Skip to main content

Role of Plant-Microbe Interaction in Phytoremediation

  • Chapter
  • First Online:
In vitro Plant Breeding towards Novel Agronomic Traits

Abstract

As a result of rapidly increasing population and the related anthropogenic activities, our natural resources are becoming severely contaminated with various inorganic and organic compounds. Among the several remediation techniques available for removal of pollutants, phytoremediation is considered to be the most efficient and environment friendly. Phytoremediation is a process where plants and associated microbes are utilized for removal of harmful chemicals from the polluted sites. The rhizospheric microbiome is comprised of several bacteria, endophytes and AMF that plays significant role in plant growth and development. The rhizospheric microbiota facilitates nutrient availability, releases growth-promoting phytohormones and provides protection against abiotic and biotic stresses to plants. The interaction of these soilborne microbes with plants helps in uptake, sequestration and detoxification of contaminants from polluted sites. This chapter aims at highlighting the role of plant-microbe interactions in the process of phytoremediation. A detailed understanding of the plant-microbe interaction in phytoremediation will help in developing more efficient methods for detoxification of the polluted sites leading to environmental cleanup.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aafi NE, Brhada F, Dary M, Maltouf AF, Pajuelo E (2012) Rhizostabilization of metals in soils using Lupinus luteus inoculated with the metal resistant rhizobacterium Serratia sp. MSMC 541. Int J Phytoremediation 14:261–274

    Article  PubMed  CAS  Google Scholar 

  • Abou-Shanab RAI, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889

    Google Scholar 

  • Adriano DC (1986) Trace elements in the terrestrial environment. Springer, New York, NY, pp 1–533

    Book  Google Scholar 

  • Ahmad I, Akhtar MJ, Asghar HN, Ghafoor U, Shahid M (2016) Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake. J Plant Growth Regul 35:303–315

    Article  CAS  Google Scholar 

  • Al-Garni SMS (2006) Increased heavy metal tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungi and nitrogen-fixer Rhizobium bacterium. Afr J Biotechnol 5:133–142

    CAS  Google Scholar 

  • Aly AH, Debbab A, Proksch P (2011) Fungal endophytes: unique plant inhabitants with great promises. Appl Microbiol Biotechnol 90:1829e1845

    Article  CAS  Google Scholar 

  • Arnold AE (2007) Understanding the diversity of foliar fungal endophytes: progress, challenges, and frontiers. Fungal Biol Rev 21:51–66

    Article  Google Scholar 

  • Arriagada CA, Herrera MA, García-Romera I, Ocampo JA (2004) Tolerance to Cd of soybean (Glycine max) and eucalyptus (Eucalyptus globulus) inoculated with arbuscular mycorrhizal and saprobe fungi. Symbiosis 36:285–299

    CAS  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotchnol 25:356–362

    Article  CAS  Google Scholar 

  • Atzorn R, Crozier A, Wheeler CT, Sandberg G (1988) Production of gibberellins and indole-3-acetic acid by Rhizobium phaseoli in relation to nodulation of Phaseolus vulgaris roots. Planta 175:532–538

    Article  CAS  PubMed  Google Scholar 

  • Babu AG, Shim J, Shea PJ, Oh BT (2014a) Penicillium aculeatum PDR-4 and Trichoderma sp. PDR-16 promote phytoremediation of mine tailing soil and bioenergy production with Sorghum Sudan grass. Ecol Eng 69:186e191

    Article  Google Scholar 

  • Babu AG, Shim J, Bang KS, Shea PJ, Oh BT (2014b) Trichoderma virens PDR-28: a heavy metal-tolerant and plant growth-promoting fungus for remediation and bioenergy crop production on mine tailing soil. J Environ Manag 132:129e134

    Article  CAS  Google Scholar 

  • Badenoch-Jones J, Summons RE, Rolfe BG, Letham DS (1984) Phytohormones, rhizobium mutants and nodulation in legumes. IV. Auxin metabolites in pea root nodules. J Plant Growth Regul 3:23–39

    Article  CAS  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Weir TL, van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol 20:642–650

    Article  CAS  PubMed  Google Scholar 

  • Bagyaraj DJ (2014) Mycorrhizal fungi. Proc Indian Natl Sci Acad 80:415–428

    Article  Google Scholar 

  • Bagyaraj DJ, Sharma MP, Maiti D (2015) Phosphorus nutrition of crops through arbuscular mycorrhizal fungi. Curr Sci 108:1288–1212

    CAS  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyper accumulate metallic elements – review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L et al (2004) Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nat Biotechnol 22:583–588

    Article  CAS  PubMed  Google Scholar 

  • Baysse C, Vos DD, Naudet Y, Vandermonde A, Ochsner U, Meyer JM et al (2000) Vanadium interferes with siderophore mediated iron uptake in Pseudomonas aeruginosa. Microbiol-SGM 146:2425–2434

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE et al (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1–aminocyclopropane–1–carboxylate deaminase. Can J Microbiol 47:642–652

    Article  CAS  PubMed  Google Scholar 

  • Belimov AA, Puhalsky IV, Safronova VI, Shaposhnikov AI, Vishnyakova MA, Semenova EV, Zinovkina NY, Makarova NM, Wenzel W, Tikhonovich IA (2015) Role of plant genotype and soil conditions in symbiotic plant-microbe interactions for adaptation of plants to cadmium-polluted soils. Water Air Soil Pollut 226:264

