Skip to main content

Dynamics and Bifurcations in a Dynamical System of a Predator-Prey Type with Nonmonotonic Response Function and Time-Periodic Variation

  • Conference paper
  • First Online:
Dynamical Systems, Bifurcation Analysis and Applications (DySBA 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 295))

Included in the following conference series:

Abstract

We study a two dimensional system of ordinary differential equations of a predator-prey type. We use the Holling type IV functional response which models the group defence mechanism. For this system we discuss the number of equilibria in the system and prove it using a geometrical approach. Using the classical Lagrange Multiplier method, we compute fold and cusp bifurcations for equilibrium in the system. As we turn on to numerics, we compute the other bifurcations for equilibrium, namely Hopf bifurcations, and homoclinic bifurcations. As for bifurcation of periodic solution we compute the Fold of Limit Cycle bifurcation. We also include time-periodic variation in the system which translates most of the bifurcation sets for equilibria into bifurcation sets for periodic solutions. Furthermore, we found the swallowtail bifurcation for periodic solution in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balagaddé, F.K., Song, H., Ozaki, J., Collins, C.H., Barnet, M., Arnold, F.H., Quake, S.R., You, L.: A synthetic escherichia coli predator-prey ecosystem. Mol. Syst. Biol. 4, 187 (2008)

    Article  Google Scholar 

  2. Berryman, A.A.: The orgins and evolution of predator-prey theory. Ecology 73, 1530–1535 (1992)

    Article  Google Scholar 

  3. Briggs, G.E., Haldane, J.B.S.: A note on the kinetics of enzyme action. Biochem. J. 19, 338 (1925)

    Article  Google Scholar 

  4. Broer, H., Naudot, V., Roussarie, R., Saleh, K.: Bifurcations of a predator-prey model with non-monotonic response function. Comptes Rendus Mathématique 341, 601–604 (2005)

    Article  MathSciNet  Google Scholar 

  5. Broer, H., Naudot, V., Roussarie, R., Saleh, K.: A predator-prey model with non-monotonic response function. Regul. Chaotic Dyn. 11, 155–165 (2006)

    Article  MathSciNet  Google Scholar 

  6. Broer, H., Saleh, K., Naudot, V., Roussarie, R.: Dynamics of a predator-prey model with non-monotonic response function. Discret. Contin. Dyn. Syst. A 18, 221–251 (2007)

    Article  MathSciNet  Google Scholar 

  7. Cai, Z., Wang, Q., Liu, G.: Modeling the natural capital investment on tourism industry using a predator-prey model. In: Advances in Computer Science and its Applications, Springer, pp. 751–756 (2014)

    Google Scholar 

  8. Casagrandi, R., Rinaldi, S.: A theoretical approach to tourism sustainability. Conserv. Ecol. 6 (2002)

    Google Scholar 

  9. Doedel, E.J., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Sandstede, B., Wang, X., et al.: Continuation and Bifurcation Software for Ordinary Differential Equations (with Homcont), AUTO97. Concordia University, Canada (1997)

    Google Scholar 

  10. Feinstein, C.H., Dobb, M.: Socialism, capitalism & economic growth, CUP Archive (1967)

    Google Scholar 

  11. Fenton, A., Perkins, S.E.: Applying predator-prey theory to modelling immune-mediated, within-host interspecific parasite interactions. Parasitology 137, 1027–1038 (2010)

    Article  Google Scholar 

  12. Grimme, C., Lepping, J.: Integrating niching into the predator-prey model using epsilon-constraints. In: Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, ACM, pp. 109–110 (2011)

    Google Scholar 

  13. Harjanto, E., Tuwankotta, J.: Bifurcation of periodic solution in a predator-prey type of systems with non-monotonic response function and periodic perturbation. Int. J. Non Linear Mech. 85, 188–196 (2016)

    Article  Google Scholar 

  14. Hirsch, M.W.: Systems of differential equations which are competitive or cooperative: I. limit sets. SIAM J. Math. Anal. 13, 167–179 (1982)

    Article  MathSciNet  Google Scholar 

  15. Hirsch, M.W.: Systems of differential equations that are competitive or cooperative II: convergence almost everywhere. SIAM J. Math. Anal. 16, 423–439 (1985)

    Article  MathSciNet  Google Scholar 

  16. Hirsch, M.W.: Systems of differential equations which are competitive or cooperative: III. competing species. Nonlinearity 1, 51 (1988)

    Article  MathSciNet  Google Scholar 

  17. Holling, C.S.: The components of predation as revealed by a study of small-mammal predation of the european pine sawfly. Can. Entomol. 91, 293–320 (1959)

