Sustainable Agroecosystems
  • 612 Accesses

Abstract

Global increase in agricultural production from a gradually decreasing and degrading land resource has placed immense pressure on the agroecosystems. Soil microbial populations are engaged in a web of interactions affecting plant fitness as well as soil quality. They are engaged in core activities ensuring the productivity as well as stability encompassing agricultural systems and natural ecosystems.

Agricultural sustainability can be improved through optimal use and management of soil fertility along with physical properties, which altogether depends upon soil biological processes and biodiversity. Soil fertility in addition to other properties, e.g., texture, aeration, available moisture, etc., known to support agricultural production has been found to depend on the biomass, metabolites, and activities of microorganisms. Hence, an understanding of microbial diversity perspectives in agricultural scenario is not only important but also useful to land upon measures which may perform as indicators of soil quality and plant productivity.

Soil microbial community structure consists of two main drivers, viz., plant type and soil type. At times the soil, while in others the plant type, happens to be the key factor determining soil microbial diversity which is intricately related to the microbial interactions in soil, interactions between microorganisms and soil in addition to microorganisms and plants. Soil microorganisms mediate the biogeochemical cycling of carbon, nutrients, and trace elements by catalyzing redox reactions which moderate atmospheric composition, water chemistry, and the bioavailability of elements in soil.

Positive plant-microbe interactions in the rhizosphere are the core determinants of plant health and soil fertility. Plants provide specific habitats to the microbial communities, broadly categorized under the rhizosphere, phyllosphere, and endosphere. A symbiotic relationship exists between plants and associated microorganisms as well as high structural and functional diversity within plant microbiomes. Plant-associated microbes interact with their host in essential functional contexts. They can stimulate germination and growth, help plants to disease resistance, promote stress resistance, and influence plant fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul S, Mansoor A, Abdul K, Singh P, Suman K, Alok K, Abdul S, Kumar A, Darokar MP, Shukla A K, Padmapriya T, Yaseen M, Dhawan PO, Zaim M, Nair V, Poovappallivadakethil A K (2007) Novel strain of Bacillus as a bioinoculant. United States. Patent Application No. US 20070092491 A1

    Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2009) Plant growth promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929. https://doi.org/10.1007/s00248-009-9531-y

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye AO, Torbert HA, Kloepper JW (2010) Increased plant uptake of nitrogen from N-15-depleted fertilizer using plant growth-promoting rhizobacteria. Appl. Soil Ecol 46:54–58. https://doi.org/10.1016/j.apsoil.2010.06.010

    Article  Google Scholar 

  • Amann RI, Ludwig W, Schleifer KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amtmann A, Troufflard S, Armengaud P (2008) Theeffect of potassium nutrition on pest and disease resistance in plants. Physiol Plant 133:682–691

    Article  CAS  PubMed  Google Scholar 

  • Armengaud P, Breitling R, Amtmann A (2004) The potassium-dependent transcriptome of Arabidopsis reveals a prominent role of jasmonic acid in nutrient signaling. Plant Physiol 136:2556–2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9(1):26–32

    Article  CAS  PubMed  Google Scholar 

  • Bakker MG, Bradeen JM, Kinkel LL (2013a) Effects of plant host species and plant community richness on streptomycete community structure. FEMS Microbiol Ecol 83:596–606

    Article  CAS  PubMed  Google Scholar 

  • Bakker MG, Otto-Hanson L, Lange AJ, Bradeen JM, Kinkel LL (2013b) Plant monocultures produce more antagonistic soil Streptomyces communities than high-diversity plant communities. Soil Biol Biochem 65:304–312

    Article  CAS  Google Scholar 

  • Barea JM, Toro M, Orozco MO, Campos E, Azcn R (2002) The application of isotopic (32P and 15N) dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutr Cycl Agroecosyst 63:35–42

    Article  CAS  Google Scholar 

  • Basak B, Biswas D (2012) Modification of waste mica for alternative source of potassium: evaluation of potassium release in soil from waste mica treated with potassium solubilizing bacteria (KSB). LAMBERT Academic Publishing, Germany. ISBN-13:978-3659298424

    Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350. https://doi.org/10.1007/s11274-011-0979-9

