Skip to main content

Microbial Diversity and Their Role in Plant and Soil Health Under Stress Conditions

  • Chapter
  • First Online:
In vitro Plant Breeding towards Novel Agronomic Traits

Abstract

Microbial diversity is an important component of ecosystem. Intellectual strategy and careful selection of microbes are the key steps in developing innovative technologies for effective exploitation of microorganisms to solve sustainably environmental and economic issues and improvement in the quality of life without compromising yields. Appreciativeness of these factors might be one way to change the public perception towards microorganisms by showing that the sustainable use of microbial diversity has positive ecological and economic value. This review encapsulates the several microbial applications such as biofertilizers, biopesticides, and bioherbicides to solve the major agricultural issues in the form of crop productivity and soil and plant health. Furthermore, the review emphasizes on pivotal microbial activities that lead to neutralize the harmful impacts of toxic and hazardous chemical substances in eco-friendly manner. Microbial technology therefore not only could be an efficient and vital tool for treating waste water and industrial wastes but can also play an imperative and significant role in cycling of dead organic matter and thereby can form useful products in the form of compost which has potential significance with regard to sustainable environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou Hussein SD, Sawan OM (2010) The utilization of agricultural waste as one of the environmental issues in Egypt (a case study). J Appl Sci Res 6:1116–1124

    CAS  Google Scholar 

  • Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257

    Article  CAS  PubMed  Google Scholar 

  • Ahmad IM, Khan AS, Singh M (2011) Microbial applications in agriculture and the environment: a broad perspective. Microbes Microbial Technol:1–27

    Google Scholar 

  • Akande MO, Oluwatoyinbo FI, Adediran JA, Buari KW, Yusuf IO (2003) Soil amendments affect the release of P from rock phosphate and the development and yield of okra. J Veg Crop Prod 19:3–9

    Google Scholar 

  • Akande MO, Adediran JA, Oluwatoyinbo FI (2005) Effects of rock phosphate amended with poultry manure on soil available P and yield of maize and cowpea. Afr J Biotechnol 4:444–448

    Google Scholar 

  • Akyilmaz E, Dinckaya E (2005) An amperometric microbial biosensor development based Candida tropicalis yeast cells for sensitive determination of ethanol. Biosens Bioelectron 20:1263–1269

    Article  CAS  PubMed  Google Scholar 

  • Altomare C, Norvell WA, Borjkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant growth promoting and biocontrol fungus Trichoderma harzianum. Appl Environ Microbiol 65:2926–2933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Antofie M (2011) Current political commitments challenges for ex situ conservation of plant genetic resources for food and agriculture. Analele Universităţii din Oradea Fascicula Biologie 18:157–163

    Google Scholar 

  • Badr El-Din SMS, Attia M, Abo-Sedera SA (2000) Field assessment of composts produced by highly effective cellulolytic microorganisms. Biol Fertil Soils 32:35–40

    Article  Google Scholar 

  • Barrocas PRG, Landing WM, Hudson RJM (2010) Assessment of mercury (II) bioavailability using a bioluminescent bacterial biosensor: practical and theoretical challenges. J Environ Sci 22:1137–1143

    Article  CAS  Google Scholar 

  • Bashan Y, Kamnev AA, de Bashan LE (2013) A proposal for isolating and testing phosphate-solubilizing bacteria that enhance plant growth. Biol Fertil Soils 49:1–2

    Article  Google Scholar 

  • Bernal MP, Alburquerque JA, Moral R (2009) Composting of animal manures and chemical criteria for compost maturity assessment. Rev Bioresour Technol 100:5444–5453

    Article  CAS  Google Scholar 

  • Bhatnagar S, Kumari R (2013) Bioremediation: a sustainable tool for environmental management- a review. Annu Rev Res Biol 3:974–993

    CAS  Google Scholar 

  • Bhattacharya S, Angayarkanni J, Das A, Palaniswamy M (2012) Mycoremediation of Benzo[a]pyrene by Pleurotus ostreatus isolated from Wayanad district in Kerala. India Int J Pharm Bio Sci 2:84–93

    CAS  Google Scholar 

  • Bhatti AA, Haq S, Bhat RA (2017) Actinomycetes benefaction role in soil and plant health. Microb Pathog 111:458–467