    Article  CAS  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker P (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Bhatia M, Goyal D (2014) Analyzing remediation potential of waste water through wetland plants: a review. Environ Prog Sustain Energy 33:9–27

    Article  CAS  Google Scholar 

  • Bi YL, Li XL, Christie P, Hu ZQ, Wong MH (2003) Growth and nutrient uptake of arbuscular mycorrhizal maize in different depths of soil overlying coal fly ash. Chemosphere 50:863–869

    Article  CAS  PubMed  Google Scholar 

  • Bilal S, Khan AL, Shahzad R, Asaf S, Kang S-M, Lee I-J (2017) Endophytic Paecilomyces formosus LHL10 augments glycine max L. adaptation to Ni-contamination through affecting endogenous phytohormones and oxidative stress. Front Plant Sci 8:870

    Article  PubMed  PubMed Central  Google Scholar 

  • Bitas V, Kim HS, Bennett JW, Kang S (2013) Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant-Microbe Interact 26:835–843

    Article  CAS  PubMed  Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    Article  CAS  PubMed  Google Scholar 

  • Blake RC, Choate DM, Bardhan S, Revis N, Barton LL et al (1993) Chemical transformation of toxic metals by a Pseudomonas strain from a toxic waste site. Environ Toxicol Chem 12:1365–1376

    Article  CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  CAS  PubMed  Google Scholar 

  • Bluyssen PM, Janssen S, van den Brink LH, de Kluizenaar Y (2011) Assessment of wellbeing in an indoor office environment. Build Environ 46:2632–2640

    Article  Google Scholar 

  • Bourdel G, Roy-Bolduc A, St-Arnaud M, Hijri M (2016) Concentration of petroleum-hydrocarbon contamination shapes fungal endophytic community structure in plant roots. Front Microbiol 7:685

    Article  PubMed  PubMed Central  Google Scholar 

  • Braud A, Jézéquel K, Bazot S, Lebeau T (2009a) Enhanced phytoextraction of an agricultural Cr, Hg- and Pb-contaminated soil by bioaugmentation with siderophore producing bacteria. Chemosphere 74:280–286

    Article  PubMed  CAS  Google Scholar 

  • Braud A, Hannauer M, Milsin GLA, Schalk IJ (2009b) The Pseudomonas aeruginosa pyochelin-iron uptake pathway and its metal specificity. J Bacteriol 191:5317–5325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braud A, Geoffroy V, Hoegy F, Mislin GLA, Schalk IJ (2010) The siderophores pyoverdine and pyochelin are involved in Pseudomonas aeruginosa resistance against metals: another biological function of these two siderophores. Environ Microbiol Rep 2:419–425

    Google Scholar 

  • Brennan MA, Shelley ML (1999) A model of the uptake, translocation, and accumulation of lead (Pb) by maize for the purpose of phytoextraction. Ecol Eng 12:271–297

    Article  Google Scholar 

  • Brooks RR (1977) Copper and cobalt uptake by Haumaniastrum species. Plant Soil 48:541–544

    Article  CAS  Google Scholar 

  • Bücking H, Kafle A (2015) Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agronomy 5:587–612

    Article  CAS  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, Ver Loren van Themaat E, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Buscot F (2015) Implication of evolution and diversity in arbuscular and ectomycorrhizal symbioses. J Plant Physiol 172:55–61

    Article  CAS  PubMed  Google Scholar 

  • Caçador I, Duarte B (2015) Chromium phyto-transformation in salt marshes: the role of halophytes. Phytoremediation:211–217

    Google Scholar 

  • Cao L, Jiang M, Zeng Z, Liu Y (2008) Trichoderma atroviride F6 improves phytoextraction efficiency of mustard (Brassica juncea (L) Coss. var. foliosa Bailey) in Cd, Ni contaminated soils. Chemosphere 71:1769e1773

    Article  CAS  Google Scholar 

  • Carlson CL, Adriano DC, Sajwan KS, Abels SL, Thoma DP et al (1991) Effects of selected trace metals on germinating seeds of six plant species. Water Air Soil Pollut 59:231–240

    Article  CAS  Google Scholar 

  • Chan WF, Li H, Wu FY, Wu SC, Wong MH (2013) Arsenic uptake in upland rice inoculated with a combination or single arbuscular mycorrhizal fungi. J Hazard Mater 262:1116–1122

    Article  CAS  PubMed  Google Scholar 

  • Chaney R, Malik M, Li Y, Brown SL, Brewer EP, Angle JS, Bake AJ (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Article  CAS  PubMed  Google Scholar 

  • Chaney RL, Li YM, Angel JS, Baker AJM, Reeves RD, Brown SL, Homer FA, Malik M, Chin M (1999) Improving metal hyperaccumulators wild plants to develop commercial phytoextraction systems: approaches and progress. In: Terry Nand Banuelos GS (ed) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, FL, pp 129–158

    Google Scholar 

  • Chatterjee S, Sau GB, Mukherjee SK (2009) Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World J Microbiol Biotechnol 25:1829–1836