    Article  CAS  PubMed  Google Scholar 

  • Bonkowski M, Villenave C, Griffiths B (2009) Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321(1):213–233

    Article  CAS  Google Scholar 

  • Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102

    Article  Google Scholar 

  • Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl Environ Microbiol 74(3):738–744

    Article  CAS  PubMed  Google Scholar 

  • Broz AK, Broeckling CD, De-la-Pena C, Lewis MR, Greene E, Callaway RM, Lloyd W, Sumner LW, Vivanco JM (2010) Plant neighbor identity influences plant biochemistry and physiology related to defense. BMC Plant Biol 10:115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Campbell R, Greaves MP (1990) Anatomy and community structure of the rhizosphere. In: Lynch JM (ed) The rhizosphere. Wiley, England, pp 11–34

    Google Scholar 

  • Chithrashree UAC, Nayaka SC, Reddy MS, Srinivas C (2011) Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv oryzae. Biol Control 59:114–122

    Article  CAS  Google Scholar 

  • Cummings SP (2009) The application of plant growth promoting rhizobacteria (PGPR) in low input and organic cultivation of graminaceous crops; potential and problems. Environ Biotechnol 5:43–50

    Google Scholar 

  • De Vleesschauwer D, Hofte M (2009) Rhizobacteria-induced systemic resistance. In: Van Loon LC (ed) Advances in botanical research, vol 51. Elsevier, Burlington, pp 223–281. https://doi.org/10.1016/S0065-2296(09)51006-3

    Chapter  Google Scholar 

  • Devarapalli P, Kumavath RN (2015) Metagenomics—a technological drift in bioremediation. Adv Bioremediation Wastewater Pollut Soil: 73–91. Naofumi Shiomi, IntechOpen. https://doi.org/10.5772/60749

    Google Scholar 

  • Dick RP (1997) Soil enzyme activities as integrative indicators of soil health. In: biological indicators of soil health, 1st edn. CAB International, New York

    Google Scholar 

  • Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694

    Article  CAS  PubMed  Google Scholar 

  • Drakare S (2002) Competition between picoplanktonic cyanobacteria and heterotrophic bacteria along crossed gradients of glucose and phosphate. Microb Ecol 44:327–335

    Article  CAS  PubMed  Google Scholar 

  • Gersani M, Brown JS, O’Brien EE, Maina GM, Abramsky Z (2001) Tragedy of the commons as a result of root competition. J Ecol 89:660–669

    Article  Google Scholar 

  • Gianfreda L, Bollag JM (1996) Influence of natural and anthropogenic factors on enzyme activity in soil. In: Soil biochemistry, 1st edn. Marcel Dekker, New York

    Google Scholar 

  • Gillan DC, Roosa S, Kunath B, Billon G, Wattiez R (2014) The long-term adaptation of bacterial communities in metal-contaminated sediments: a metaproteogenomic study. Environ Microbiol 17(6):1991–2005

    Article  PubMed  CAS  Google Scholar 

  • Gillespie DE, Brady SF, Bettermann AD, Cianciotto NP, Liles MR, Rondon MR, Clardy J, Goodman RM, Handelsman J (2002) Isolation of antibiotics turbomycin a and B from a metagenomic library of soil microbial DNA. Appl Environ Microbiol 68(9):4301–4306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gryndler M (2000) Interactions of arbuscular mycorrhizal fungi with other soil organisms. In: Kapulnik Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic, Dordrecht, pp 239–262

    Chapter  Google Scholar 

  • Guinazu LB, Andres JA, Del Papa MF, Pistorio M, Rosas SB (2009) Response of alfalfa (Medicago sativa L.) to single and mixed inoculation with phosphate-solubilizing bacteria and Sinorhizobium meliloti. Biol Fertil Soils 46:185–190. https://doi.org/10.1007/s00374-009-0408-5

    Article  Google Scholar 

  • Gupta KMS (2012) Population growth, Malthusian concern and sustainable development -some key policies and demographic issues in India. GJHSS 12(3):20–31

    Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann A, Schmid M, Van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321:235–257