    Article  CAS  PubMed  Google Scholar 

  • BiróAtalaj B (2005) mint a mikroszervezetekélettere. In: Magyarországazezredfordulón. Stratégiaitanulmányok a Magyar Tudományos Akadémián. II. AzagráriumhelyzeteésjövÅ‘je. A talajokjelentÅ‘sége a 21.században. Budapest, Társadalomkutató Központ, pp 141–169

    Google Scholar 

  • Borokini TI, Okere AU, Giwa AO, Daramola BO, Odofin WT (2010) Biodiversity and conservation of plant genetic resources in Field Gene-bank of the National Centre for Genetic Resources and Biotechnology, Ibadan, Nigeria. Int J Biodiver Conserv 2:37–50

    Google Scholar 

  • Brutting C, Hensen I, Wesche K (2013) Ex situ cultivation affects genetic structure and diversity in arable plants. Plant Biol 15:505–513

    Article  CAS  PubMed  Google Scholar 

  • Capoen W, Oldroyd G, Goormachtig S, Holsters M (2010) Sesbania rostrata: a case study of natural variation in legume nodulation. New Phytol 186:340–345

    Article  PubMed  Google Scholar 

  • Carrapiço F, Teixeira G, Diniz MA (2000) Azolla as biofertiliser in Africa. A challenge for the future. Revista de Ciências Agrárias 23:120–138

    Google Scholar 

  • Carrillo AE, Li CY, Bashan Y (2002) Increased acidification in the rhizosphere of cactus seedlings induced by Azospirillum brasilense. Naturwissenschaften 89:428–432

    Article  CAS  PubMed  Google Scholar 

  • Carvalho MF, Ferreira JR, Pacheco CC, De Marco P, Castro PML (2005) Isolation and properties of a pure bacterial strain capable of fluorobenzene degradation as sole carbon and energy source. Environ Microbiol 7:294–298

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury R (2004) Effects of chemical fertilizers on the surrounding environment and the alternative to the chemical fertilizers. IES-ENVIS Newsl 7:4–5

    Google Scholar 

  • Collavino MM, Sansberro PA, Mroginski LA, Aguilar OM (2010) Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris growth. Biol Fertil Soils 46:727–738

    Article  Google Scholar 

  • Conrad R (2002) Control of microbial methane production in wetland rice fields. Nutr Cycl Agroecosyst 64:59–69

    Article  CAS  Google Scholar 

  • Daini OA (2000) Fundamentals of genetic engineering. Samrol Ventures and Printing Co., Ijebu-Igbo

    Google Scholar 

  • Daiss N, Lobo MG, Socorro AR, Bruckner U, Heller J, Gonzales M (2008) The effect of three organic pre-harvest treatments on Swiss Chard (Beta vulgaris. L var. cycla) quality. Eur Food Res Technol 226:345–353

    Article  CAS  Google Scholar 

  • Dubey RC (2006) A textbook of biotechnology, 4th edn. S. Chand & Co. Ltd, New Delhi, p 732. isbn:81-219-2608-4

    Google Scholar 

  • Dutta S, Pal R, Chakeraborty A, Chakrabarti K (2003) Influence of integrated plant nutrient phosphorus and sugarcane and sugar yields. Field Crop Res 77:43–49

    Google Scholar 

  • Elekwachi CO, Andresen J, Hodgman TC (2014) Global use of bioremediation technologies for decontamination of ecosystems. J Bioremed Biodegr 5:1–9

    Article  CAS  Google Scholar 

  • El-Haddad ME, Mustafa I, Selim SM, El-Tayeb TS, Mahgoob AE, Abdel-Aziz NH (2011) The nematicidal effect of some bacterial biofertilizers on Meloidogyne incognita in sandy soil. Brazil J Microbiol 42:105–113

    Article  Google Scholar 

  • El-Meniawy MA (2003) Microbiological studies on the production of non- traditional animal feed from agricultural wastes. MSc, thesis, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt

    Google Scholar 

  • Eneh OC, Owo NJ (2008) Sustainable development: a review. Int J Dev Stud 3:100–103

    Google Scholar 

  • Fauziah SH, Agamuthu P (2009) Sustainable household organic waste management via vermicomposting. Malays J Sci 28:135–142