    Article  CAS  Google Scholar 

  • Chen L, Luo S, Xiao X, Guo H, Chen J, WanY Li B, Xu T, Xi Q, Rao C, Liu C, Zeng G (2010) Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils. Appl Soil Ecol 46:383–389

    Article  Google Scholar 

  • Chen Y, Wang H, Li L, Dai C (2013) The potential application of the endophyte Phomopsis liquidambari to the ecological remediation of long-term cropping soil. Appl Soil Ecol 67:20e26

    Article  Google Scholar 

  • Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39:9377–9390

    Article  CAS  PubMed  Google Scholar 

  • Chun SC, Yoo MH, Moon YS, Shin MH, Son KC, Chung IM, Kays SJ (2010) Effect of bacterial population from rhizosphere of various foliage plants on removal of indoor volatile organic compounds. Korean J Hortic Sci 28:476–483

    CAS  Google Scholar 

  • Colpaert JV, Wevers JHL, Krznaric E, Adriaensen K (2011) How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann For Sci 68:17–24

    Article  Google Scholar 

  • Conte P, Agrettoa A, Spaccinia RA, Piccoloa A (2005) Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils. Environ Pollut 135:515–522

    Article  CAS  PubMed  Google Scholar 

  • Cornejo P, Pérez-Tienda J, Meier S, Valderas A, Borie F, Azcón-Aguilar C, Ferrol N (2013) Copper compartmentalization in spores as a survival strategy of arbuscular mycorrhizal fungi in Cu-polluted environments. Soil Biol Biochem 57:925–928

    Article  CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospect of phytoremediation. Plant Physiol 110:715–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai C, Tian L, Zhao Y, Chen Y, Xie H (2010) Degradation of phenanthrene by the endophytic fungus Ceratobasidum stevensii found in Bischofia polycarpa. Biodegradation 21:245e255

    Article  CAS  Google Scholar 

  • Dardanelli MS, Manyani H, González-Barroso S, Rodríguez-Carvajal MA, Gil-Serrano AM, Espuny MR, López-Baena FJ, Bellogín RA, Megías M, Ollero FJ (2010) Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328:483–493

    Article  CAS  Google Scholar 

  • Davies FT, Puryear JD, Newton RJ, Egilla JN, Saraiva Grossi JA (2001) Mycorrhizal fungi enhance accumulation and tolerance of chromium in sunflower (Helianthus annuus). J Plant Physiol 158:777–786

    Article  CAS  Google Scholar 

  • De Kempeneer L, Sercu B, Vanbrabant W, Van Langenhove H, Verstraete W (2004) Bioaugmentation of the phyllosphere for the removal of toluene from indoor air. Appl Microbiol Biotechnol 64:284–288. https://doi.org/10.1007/s00253-003-1415-3

    Article  CAS  PubMed  Google Scholar 

  • De Souza LA, De Andrade SAL, De Souza SCR, Schiavinato MA (2012) Arbuscular mycorrhiza confers Pb tolerance in Calopogonium mucunoides. Acta Physiol Plant 34:523–531

    Article  CAS  Google Scholar 

  • Dela Cruz M, Christensen JH, Thomsen JD, Müller R (2014) Can ornamental potted plants remove volatile organic compounds from indoor air?—a review. Envrion Sci Pollut Res 21:13909–13928

    Article  CAS  Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40:74–84

    Article  CAS  Google Scholar 

  • Delvasto P, Ballester A, Muñoz JA, González F, Blázquez ML, Igual JM et al (2009) Mobilization of phosphorus from iron ore by the bacterium Burkholderia caribensis FeGL03. Miner Eng 22:1–9

    Article  CAS  Google Scholar 

  • Deng Z, Cao L (2017) Fungal endophytes and their interactions with plants in phytoremediation: a review. Chemosphere 168:1100–1106

    Article  CAS  PubMed  Google Scholar 

  • Deng Z, Wang W, Tan H, Cao L (2012) Characterization of heavy metal-resistant endophytic yeast Cryptococcus sp. CBSB78 from rapes (Brassica chinensis) and its potential in promoting the growth of Brassica spp. in metal-contaminated soils. Water Air Soil Pollut 223:5321e5329

    Article  CAS  Google Scholar 

  • Deng Z, Zhang R, Shi Y, Hu L, Tan H, Cao L (2013) Self-fusion of protoplast improves phytoremediation of Cd and Pb contaminants in endophytic Mucor sp. CBRF59. Chemosphere 91:41e47

    Google Scholar 

  • Deng Z, Cao L, Zhang R, Shi Y, Hu L, Tan H, Cao L (2014a) Enhanced phytoremediation of multi-metal contaminated soils by interspecific fusion between the protoplasts of endophytic Mucor sp.CBRF59 and Fusarium sp. CBRF14. Soil Biol Biochem 77:31e40

    Article  CAS  Google Scholar 

  • Deng Z, Zhang R, Shi Y, Hu L, Tan H, Cao L (2014b) Characterization of Cd-, Pb-, Zn-resistant endophytic Lasiodiplodia sp. MXSF31 from metal accumulating Portulaca oleracea and its potential in promoting the growth of rape in metal contaminated soils. Environ Sci Pollut Res 21:2346e2357