    Article  CAS  Google Scholar 

  • Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL, Stringfellow WT, Bill M, Conrad ME, Tom LM, Chavarria KL, Alusi TR, Lamendella R, Joyner DC, Spier C, Baelum J, Auer M, Zemla ML, Chakraborty R, Sonnenthal EL, D’haeseleer P, Holman HYN, Osman S, Lu ZM, Van Nostrand JD, Deng Y, Zhou JZ, Mason OU (2010) Deep-sea oil plume enriches indige-nous oil-degrading bacteria. Science 330:204–208

    Article  CAS  PubMed  Google Scholar 

  • Hazen TC, Rocha AM, Techtmann SM (2013) Advances in monitoring environmental microbes. Curr Opin Biotechnol 24:526–533. https://doi.org/10.1016/J.Copbio.2012.10.020

    Article  CAS  PubMed  Google Scholar 

  • Hentschel U, Usher KM, Taylor MW (2006) Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55:167–177

    Article  CAS  PubMed  Google Scholar 

  • Kirankumar R, Jagadeesh KS, Krishnaraj PU, Patil MS (2008) Enhanced growth promotion of tomato and nutrient uptake by plant growth promoting rhizobacterial isolates in presence of tobacco mosaic virus pathogen. Karnataka J Agric Sci 21:309–311

    Google Scholar 

  • Kistner C, Winzer T, Pitzschke A, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Webb KJ, Szczyglowski K, Parniske M (2005) Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell 17:2217–2229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knietsch A, Waschkowitz T, Bowien S, Henne A, Daniel R (2003) Construction and screening of metagenomic libraries derived from enrichment cultures: generation of a gene bank for genes conferring alcohol oxidoreductase activity on Escherichia coli. Appl Environ Microbiol 69:1408–1416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koshiba T, Kobayashi M, Matoh T (2009) Boron nutrition of tobacco BY-2 cells. V. Oxidative damage is the major cause of cell death induced by boron deprivation. Plant Cell Physiol 50:26–36

    Article  CAS  PubMed  Google Scholar 

  • Leigh GJ (2002) Nitrogen fixation at the millennium. Elsevier Science, London

    Google Scholar 

  • Li J, Dai X, Liu T, Zhao PX (2012) LegumeIP: an integrative database for comparative genomics and transcriptomics of model legumes. Nucleic Acids Res 40:D1221–D1229

    Article  CAS  PubMed  Google Scholar 

  • Little AEF, Robinson CJ, Peterson SB, Raffa KF, Handelsman J (2008) Rules of engagement: interspecies interactions that regulate microbial communities. Annu Rev Microbiol 62:375–401

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Anderson NA, Kinkel LL (1996) Selection and characterization of strains of Streptomyces suppressive to the potato scab pathogen. Can J Microbiol 42:487–502

    Article  Google Scholar 

  • Lopez-Arredondo DL, Leyva-Gonzalez MA, Gonzalez-Morales SI, Lopez-Bucio J, Herrera-Estrella L (2014) Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol 65:95–123

    Article  CAS  PubMed  Google Scholar 

  • Lorenz P, Liebeton K, Niehaus F, Eck J (2002) Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space. Curr Opin Biotechnol 13(6):572–577

    Article  CAS  PubMed  Google Scholar 

  • Lucas JA (2011) Advances in plant disease and pest management. J Agric Sci 149:91–114. https://doi.org/10.1017/S0021859610000997

    Article  Google Scholar 

  • Majerník A, Gottschalk G, Daniel R (2001) Screening of environmental DNA libraries for the presence of genes conferring Na+ (Li+)/H+ antiporter activity on Escherichia coli: characterization of the recovered genes and the corresponding gene products. J Bacteriol 183:6645–6653

    Article  PubMed  PubMed Central  Google Scholar 

  • Mantelin S, Touraine B (2004) Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J Exp Bot 55:27–34

    Article  CAS  PubMed  Google Scholar 

  • Maphosa F, Van Passel MWJ, De Vos WM, Smidt H (2012) Metagenome analysis reveals yet unexplored reductive dechlorinating potential of Dehalobacter sp. E1 growing in coculture with Sedimentibacter sp. Environ Microbiol Rep 4(6):604–616. https://doi.org/10.1111/j.1758-2229.2012.00376.x

