Skip to main content

Counting Closed Orbits in Discrete Dynamical Systems

  • Conference paper
  • First Online:
Book cover Dynamical Systems, Bifurcation Analysis and Applications (DySBA 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 295))

Included in the following conference series:

Abstract

For a discrete dynamical system, the following functions: (i) prime orbit counting function, (ii) Mertens’ orbit counting function, and (iii) Meissel’s orbit sum, describe the different aspects of the growth in the number of closed orbits of the system. These are analogous to counting functions for primes in number theory. The asymptotic behaviour of those functions can be determined by two approaches: by (i) Artin-Mazur zeta function, or (ii) number of periodic points per period. In the first approach, the analyticity and non-vanishing property of the zeta function lead to the asymptotic equivalence of the prime orbit and Mertens’ orbit counting functions. In the second approach, the estimate on the number of periodic points per period is used to obtain the order of magnitude of all those counting functions. This chapter will introduce the counting functions and demonstrate both approaches in some categories of shift spaces, such as shifts of finite type, countable state Markov shifts, Dyck shifts and Motzkin shifts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adler, R.L., Konheim, A.G., McAndrew, M.H.: Topological entropy. Trans. Am. Math. Soc. 114(2), 309 (1965)

    Article  MathSciNet  Google Scholar 

  2. Akhatkulov, S., Noorani, M.S.M., Akhadkulov, H.: An analogue of the prime number, Mertens and Meissels theorems for closed orbits of the Dyck shift. In: AIP Conference Proceedings, vol. 1830 (2017)

    Google Scholar 

  3. Alsharari, F., Noorani, M.S.M., Akhadkulov, H.: Analogues of the Prime Number Theorem and Mertens Theorem for closed orbits of the Motzkin shift. Bull. Malays. Math. Sci. Soc. 40(1), 307319 (2017)

    Article  MathSciNet  Google Scholar 

  4. Alsharari, F., Noorani, M.S.M., Akhadkulov, H.: Estimates on the number of orbits of the Dyck shift. J. Inequalities Appl. 2015(1), 112 (2015)

    Article  MathSciNet  Google Scholar 

  5. Artin, M., Mazur, B.: On periodic points. Ann. Math. 81(1), 8299 (1965)

    Article  Google Scholar 

  6. Devaney, R.: An Introduction of Chaotic Dynamical Systems, 2nd edn. Addison-Wesley, California (1989)

    MATH  Google Scholar 

  7. Dzul-Kifli, S.C., Good, C.: On devaney chaos and dense periodic points: period 3 and higher implies chaos. Am. Math. Mon. 122(8), 773780 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Everest, G., Miles, R., Stevens, S., Ward, T.: Orbit-counting in non-hyperbolic dynamical systems. J. fur die Reine und Angew. Math. 608, 155182 (2007)

    Google Scholar 

  9. Everest, G., Miles, R., Stevens, S., Ward, T.: Dirichlet series for finite combinatorial rank dynamics. Trans. Am. Math. Soc. 362, 199227 (2009)

    Article  MathSciNet  Google Scholar 

  10. Hadamard, J.: Sur la distribution des zros de la fonction \(\zeta (s)\) et ses consquences arithmtiques. Bulletin de la Socit Mathmatique de France 24, 199–220 (1896)

    Article  Google Scholar 

  11. Hamachi, T., Inoue, K.: Embedding of shifts of finite type into the Dyck shift. Monatshefte für Mathematik 145(2), 107129 (2005)

    Article  MathSciNet  Google Scholar 

  12. Hardy, G.H., Wright, E.M.: An Introduction to Theory of Numbers, 6th edn. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  13. Inoue, K.: The zeta function, periodic points and entropies of the Motzkin shift. ArXiv Mathematics e-prints. http://arxiv.org/abs/math/0602100 (2010). Last accessed 6 Sep 2018