    Google Scholar 

  • Di Gregorio S, Lampis S, Vallini G (2005) Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ Int 31:233–241

    Google Scholar 

  • Dory SL, Oakley B, Xin G, Kang JW, Singleton G, Khan Z, Vajzovic A, Staley JT (2009) Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47:23–33

    Article  Google Scholar 

  • Duffus JH (2002) ‘Heavy metals’—a meaningless term? Pure Appl Chem 74:793–807

    Article  CAS  Google Scholar 

  • Dzierzanowski K, Popek R, Gawronska H, Saebo A, Gawronski SW (2011) Deposition of particulate matter of different size fractions on leaf surface and waxes of urban forest species. Int J Phytoremediation 13:1037–1046

    Article  CAS  PubMed  Google Scholar 

  • Ebbs SD, Brady DJ, Kochian LV (1998) Role of uranium speciation in the uptake and translocation by plants. J Exp Bot 49:1183–1190

    Article  CAS  Google Scholar 

  • Effmert U, Kalderás J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703

    Article  CAS  PubMed  Google Scholar 

  • Ensley BD (2000) “Rationale for the use of phytoremediation.” phytoremediation of toxic metals: using plants to clean-up the environment. John Wiley Publishers, New York

    Google Scholar 

  • EPA (2000) A citizen’s guide to phytoremediation. EPA 542-F-98-011. United States Environmental Protection Agency, pp 6. Available at: http://www.bugsatwork.com/XYCLONYX/EPA_GUIDES/PHYTO.PDF

  • Erakhrumen AA (2007) Phytoremediation: an environmentally sound technology for pollution prevention, control and remediation in developing countries. Educ Res Rev 2:151–156

    Google Scholar 

  • Erdei L, Mezôsi G, Mécs I, Vass I, Fôglein F, Bulik L (2005) Phytoremediation as a program for decontamination of heavy-metal polluted environment, in Proceedings of the 8th Hungarian Congress on plant physiology and the 6th Hungarian Conference on photosynthesis

    Google Scholar 

  • Escalante-Espinosa E, Gallegos-Martínez ME, Favela-Torres E, Gutiérrez-Rojas M (2005) Improvement of the hydrocarbon phytoremediation rate by Cyperus Laxus lam. Inoculated with a microbial consortium in a model system. Chemosphere 59:405–413

    Article  CAS  PubMed  Google Scholar 

  • Farwell AJ, Vesely S, Nero V, Rodriguez H, Shah S, Dixon DG, Glick BR (2006) The use of transgenic canola (Brassica napus) and plant growth-promoting bacteria to enhance plant biomass at a nickel-contaminated field site. Plant Soil 288:309–318

    Article  CAS  Google Scholar 

  • Feng Y, Shen D, Song W (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J Appl Microbiol 100:938–945

    Article  CAS  PubMed  Google Scholar 

  • Ferner DJ (2001) Toxicity heavy metals. Emed J 2:1

    Google Scholar 

  • Firmin S, Labidi S, Fontaine J, Laruelle F, Tisserant B, Nsanganwimana F et al (2015) Arbuscular mycorrhizal fungal inoculation protects Miscanthus × giganteus against trace element toxicity in a highly metal-contaminated site. Sci Total Environ 527–528:91–99

    Article  PubMed  CAS  Google Scholar 

  • Flathman PE, Lanza GR (1998) Phytoremediation: current views on an emerging green technology. J Soil Contam 7:415–432

    Article  Google Scholar 

  • Fomina MA, Alexander IJ, Colpaert JV, Gadd GM (2005) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37:851e866

    Article  CAS  Google Scholar 

  • Frankowski J, Lorito M, Scala F, Schmid R, Berg G, Bahl H (2001) Purification and properties of two chitinolytic enzymes of Serratia plymuthica HRO-C48. Arch Microbiol 176:421–426

    Article  CAS  PubMed  Google Scholar 

  • Frérot H, Lefebvre C, Gruber W, Collin C, Dos Santos A et al (2006) Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant Soil 282:53–65

    Article  CAS  Google Scholar 

  • Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Curr Microbiol 56:403–407

    Article  CAS  PubMed  Google Scholar 

  • Gao YZ, Ling WT, Zhu LZ, Zhao BW, Zheng QS (2007) Surfactant-enhanced phytoremediation of soils contaminated with hydrophobic organic contaminants: potential and assessment. Pedosphere 17:409–418

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    Article  CAS  PubMed  Google Scholar 

  • Garg N, Kaur H (2013) Response of antioxidant enzymes, phytochelatins and glutathione production towards Cd and Zn stresses in Cajanus cajan (L.) mill sp. genotypes colonized by arbuscular mycorrhizal fungi. J Agron Crop Sci 199:118–133

    Article  CAS  Google Scholar 

  • Gatliff EG (1994) Vegetative remediation process offers advantages over traditional pump-and-treat technologies. Remediation 4:343–352

    Article  Google Scholar 

  • Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86:528–534

    CAS  Google Scholar 

  • Gawrońska H, Bakera B (2015) Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants. Air Qual Atmos Health 8:265–272.