    Article  CAS  PubMed  Google Scholar 

  • Meena VS, Maurya BR, Bahadur I (2014) Potassium solubilization by bacterial strain in waste mica. Bangladesh J Bot 43(2):235–237

    Article  Google Scholar 

  • Miao V, Davies J (2009) Metagenomics and antibiotic discovery from uncultivated bacteria. In: Epstein SS (ed) Uncultivated microorganisms. Springer-Verlag, Berlin, pp 217–236

    Google Scholar 

  • Mohammadi K (2012) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. Resourc Environ 2(1):80–85

    Google Scholar 

  • Muller DB, Vogel C, Bai Y, Vorholt JA (2016) The plant microbiota: systems-level insights and perspectives. In: Bonini NM (ed) Annual review of genetics, vol 50. Annual Reviews, Palo Alto, pp 211–234

    Google Scholar 

  • Murphy GP, Dudley SA (2009) Kin recognition: competition and cooperation in Impatiens (Balsaminaceae). Am J Bot 96:1990–1996

    Article  PubMed  Google Scholar 

  • Nazir A (2016) Review on metagenomics and its applications. Imp J Interdiscip Res 2(3):277–286

    Google Scholar 

  • Nielsen MN, Winding A (2002) Microorganisms as indicators of soil health. NERI Technical Report No. 388. National Environmental Research Institute, Ministry of the Environment, Denmark URL: http://www.dmu.dk

  • Nihorimbere V, Ongena M, Smargiassi M, Thonart P (2011) Beneficialeffect of the rhizosphere microbial community for plant growthand health. Biotechnol Agron Soc 15:327–337

    Google Scholar 

  • Nobandegani MBJ, Saud HM, Yun WM (2015) Phylogenetic relationship of phosphate solubilizing bacteria according to 16S rRNA genes. Biomed Res Int :201379

    Google Scholar 

  • Pate JS, Verboom WH, Galloway PD (2001) Co-occurrence of Proteaceae, laterite and related oligotrophic soils: coincidental associations or causative inter-relationships. Aust J Bot 49:529–560

    Article  CAS  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  • Piel J (2011) Approaches to capturing and designing biologically active small molecules produced by uncultured microbes. Annu Rev Microbiol 65:431–453

    Article  CAS  PubMed  Google Scholar 

  • Preston CM, Wu KY, Molinski TF, DeLong EF (1996) A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc Natl Acad Sci USA 93:6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy PP (2014) Potential role of PGPR in agriculture. In: Reddy PP (ed) Plant growth promoting Rhizobacteria for horticultural crop protection. Springer, India, pp 17–34. https://doi.org/10.1007/978-81-322-1973-6_2

    Chapter  Google Scholar 

  • Robe P, Nalin R, Capellano C, Vogel TM, Simonet P (2003) Extraction of DNA from soil. Eur J Soil Biol 39(4):183–190

    Article  CAS  Google Scholar 

  • Rogers SL, McClure N (2003) In: Head IM, Singleton I, Milner MG (eds) In bioremediation:a criticial review. Horizon Scientific Press, Wymondham, pp 27–29

    Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M, Sasamoto S, Watanabe S, Ono A, Kawashima K, Fujishiro T, Katoh M, Kohara M, Kishida Y, Minami C, Nakayama S, Nakazaki N, Shimizu Y, Shinpo S, Takahashi C, Wada T, Yamada M, Ohmido N, Hayashi M, Fukui F, Baba T, Nakamichi T, Mori H, Tabata S (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15:227–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlatter DC, Bakker MG, Bradeen JM, Kinkel LL (2015) Plant species, plant community richness, and microbial interactions structure bacterial communities in soil. Ecology 96(1):134–142

    Article  PubMed  Google Scholar 

  • Selvakumar G, Panneerselvam P, Ganeshamurthy AN, Maheshwari DK (2012) Bacterial mediated alleviation of abiotic stress in crops. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, New York, pp 205–224

    Chapter  Google Scholar 

  • Servin-Garciduenas LE, Rogel MA, Ormeno-Orrillo E, Delgado-Salinas A, Martinez-Romero J, Sánchez F, Martínez-Romero E (2012) Genome sequence of Rhizobium sp. strain CCGE510, a symbiont isolated from nodules of the endangered wild bean Phaseolus albescens. J Bacteriol 194:6310–6311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer dependent efficiency of pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79:147–155. https://doi.org/10.1007/s00253-008-1419-0