    Article  CAS  Google Scholar 

  • Fenice M, Seblman L, Federici F, Vassilev N (2000) Application of encapsulated Penicillium variabile P16 in solubilization of rock phosphate. Bioresour Technol 73:157–162

    Article  CAS  Google Scholar 

  • Fulekar MH (2009) Bioremediation of fenvalerate by Pseudomonas aeruginosa in a scale up bioreactor. Rom Biotechnol Lett 14:4900–4905

    CAS  Google Scholar 

  • Gahukar RT (2005) Potential and use of bio-fertilizers in India. Evermans Sci XL(5):354–361

    Google Scholar 

  • Gaur AC (1999) Microbial technology for composting of agricultural residues by improved method. Indian council of Agricultural Research, New Delhi, pp 43–53

    Google Scholar 

  • Gerhardson B (2002) Biological substitutes for pesticides. Trends Biotechnol 20:338–343

    Article  CAS  PubMed  Google Scholar 

  • Gilbert K, Mburu SW, Njeru EM, Kimiti JM, Ombori O, Maingi JM (2017) Potential of native rhizobia in enhancing nitrogen fixation and yields of climbing beans (Phaseolus vulgaris L.) in contrasting environments of eastern Kenya. Front Plant Sci 8:443

    Google Scholar 

  • Ginting D, Kessavalou A, Eghball B, Doran JW (2003) Greenhouse gas emissions and soil indicators four years after manure and compost applications. J Environ Qual 32:23–32

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez LJ, Rodelas B, Pozo C, Salmeron V, Martnez MV, Salmeron V (2005) Liberation of amino acids by heterotrophic nitrogen fixing bacteria. Amino Acids 28:363–367

    Article  CAS  Google Scholar 

  • Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412

    Article  CAS  Google Scholar 

  • Gupta R, Mahapatra H (2003) Microbial biomass: an economical alternative for removal of heavy metals from waste water. Indian J Exp Biol 41:945–966

    CAS  PubMed  Google Scholar 

  • Gurung A, Oh S, Kim KD, Shin B (2002) Semi-continuous detection of toxic hexavalent chromium using a sulfur-oxidizing bacteria biosensor. J Environ Manag 106:110–112

    Article  CAS  Google Scholar 

  • Hammerle M, Hilgert K, Marcus AH, Ralf M (2011) Analysis of volatile alcohols in apple juices by an electrochemical biosensor measuring in the headspace above the liquid. Sensor Actuators B Chem 158:313–318

    Article  CAS  Google Scholar 

  • He ZL, Wu J, O’Donnell AG, Syers JK (1997) Seasonal responses in microbial biomass carbon, phosphorus and sulphur in soils under pasture. Biol Fertil Soils 24:421–428

    Article  CAS  Google Scholar 

  • He ZL, Bian W, Zhu J (2002) Screening and identification of microorganisms capable of utilizing phosphate adsorbed by goethite. Commun Soil Sci Plant Anal 33:647–663

    Article  CAS  Google Scholar 

  • Hoornweg DL, Thomas L, Otten L (2010) Composting and its applicability in developing countries. The International Bank for Reconstruction and Development/The World Bank, Washington, DC

    Google Scholar 

  • Igual JM, Valverde A, Cervantes E, Velazquez E (2001) Phosphate solubilizing bacteria as an inoculants for agriculture: use of updated molecular techniques in their study. Agronomie 21:561–568

    Article  Google Scholar 

  • Jacobs H, Boswell GP, Ritz K, Davidson FA, Gadd GM (2002) Solubilization of calcium phosphate as a consequence of carbon translocation by Rhizoctonia solani. FEMS Microbiol Ecol 40:65–71

    Article  CAS  PubMed  Google Scholar 

  • Jinfeng L, Lijun M, Bozhong M, Rulin L, Fangtian N, Jiaxi Z (2005) The field pilot of microbial enhanced oil recovery in a high temperature petroleum reservoir. J Pet Sci Eng 48:265–271

    Article  CAS  Google Scholar 

  • Kaushik G (2015) Applied environmental biotechnology: present scenario and future trends. Springer, New Delhi

    Google Scholar 

  • Khan MR, Khan SM (2002) Effects of root-dip treatment with certain phosphate solubilizing microorganisms on the fusarial wilt of tomato. Bioresour Technol 85:213–215

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Wani P (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture-a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi-current perspective. Arch Agron Soil Sci 56:73–98