    Article  CAS  Google Scholar 

  • Gehling W, Dellinger B (2013) Environmentally persistent free radicals and their lifetimes in PM2.5. Environ Sci Technol 47:8172–8178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Germaine KJ, Keogh E, Ryan D, Dowling D (2009) Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296:226–234

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S (2010) Wet land macrophytes as toxic metal accumulators. Int J Environ Sci 1:523–528

    Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Appl Ecol Environ Res 3:1–18

    Article  Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  PubMed  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica. Hindawi Publishing Corporation, Article ID 963401 2012:1–15

    Article  CAS  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39

    Article  CAS  PubMed  Google Scholar 

  • Gohre V, Paszkowski U (2006) Contribution of arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323

    Article  CAS  PubMed  Google Scholar 

  • Gratão LP, Braz J (2005) Phytoremediation: green technology for the clean-up of toxic metals in the environment. Plant Physiol 17:53–64

    Google Scholar 

  • Griffin M, Antikainen M, Hon WC, Pihakaski-Maunsbach K, Yu XM, Chun JU, Yang DSC (1997) Antifreeze proteins in winter rye. Plant Physiol 100:327–332

    Article  Google Scholar 

  • Grison CM, Mazel M, Sellini A, Escande V, Biton J et al (2014) The leguminous species Anthyllis vulneraria as a Zn-hyperaccumulator and eco- Zn catalyst resources. Environ Sci Pollut Res Int 22:5667–5676

    Article  PubMed  CAS  Google Scholar 

  • Grison C, Jackson S, Merlot S, Dobson A, Grison C (2015) Rhizobium metallidurans sp. nov, a symbiotic heavy metal resistant bacterium isolated from the Anthyllis vulneraria Zn-hyperaccumulator. Int J Syst Evol Microbiol 65:1525–1530

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu Rev Phytopathol 41:117–153

    Google Scholar 

  • Hamayun M, Sumera AK, Iqbal I, Ahmad B, Lee I (2010) Isolation of a gibberellin-producing fungus (Penicillium sp. MH7) and growth promotion of crown daisy (Chrysanthemum coronarium). J Microbiol Biotechnol 20:202–207

    Article  CAS  PubMed  Google Scholar 

  • Hao HZ, Chen TB, Jin MG, Lei M, Liu CW, Zu WP, Huang LM (2011) Recent advance in solidification/stabilization technology for the remediation of heavy metals-contaminated soil. J Appl Ecol 22:816–824

    CAS  Google Scholar 

  • Hardoim PR, Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16:467–471

    Article  CAS  Google Scholar 

  • Hassan SE, Hijri M, St-Arnaud M (2013) Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. New Biotechnol 30:780–787

    Article  CAS  Google Scholar 

  • Hassan W, Bano R, Bashir F, David J (2014) Comparative effectiveness of ACC-deaminase and/or nitrogen-fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution. Environ Sci Pollut Res 21:10983–10996

    Article  CAS  Google Scholar 

  • Hassan W, Bashir S, Ali F, Ijaz M, Hussain M, David J (2016) Role of ACC deaminase and/or nitrogen fixing rhizobacteria in growth promotion of wheat (Triticum aestivum L.) under cadmium pollution. Environ Earth Sci 75:1–14

    Article  CAS  Google Scholar 

  • Hegedusova A, Jakabova S, Simon L (2009) Induced phytoextraction of lead from contaminated soil. Acta Universitatis Sapientiae Agric Environ 1:116–122

    Google Scholar 

  • Hernández-Ortega HA, Alarcón A, Ferrera-Cerrato R, Zavaleta-Mancera HA, López-Delgado HA, Mendoza-López MR (2012) Arbuscular mycorrhizal fungi on growth, nutrient status, and total antioxidant activity of Melilotus albus during phytoremediation of a diesel-contaminated substrate. J Environ Manag 95:319–324

    Article  CAS  Google Scholar 

  • Hess-Kosa K (2002) Indoor air quality sampling methodologies. Lewis Publishers, Roca Raton-London-New York-Washington

    Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    Article  CAS  PubMed  Google Scholar 

  • Hill A, Crossman SM (1983) Characterization of N2 –fixing bacteria associated with sweet potato roots. Can J Microbiol 29:860–862

    Article  Google Scholar 

  • Huesemann MH, Hausmann TS, Fortman TJ, Thom RM, Cullinan V (2009) In situ phytoremediation of PAH and PCB contaminated marine sediments with eelgrass (Zostera marina). Ecol Eng 35:1395–1404

    Article  Google Scholar 

  • Huq SI, Joardar J, Parvin S (2005) Marigold (Tagetes patula) and ornamental arum (Syngonia sp.) as phytoremediators for arsenic in pot soil. Bangladesh J Bot 34:65–70

    Google Scholar 

  • Hurek T, Reinhold-Hurek B (2003) Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes. J Biotechnol 106:169–178

    Article  CAS  PubMed  Google Scholar 

  • Hurek T, Handley LL, Reinhold-Hurek B, Piché Y (2002) Azoarcus grass endophytes contribute fixed nitrogen to the plant in an unculturable state. Mol Plant-Microbe Interact 15:233–242

    Article  CAS  PubMed  Google Scholar 

  • Insam H, Seewald MS (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46:199–213

    Article  CAS  Google Scholar 

  • IOSHIC International Occupational Safety and Health Information Centre (1999) Basics of chemical safety. International Labour Organization, Geneva