    Article  CAS  PubMed  Google Scholar 

  • Shokralla S, Spall JL, Gibson JF, Hajibabaei M (2012) Next-generation sequencing technologies for environmental DNA research. Mol Ecol 21:1794–1805

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Satyanarayana T (2011) Microbial phytases in phosphorus acquisition and plant growth promotion. Physiol Mol Biol Plants 17:93–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh J, Behal A, Singla N, Joshi A, Birbian N, Singh S, Bali V, Batra N (2009) Metagenomics: concept, methodology, ecological inference andrecent advances. Biotechnol J 4:480–494

    Article  CAS  PubMed  Google Scholar 

  • Tetard-Jones C, Kertesz MA, Gallois P, Preziosi RF (2007) Genotype-by-genotype interactions modified by a third species in a plant-insect system. Am Nat 170:492–499

    Article  PubMed  Google Scholar 

  • Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Energy beneficial biofuels—the food, energy, and environment trilemma. Science 325:270–271

    Article  CAS  PubMed  Google Scholar 

  • Van der Heijden MGA, Bardgett RD, Van Straalen NM (2008) Theunseen majority: soil microbes as drivers of plant diversity andproductivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition: plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venturi V (2006) Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev 30:274–291

    Article  CAS  PubMed  Google Scholar 

  • Vurukonda SSKP, Giovanardi D, Stefani E (2018) Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int J Mol Sci 19(4):952 https://doi.org/10.3390/ijms19040952

    Article  PubMed Central  CAS  Google Scholar 

  • Wang M, Shen Q, Xu G, Guo S (2014) New insight into the strategy for nitrogen metabolism in plant cells. Int Rev Cell Mol Biol 310:1–37. https://doi.org/10.1016/B978-0-12-800180-6.00001-3

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Kim HK, Van Wezel GP, Choi YH (2015) Metabolomics in the natural products field–a gateway to novel antibiotics. Drug Discov Today Technol 13:11–17

    Article  PubMed  Google Scholar 

  • Xiao K, Kinkel LL, Samac DA (2002) Biological control of Phytophthora root rots on alfalfa and soybean with Streptomyces. Biol Control 23:285–295

    Article  CAS  Google Scholar 

  • Xie X, Zhang H, Pare PW (2009) Sustained growth promotion in arabidopsis with long-term exposure to the beneficial soil bacterium Bacillus subtilis(GB03). Plant Signal Behav 4:948–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

  • Yuan WM, Crawford DL (1995) Characterization of Streptomyces lydicus WYE108 as potential biocontrol agent against fungal root and seed rots. Appl Environ Microbiol 61:3119–3128

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284

    Article  CAS  PubMed  Google Scholar 

  • Zengler K, Toledo G, Rappe M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Cultivating the uncultured. Proc Natl Acad Sci 99:15681–15686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Murzello C, Sun Y, Kim X, MiS R, Jeter RM, Zak JC, Scot Dowd E, Pare PW (2010) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant Microbiol Interact 23:1097–1104

    Article  CAS  Google Scholar 

  • Zhou AF, He ZL, Qin YJ, Lu ZM, Deng Y, Tu QC, Hemme CL, Van Nostrand JD, Wu LY, Hazen TC, Arkin AP, Zhou JZ (2013) StressChip as a high-throughput tool for assessing microbial community responses to environmental stresses. Environ Sci Technol 47:9841–9849

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

UGC-RGNF (Rajiv Gandhi National Fellowship – F1–17.1/2014–15/RGNF-2014-15-SC-UTT-70916), awarded to one of the authors (Arpna Ratnakar), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ratnakar, A., Shikha (2019). Role of Microbial Genomics in Plant Health Protection and Soil Health Maintenance. In: Tripathi, V., Kumar, P., Tripathi, P., Kishore, A., Kamle, M. (eds) Microbial Genomics in Sustainable Agroecosystems. Springer, Singapore. https://doi.org/10.1007/978-981-32-9860-6_10

Download citation

Publish with us

Policies and ethics