    Article  CAS  Google Scholar 

  • Khanday M, Bhat RA, Haq S, Dervash MA, Bhatti AA, Nissa M, Mir MR (2016) Arbuscular mycorrhizal Fungi boon for plant nutrition and soil health. In: Hakeem KR et al (eds) Soil science: agricultural and environmental Prospectives. Springer, Cham, pp 317–332

    Chapter  Google Scholar 

  • Kim Y, Park J, Jung H (2009) An impedimetric biosensor for real-time monitoring of bacterial growth in a microbial fermentor. Sensor Actuators B Chem 138:270–277

    Article  CAS  Google Scholar 

  • Kjaer ED, Graudal L, Nathan I (2001) Ex situ conservation of commercial tropical trees: strategies, options and constraints. Danida Forest Seed Centre, Humlebaek

    Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant-Microbe Interact 17:6–15

    Article  CAS  PubMed  Google Scholar 

  • Kumar J, Jhaadn SK, Souza SFD (2006) Optical microbial biosensor for detection of methyl parathion pesticide using Flavobacterium sp. whole cells adsorbed on glass Fiber filters as disposable biocomponent. Biosens Bioelectron 21:2100–2105

    Article  CAS  PubMed  Google Scholar 

  • Labana S, Pandey G, Paul D, Sharma NK, Basu A, Jain RK (2005) Pot and field studies on bioremediation of p-nitrophenol contaminated soil using Arthrobacter protophormiae RKJ100. Environ Sci Technol 39:3330–3337

    Article  CAS  PubMed  Google Scholar 

  • Lal R, Pandey G, Sharma P, Kumari K, Malhotra S, Pandey R, Raina V, Kohler HPE, Holliger C, Jackson C, Oakeshott JG (2010) Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiol Mol Biol Rev 74:58–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Cunningham C, Pas V, Philp J, Barry D (2004) Field trial of a new aeration system for enhancing biodegradation in a biopile. Waste Manag 24:127–137

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Huang Q, Chen W (2012) Construction and application of a zinc-specific biosensor for assessing the immobilization and bioavailability of zinc in different soils. Environ Pollut 164:66–72

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B (2015) Life of microbes in the rhizosphere. In: Lugtenberg B (ed) Principles of plant-microbe interactions. Springer International Publishing Switzerland, Heidelberg, pp 7–15

    Google Scholar 

  • Magnuson JK, Lasure LL (2004) Organic acid production by filamentous fungi. In: Tkacz J, Lange L (eds) Advances in fungal biotechnology for industry, agriculture and medicine. Klewer Academic/Plenum, New York, pp 307–340

    Chapter  Google Scholar 

  • Margesin R, Cimadon J, Schinner F (2006) Biological activity during composting of sewage sludge at low temperatures. Int Biodeterior Biodegrad 57:88–92

    Article  CAS  Google Scholar 

  • Melfi VA (2012) Ex situ gibbon conservation: status, management and birth sex ratios. Int Zoo Yearb 46:241–251

    Article  Google Scholar 

  • Menna P, Hungria M (2011) Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium: supporting evidence for the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer. Int J Syst Evol Microbiol 61:3052–3306

    Article  CAS  PubMed  Google Scholar 

  • Mishra D, Kim DJ, Ralph DE, Jong-hwan A, Young HR (2008) Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect. J Hazard Mater 152:1082

    Article  CAS  PubMed  Google Scholar 

  • Muthukumarasamy R, Revathi G, Vadivelu M (2006) In: Recent advances in bio-fertilizer technology (Yadav AK, Motsara MR, Ray Chaudhuri S, eds), Society for Promotion and Utilization of Resources and Technology, New Delhi, pp 126–153

    Google Scholar 

  • Nakamura H, Tanaka R, Suzuki K, Yataka M, Mogi Y (2009) A direct determination method for ethanol concentrations in alcoholic beverages employing a eukaryote double-mediator system. Food Chem 117:509–513

    Article  CAS  Google Scholar 

  • Nogueira EM, Vinagre F, Masuda HP, Vargas C, Muniz de Pádua VL, Da Silva FR, Dos Santos RV, Baldani JI, Ferreira PCG, Hemerly AS (2001) Expression of sugarcane genes induced by inoculation with Gluconacetobacter diazotrophicus and Herbaspirillum rubrisubalbicans. Genet Mol Biol 24:199–206