    Google Scholar 

  • James AC, Strand SE (2009) Phytoremediation of small organic contaminants using transgenic plants. Curr Opin Biotechnol 20:237–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James CA, Xin G, Doty SL, Strand SE (2008) Degradation of low molecular weight volatile organic compounds by plants genetically modified with mammalian Cytochrome P450 2E1. Environ Sci Technol 42:289–293

    Article  CAS  Google Scholar 

  • Jiang M, Cao L, Zhang R (2008) Effects of Acacia (Acacia auriculaeformis A. Cunn)-associated fungi on mustard (Brassica juncea (L.) Coss.var. foliosa Bailey) growth in Cd- and Ni-contaminated soils. Lett Appl Microbiol 47:561e565

    Article  CAS  Google Scholar 

  • Jin CL, Zhou XJ, Zhao HT, Liu XM, Feng K (2013) Comparison of removal of formaldehyde capacity between Hedera helix and Melissa officinalis. Asian J Chem 25:3823–3826

    Article  CAS  Google Scholar 

  • Jing Y, He Z, Yang X (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ (Sci) 8:192–207

    Article  CAS  Google Scholar 

  • Joshi PM, Juwarkar AA (2009) In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environ Sci Technol 43:5884–5889

    Article  CAS  Google Scholar 

  • Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 10:1996–2002

    Article  CAS  Google Scholar 

  • Kai M, Effmert U, Berg G, Piechulla B (2007) Volatiles of bacterial antagonists inhibits mycelia growth of the plant pathogen Rhizoctonia solani. Arch Microbiol 187:351–360

    Article  PubMed  CAS  Google Scholar 

  • Kamnev AA, Lelie VD (2000) Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Biosci Rep 20:239–258

    Article  CAS  PubMed  Google Scholar 

  • Kamran MA, Syed JH, Eqani SAMAS, Munis MFH, Chaudhary HJ (2015) Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa. Environ Sci Pollut Res 22:9275–9283

    Article  CAS  PubMed  Google Scholar 

  • Kaya Z (2006) Pollution. In: Lal R (ed) Encyclopedia of soil science. CRC Press, Boca Raton, FL, pp 1343–1346

    Google Scholar 

  • Khan Z, Doty S (2011) Endophyte-assisted phytoremediation. Curr Top Plant Biol 12:97e105

    Google Scholar 

  • Khan AL, Lee IJ (2013) Endophytic Penicillium funiculosum LHL06 secretes gibberellins that reprogram Glycine max L. growth during copper stress. BMC Plant Biol 13:1–14

    Article  Google Scholar 

  • Khan MA, Ahmad I, Rahman IU (2007) Effect of environmental pollution on heavy metal content of Withania somnifera. J Chin ChemSoc 54:339–343

    Article  Google Scholar 

  • Khan S, Hesham AEL, Qiao M, Rehman S, He JZ (2010) Effects of Cd and Pb on soil microbial community structure and activities. Environ Sci Pollut Res 17:288–296

    Article  CAS  Google Scholar 

  • Khan AL, Waqas M, Hussain J, Al-Harrasi A, Hamayun M, Lee IJ (2015) Phytohormones enabled endophytic fungal symbiosis improve aluminum phytoextraction in tolerant Solanum lycopersicum: an examples of Penicillium janthinellum LK5 and comparison with exogenous GA3. J Hazard Mater 295:70–78

    Article  CAS  PubMed  Google Scholar 

  • Khan AR, Ullah I, Waqas M, Park GS, Khan AL, Hong SJ et al (2017a) Host plant growth promotion and cadmium detoxification in Solanum nigrum, mediated by endophytic fungi. Ecotoxicol Environ Saf 136:180–188

    Article  CAS  PubMed  Google Scholar 

  • Khan AR, Waqas M, Ullah I, Khan AL, Khan MA, Lee IJ et al (2017b) Culturable endophytic fungal diversity in the cadmium hyperaccumulator Solanum nigrum L. and their role in enhancing phytoremediation. Environ Exp Bot 135:126–135

    Article  CAS  Google Scholar 

  • Kim YC, Jung H, Kim KY, Park SK (2008) An effective biocontrol bioformulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur J Plant Pathol 120:373–382

    Article  Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth promoting rhizobacteria on radish. In: Station de pathologie végétale et phyto-bacteriologie (ed) Proceedings of the 4th Conference plant pathogenic bacteria, Angers, INRA, pp 879–882

    Google Scholar 

  • Kraomer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141

    Article  CAS  Google Scholar 

  • Kuffner M, Maria SD, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M, Strauss J, Rivelli AR, Sessitsch A (2010) Culturable bacteria from Zn- and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J Appl Microbiol 108:1471–1484

    Article  CAS  PubMed  Google Scholar 

  • Kuklinsky-Sobral J, Araujo WL, Mendes R, Geraldi IO, Pizzirani-Kleine AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  CAS  PubMed  Google Scholar 

  • Lasat MM (2000) Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subst Res 5:1–25

    Google Scholar 

  • Lewis AC (2006) Assessment and comparison of two phytoremediation systems treating slow-moving groundwater plumes of TCE. Master thesis, Ohio University pp 158