  14. Ismail, M.S., Dzul-Kifli, S.C.: The dynamical properties of even shift space. In: AIP Conference Proceedings vol. 1870(1) (2017)

    Google Scholar 

  15. Jaidee, S., Stevens, S., Ward, T.: Mertens theorem for toral automorphisms. Proc. Am. Math. Soc. 139(5), 16 (2011)

    Article  MathSciNet  Google Scholar 

  16. Keller, G.: Circular codes, loop counting, and zeta-functions. J. Comb. Theory Ser. A 56(1), 7583 (1991)

    Article  MathSciNet  Google Scholar 

  17. Kitchens, B.P.: Symbolic Dynamics: One-sided. Two-sided and Countable State Markov Shifts. Springer, Berlin (1998)

    Book  Google Scholar 

  18. Krieger, W.: On the uniqueness of the equilibrium state. Math. Syst. Theory 8, 97 (1974)

    Article  MathSciNet  Google Scholar 

  19. Lind, D., Marcus, B.: An Introduction to Symbolic Dynamics and Coding. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  20. Lindqvist, P., Peetre, J.: On a number-theoretic sum considered by Meissel–a historical observation. Nieuw Arch. Wisk. 15(3), 175–179 (1997)

    MathSciNet  MATH  Google Scholar 

  21. Mertens, F.: Ein Beitrag zur analytischen Zahlentheorie. J. reine angew. Math. 78, 46–62 (1874)

    MathSciNet  MATH  Google Scholar 

  22. Noorani, M.S.M.: Mertens theorem and closed orbits of ergodic toral automorphisms. Bull. Malaysian Math. Soc. 22, 127133 (1999)

    MathSciNet  MATH  Google Scholar 

  23. Pakapongpun, A., Ward, T.: Functorial orbit counting. J. Integer Seq. 12(2), 120 (2009)

    Google Scholar 

  24. Parry, W., Pollicott, M.: Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics. Société Mathématique de France, France (1990)

    MATH  Google Scholar 

  25. Sarig, O.: Zeta functions for the renewal shift. Kyoto Univ. Math. Anal. Lab. 1404, 98–104 (2004)

    Google Scholar 

  26. Sharkovskii, A.N.: Coexistence of cycles of a continuous map of the line onto itself. Ukranian Math. Z. 16, 61–71 (1964)

    Google Scholar 

  27. Sharp, R.: An analogue of Mertens theorem for closed orbits of Axiom A flows. Boletim da Sociedade Brasileira de Matemática 21(2), 205229 (1991)

    Article  MathSciNet  Google Scholar 

  28. Sharp, R.: Prime orbit theorems with multi-dimensional constraints for Axiom A flows. Monatshefte fr Mathematik 114(34), 261304 (1992)

    MathSciNet  Google Scholar 

  29. Vallée Poussin, C.J.: Recherches analytiques de la thorie des nombres premiers. Annales de la Societe Scientifique de Bruxelles 20, 183256, 281352, 363397; 21, 351–368 (1896)

    Google Scholar 

  30. Waddington, S.: The prime orbit theorem for quasihyperbolic toral automorphisms. Monatshefte für Mathematik 112(3), 235248 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the grants FRGS/1/2017/STG06/UKM/01/1 and FRGS/1/2017/STG06/UKM/02/2 by Ministry of Higher Education, Malaysia, and DIP-2017-011 by Universiti Kebangsaan Malaysia for financial support in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azmeer Nordin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nordin, A., Noorani, M.S.M., Dzul-Kifli, S.C. (2019). Counting Closed Orbits in Discrete Dynamical Systems. In: Mohd, M., Abdul Rahman, N., Abd Hamid, N., Mohd Yatim, Y. (eds) Dynamical Systems, Bifurcation Analysis and Applications. DySBA 2018. Springer Proceedings in Mathematics & Statistics, vol 295. Springer, Singapore. https://doi.org/10.1007/978-981-32-9832-3_9

Download citation

Publish with us

Policies and ethics