    Article  CAS  Google Scholar 

  • Okpokwasili GC (2007) Biotechnology and clean environment. Proceedings of the 20th annual conference of the Biotechnology Society of Nigeria (BSN), at the Ebonyi State University, Abakaliki, Nigeria

    Google Scholar 

  • Olson GJ, Brierley JA, Brierley CL (2003) Bioleaching review. Part B. Progress in bioleaching: applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 63:249

    Article  CAS  PubMed  Google Scholar 

  • Padgham JL, Sikora RA (2007) Biological control potential and modes of action of Bacillus megaterium and Meloidogyne graminicola on rice. Crop Prot 26:971–977

    Article  Google Scholar 

  • Pagano MC (2008) Rhizobia associated with Neotropical tree Centrolobium tomentosum used in riparian restoration. Plant Soil Environ 54:498–508

    Article  CAS  Google Scholar 

  • Pidwirny MJ (2002) Fundamentals of physical geography. Introduction to 117 biogeography and ecology, the nitrogen cycle, 2nd edn. British Columbia Canada

    Google Scholar 

  • Rania MAN, Mohamed SB, Dalia AS (2015) Effect of mineral and bio-fertilizers on vegetative growth, mineral status, seed yield, tropane alkaloids and leaf anatomy of thornapple plant (Datura stramonium L.). Middle East J Agric Res 4:754–768

    Google Scholar 

  • Reyes I, Bernier L, Simard RR, Antoun H (1999) Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol Ecol 28:281–290

    Article  CAS  Google Scholar 

  • Reyes I, Bernier L, Antoun H (2002) Rock phosphate solubilization and colonization of maize rizosphere by wild and genetically modified strains of Penicillium rugulosum. Microb Ecol 44:39–48

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez AA, Stella AA, Storni MM, Zulpa G, Zaccaro MC (2006) Effects of cyanobacterial extracelular products and gibberellic acid on salinity tolerance in Oryza sativa L. Saline Syst 2:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Saidi S, Mnasri B, Mhamdi R (2011) Diversity of nodule-endophytic agrobacteria-like strains associated with different grain legumes in Tunisia. Syst Appl Microbiol 34:524–530

    Article  PubMed  Google Scholar 

  • Salem HM, Eweida EA, Farag A (2000) Heavy metals in drinking water and their environmental impact on human health. In: ICEHM 2000; Cairo University, Giza, pp 542–556

    Google Scholar 

  • Schroll R, Brahushi R, Dorfler U, Kuhn S, Fekete J, Munch JC (2004) Biomineralisation of 1,2,4-trichlorobenzene in soils by an adapted microbial population. Environ Pollut 127:395–401

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156:997–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shridhar BS (2012) Review: nitrogen fixing microorganisms. Int J Microbiol Res 3:46–52

    Google Scholar 

  • Singh J, Mittal SK (2012) Chlorella sp. based biosensor for selective determination of mercury in presence of silver ions. Sensors Actuators B Chem 165:48–52

    Article  CAS  Google Scholar 

  • Singh S, Nain L (2012) Microorganisms in the conversion of agricultural wastes to compost. Proc Indian Nat Sci Acad 80:473–481

    Article  Google Scholar 

  • Singh R, Singh P, Sharma R (2014) Microorganism as a tool of bioremediation technology for cleaning environment: a review. Int Acad Ecol Environ Sci 4:1–6

    Google Scholar 

  • Song T, Martensson L, Eriksson T, Zheng W, Rasmussen U (2005) Biodiversity and seasonal variation of the cyanobacterial assemblage in a rice paddy field in Fujian, China. Fed Eur Mater Soc Microbiol Ecol 54:131–140

    CAS  Google Scholar 

  • Stevenson RJ, Bahls LL (1999) Periphyton protocols. In: Rapid bioassessment protocols for use in wadeable streams and rivers: periphyton, benthic macroinvertebrates, and fish, 2nd edn. U.S. Environmental Protection Agency, Washington, DC, pp 6–22. EPA 841-B-99-002

    Google Scholar 

  • Strong PJ, Burgess JE (2008) Treatment methods for wine-related and distillery wastewaters review. Biorem J 12:70–87