    Google Scholar 

  • Li H, Wei D, He C, Shen M, Zhou Z, Mei T, Xu H-M (2012) Diversity and heavy metal tolerance of endophytic fungi from six dominant plant species in a Pb-Zn mine wasteland in China. Fungal Ecol 5:309e315

    Article  Google Scholar 

  • Liang Y, Zhang X, Dai D, Li G (2009) Porous biocarrier-enhanced biodegradation of crude oil contaminated soil. Int Biodeterior Biodegradation 63:80–87

    Article  CAS  Google Scholar 

  • Lin L, Ning B, Liao MA, Ren Y, Wang Z et al (2015) Youngia erythrocarpa, a newly discovered cadmium hyperaccumulator plant. Environ Monit Assess 187:4205

    Article  PubMed  CAS  Google Scholar 

  • Louwies T, Nawrot T, Cox B, Dons E, Penders J, Provost E, Panis LI, deBoever P (2015) Blood pressure changes in association with black carbon exposure in a panel of healthy adults are independent of retinal microcirculation. Environ Int 75:81–86

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant growth promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Luo ZB, Wu C, Zhang C, Li H, Lipka U, Polle A (2014) The role of ectomycorrhizas in heavy metal stress tolerance of host plants. Environ Exp Bot 108:47–62

    Article  CAS  Google Scholar 

  • Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34

    Article  CAS  PubMed  Google Scholar 

  • Mann US, Dhingra A, Singh J (2014) Water pollution: causes, effects and remedies. IJATES 2:70–74

    Google Scholar 

  • Marulanda A, Azcon R, Ruiz-Lozano JM (2003) Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiol Plant 119:526–533

    Article  CAS  Google Scholar 

  • Masiol M, Hofer A, Squizzato S, Piazza R, Rampazzo G, Pavoni B (2012) Carcinogenic and mutagenic risk associated to airborne particle-phase polycyclic aromatic hydrocarbons: a source apportionment. Atmos Environ 60:375–382

    Article  CAS  Google Scholar 

  • Mastretta C, Taghavi S, van der Lelie D, Mengoni A, Galardi F, Gonnelli C, Barac T, Boulet J, Weyens N, Vangronsveld J (2009) Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. Int J Phytoremediation 11:251–267

    Article  CAS  Google Scholar 

  • Mathesius U, Schlaman HRM, Spaink HP, Sautter C, Rolfe BG, Djordjevic MA (1998) Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J 14:23–34

    Article  CAS  PubMed  Google Scholar 

  • Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM (2009) Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. ISME J 3:977–991

    Article  CAS  PubMed  Google Scholar 

  • Mcgrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214

    Article  CAS  Google Scholar 

  • Mc-Guinness M, Dowling D (2009) Plant-associated bacterial degradation of toxic organic compounds in soil. Int J Environ Res Public Health 6:2226–2247

    Article  CAS  Google Scholar 

  • Meena K, Sorty A, Bitla U, Choudhary K, Gupta P, Pareek A et al (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172–172

    Article  PubMed  PubMed Central  Google Scholar 

  • Memon AR, Aktoprakligil D, Ozdemir A, Vertii A (2001) Heavy metal accumulation and detoxification mechanisms in plants. Turk J Bot 25:111–121

    Google Scholar 

  • Mesjasz-Przybylowicz J, Nakonieczny M, Migula P, Augustyniak M, Tarnawska M et al (2004) Uptake of cadmium, lead, nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheyacoddii. Acta Biol Cracov Ser Bot 46:75–85

    Google Scholar 

  • Monnet F, Vaillant N, Hitmi A, Coudret A, Sallanon H (2001) Endophytic Neotyphodium lolii induced tolerance to Zn stress in Lolium perenne. Physiol Plant 113:557–563

    Article  CAS  Google Scholar 

  • Moore FP, Barac T, Borremans B, Oeyen L, Vangronsveld J et al (2006) Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site: the characterisation of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556

    Article  CAS  PubMed  Google Scholar 

  • Moreira IT, Oliveira OM, Triguis JA, dos Santos AM, Queiroz AF, Martins CM et al (2011) Phytoremediation using Rhizophora mangle L. in mangrove sediments contaminated by persistent total petroleum hydrocarbons (TPH’s). Microchem J 99:376–382

    Article  CAS  Google Scholar 

  • Morikawa H, Erkin OC (2003) Basic processes in phytoremediation and some applications to air pollution control. Chemosphere 52:1553–1558

    Article  CAS  PubMed  Google Scholar 

  • Muthukumarasamy R, Revathi G, Seshadri S, Lakshminarasimhan C (2002) Gluconacetobacter diazotrophicus (syn. Acetobacter diazotrophicus), a promising diazotrophic endophyte in tropics. Curr Sci 83:137–145

    Google Scholar 

  • Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74:533–542

    Article  CAS  Google Scholar 

  • Ndimele PE (2010) A review on the phytoremediation of petroleum hydrocarbon. Pak J Biol Sci 13:715–722

    Article  CAS  PubMed  Google Scholar 

  • Neilands JB (1981) Iron absorption and transport in microorganisms. Annu Rev Nutr 1:27–46

    Article  CAS  PubMed  Google Scholar 

  • Nowak DJ, Crane DE, Stevens JC (2006) Air pollution removal by urban trees and shrubs in the United States. Urban For Urban Green 4:115–123