    Article  Google Scholar 

  18. Holling, C.S.: Some characteristics of simple types of predation and parasitism. Can. Entomol. 91, 385–398 (1959)

    Article  Google Scholar 

  19. Huang, Y., Diekmann, O.: Predator migration in response to prey density: what are the consequences? J. Math. Biol. 43, 561–581 (2001)

    Article  MathSciNet  Google Scholar 

  20. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics. II—the problem of endemicity. Proc. R. Soc. Lond. A, 138, 55–83 (1932)

    Google Scholar 

  21. Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics. III—further studies of the problem of endemicity. Proc. R. Soc. Lond. A 141, 94–122 (1933)

    Google Scholar 

  22. Kermark, M., Mckendrick, A.: Contributions to the mathematical theory of epidemics. part I. Proc. R. Soc. A 115, 700–721 (1927)

    Google Scholar 

  23. Koren, I., Feingold, G.: Aerosol-cloud-precipitation system as a predator-prey problem. In: Proceedings of the National Academy of Sciences (2011)

    Google Scholar 

  24. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, vol. 112. Springer Science & Business Media (2013)

    Google Scholar 

  25. Marwan, M., Tuwankotta, J.M., Harjanto, E.: Application of lagrange multiplier method for computing fold bifurcation point in a two-prey one predator dynamical system. J. Indones. Math. Soc. 24, 7–19 (2018)

    MathSciNet  Google Scholar 

  26. Nagano, S., Maeda, Y.: Phase transitions in predator-prey systems. Phys. Rev. E 85, 011915 (2012)

    Article  Google Scholar 

  27. Owen, L., Tuwankotta, J.: Bogdanov-takens bifurcations in three coupled oscillators system with energy preserving nonlinearity. J. Indones. Math. Soc. 18, 73–83 (2012)

    Article  Google Scholar 

  28. Owen, L., Tuwankotta, J.: Computation of cusp bifurcation point in a two-prey one predator model using lagrange multiplier method, in Proceedings of the International Conference on Applied Physics and Mathematics 2019. Chulalongkorn University, Bangkok, Thailand (2019)

    Google Scholar 

  29. Rinaldi, S., Muratori, S., Kuznetsov, Y.: Multiple attractors, catastrophes and chaos in seasonally perturbed predator-prey communities. Bull. Math. Biol. 55, 15–35 (1993)

    Article  Google Scholar 

  30. Semenov, N.F.: II. Chemical Kinetics and Chain Reactions (1935)

    Google Scholar 

  31. Sharma, A., Singh, N.: Object detection in image using predator-prey optimization. Signal Image Proc. 2 (2011)

    Google Scholar 

  32. Tuwankotta, J., Harjanto, E.: Strange attractors in a predator-prey type of systems with nonmonotonic response function and periodic perturbation. J. Comput. Dyn. (2019)

    Google Scholar 

  33. Verhulst, F.: The hunt for canards in population dynamics: a predator-prey system. Int. J. Non Linear Mech. 67, 371–377 (2014)

    Article  Google Scholar 

  34. Zhang, T., Xing, Y., Zang, H., Han, M.: Spatio-temporal dynamics of a reaction-diffusion system for a predator-prey model with hyperbolic mortality. Nonlinear Dyn. 78, 265–277 (2014)

    Article  MathSciNet  Google Scholar 

  35. Zhang, T., Zang, H.: Delay-induced turing instability in reaction-diffusion equations. Phys. Rev. E 90, 052908 (2014)

    Article  Google Scholar 

  36. Zhu, H., Campbell, S.A., Wolkowicz, G.S.: Bifurcation analysis of a predator-prey system with nonmonotonic functional response. SIAM J. Appl. Math. 63, 636–682 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

J.M. Tuwankotta research is supported by Riset KK B, Institut Teknologi Bandung (2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johan M. Tuwankotta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tuwankotta, J.M., Harjanto, E., Owen, L. (2019). Dynamics and Bifurcations in a Dynamical System of a Predator-Prey Type with Nonmonotonic Response Function and Time-Periodic Variation. In: Mohd, M., Abdul Rahman, N., Abd Hamid, N., Mohd Yatim, Y. (eds) Dynamical Systems, Bifurcation Analysis and Applications. DySBA 2018. Springer Proceedings in Mathematics & Statistics, vol 295. Springer, Singapore. https://doi.org/10.1007/978-981-32-9832-3_3

Download citation

Publish with us

Policies and ethics