    Article  CAS  Google Scholar 

  • Sulaimani H, Joshi S, Al-Wahaibi Y, Al-Bahry S, Elshafie A, Al-Bemani A (2011) Microbial biotechnology for enhancing oil recovery: current developments and future prospects. Soc Appl Biol 1:147–158

    Google Scholar 

  • Tang CY, Criddle QS, Fu CS, Leckie JO (2007) Effect of flux and technique. Biol Med 1:1–6

    Google Scholar 

  • Thajuddin N, Subramanian G (2005) Cyanobacterial biodiversity and potential applications in biotechnology. Curr Sci 89:47–57

    CAS  Google Scholar 

  • Vaghela PO, Sutariya DA, Prajapati DV, Parmar SK (2014) Biofertilizers: a enemy of chemical fertilizer. Rashtriya Krishi 9:15–16

    Google Scholar 

  • Valach M, Katrlik J, Sturdik E, Gemeiner P (2009) Ethanol Gluconobacter biosensor designed for flow injection analysis: application in ethanol fermentation off-line monitoring. Sensors Actuators B Chem 138:581–586

    Article  CAS  Google Scholar 

  • Veteläinen M, Helgadóttir A, Weibull J (eds) (2006) Climatic change and genetic resources in northern Europe. Report of a Workshop on Genetic resources in the northern parts of Europe: Rovaniemi, Finland, European Cooperative Programme for Plant Genetic Resources (ECPGR)

    Google Scholar 

  • Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium sp. closely associated with wheat roots. Biol Fertil Soils 40:36–43

    Article  CAS  Google Scholar 

  • Walia U, Kumar N, Brar H (1999) Indian. J Weed Sci 31:225–228

    Google Scholar 

  • Wani PA, Zaidi A, Khan AA, Khan MS (2005) Effect of phorate on phosphate solubilization and indole acetic acid (IAA) releasing potentials of rhizospheric microorganisms. Ann Plant Prot Sci 13:139–144

    Google Scholar 

  • Wen GM, Shuang SM, Dong C, Choi MF (2012) An ethanol biosensor based on a bacterial cell-immobilized eggshell membrane. Chin Chem Lett 23:481–483

    Article  CAS  Google Scholar 

  • Whitelaw MA (2002) Growth promotion of plants inoculated with phosphate solubilizing fungi. Adv Agron 69:99–151

    Article  Google Scholar 

  • Willner J, Fornalczyk A (2013) Extraction of metals from electronic waste by bacterial leaching. Environ Prot Eng 39:197–208

    CAS  Google Scholar 

  • Yousef N, Simpson DR, Duncan KE (2007) In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Appl Environ Microbiol 73:1239–1247

    Article  CAS  Google Scholar 

  • Youssef MM, Eissa MFM (2005) Biofertilizers and their role in management of plant parasitic nematodes. J Biotechnol Pharm Res 5:1–6

    Google Scholar 

  • Youssef MMA, Eissa MFM (2014) Biofertilizers and their role in management of plant parasitic nematodes: a review. J Biotechnol Pharm Res 5:1–6

    Google Scholar 

  • Zafar S, Aqil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol 98:2257–2261

    Article  CAS  Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M, Wani PA et al (2009) Recent advances in plant growth promotion by phosphate-solubilizing microbes. In: Khan MS et al (eds) Microbial strategies for crop improvement. Springer-Verlag, Berlin/Heidelberg, pp 23–50

    Chapter  Google Scholar 

  • Zhang F (2010) Response of microbial community structure to microbial plugging in mesothermic petroleum in China. Appl Microbiol Biotechnol 88:1413–1422

    Article  CAS  PubMed  Google Scholar 

  • Zolla G, Bakker MG, Badri DV, Chaparro JM, Sheflin AM, Manter DK, Vivanco J (2013) Understanding root-microbiome interactions. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vol 2. Wiley Blackwell, Hoboken, pp 745–754

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dar, Z.A. et al. (2019). Microbial Diversity and Their Role in Plant and Soil Health Under Stress Conditions. In: Kumar, M., Muthusamy, A., Kumar, V., Bhalla-Sarin, N. (eds) In vitro Plant Breeding towards Novel Agronomic Traits. Springer, Singapore. https://doi.org/10.1007/978-981-32-9824-8_9

Download citation

Publish with us

Policies and ethics