    Article  Google Scholar 

  • Oelmüller R, Sherameti I, Tripathi S, Varma A (2009) Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis 49:1–17

    Article  CAS  Google Scholar 

  • Oleksyn J, Innes JL (2000) Air pollution and forests in heavily industrialized regions: an introduction. In: Innes JL, Oleksyn J (eds) Forest dynamics in heavily polluted regions, 1st edn. CABI Publishing, Oxon, pp 1–7

    Google Scholar 

  • Ordentlich A, Elad Y, Chet I (1988) The role of chitinase of Serratia marcescens in biocontrol of Sclerotium rolfsii. Phytopathology 78:84–88

    Google Scholar 

  • Ortega-Larrocea MP, Xoconostle-Cazares B, Maldonado-Mendoza IE, Carrillo-Gonzalez R, Hernandez-Hernandez J, Garduno MD et al (2010) Plant and fungal biodiversity from metal mine wastes under remediation at Zimapan, Hidalgo, Mexico. Environ Pollut 158:1922e1931

    Article  CAS  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126

    Article  CAS  Google Scholar 

  • Pandey S, Ghosh PK, Ghosh S, De TK, Maiti TK (2013) Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a rice cultivar and their PGPR like activities. J Microbiol 51:11–17

    Article  CAS  PubMed  Google Scholar 

  • Panfili F, Schneider A, Vives A, Perrot F, Hubert P, Pellerin S (2009) Cadmium uptake by durum wheat in presence of citrate. Plant Soil 316:299–309

    Article  CAS  Google Scholar 

  • Paria S (2008) Surfactant-enhanced remediation of organic contaminated soil and water. Adv Colloid Interf Sci 138:24–58

    Article  CAS  Google Scholar 

  • Pastuszka JS (2007) Effect of particulate aerosols on air quality—methods of identification and assessment (Wplywaerozoliziarnistychnajakoscpowietrza—Metodyidentyfikacji I oceny. Ekoprofit.FinanseNauka Technol. Prawo). Ekoprofit Financ Sci Technol Law 2:7–15

    Google Scholar 

  • Pereira SIA, Barbosa L, Castro PML (2015) Rhizobacteria isolated from a metal-polluted area enhance plant growth in zinc and cadmium-contaminated soil. Int J Environ Sci Technol 12:2127–2142

    Article  CAS  Google Scholar 

  • Pieterse CM, vanWees SC, vanPelt JA, Knoester M, Laan R, Gerrits H et al (1998) A novel signalling pathway controlling ISR in Arabidopsis. Plant Cell 10:1571–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, van der Ent S, van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    Article  CAS  PubMed  Google Scholar 

  • Pivetz BE (2001) Ground water issue: phytoremediation of contaminated soil and ground water at hazardous waste site, EPA/540/S-01/400. United States Environmental Protection Agency, Office of Research and Development Office of Solid Waste and Emergency Response, Washington DC, pp 1–36

    Google Scholar 

  • Popek R, Gawronska H, Wrochna M, Gawronski SW, Saebo A (2012) Paticulate matter on foliage of 13 woody species: deposition on surfaces and phytostabilization in waxes—a 3-year study. Int J Phytoremediation 15:245–256

    Article  CAS  Google Scholar 

  • Pozo MJ, Azcon-Aguilar C (2007) Unraveling mycorrhiza–induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, VanDerEnt S, VanLoon LC, Pieterse CM (2008) Transcription factor MYC2 is involved in priming for enhanced defense during rhizobacteria ISR in Arabidopsis thaliana. New Phytol 180:511–523

    Google Scholar 

  • Prasad MNV, Freitas H (2003) Metal hyperaccumulation in plants-biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6(3):285–321

    Article  Google Scholar 

  • Puente ME, Li CY, Bashan Y (2009) Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ Exp Bot 66:402–408

    Article  CAS  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547

    Article  CAS  PubMed  Google Scholar 

  • Rabie GH (2005) Contribution of arbuscular mycorrhizal fungus to red kidney and wheat plants tolerance grown in heavy metal-polluted soil. Afr J Biotechnol 4:332–345

    CAS  Google Scholar 

  • Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F et al (2011) Phytoremediation potential of Populus alba and Morus alba for cadmium, chromium and nickel absorption from polluted soil. Int J Environ Res 5:961–970

    Google Scholar 

  • Raghukumar C (2008) Marine fungal biotechnology: an ecological perspective. Fungal Divers 31:5–19

    Google Scholar 

  • Rahman MA, Hasegawa H (2011) Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83:633–646

    Article  CAS  PubMed  Google Scholar 

  • Rajakaruna N, Tompkins KM, Pavicevic PG (2006) Phytoremediation: an affordable green technology for the clean-up of metal-contaminated sites in Sri Lanka. Ceylon J Sci (Biol Sci) 35:25–39

    Google Scholar 

  • Rajkumar M, Nagendran R, Lee KJ, Lee WH, Kim SZ (2006) Influence of plant growth promoting bacteria and Cr6þ on the growth of Indian mustard. Chemosphere 62:741–748

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Ae N, Freitas H (2009) Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere 77:153–160

    Article  CAS  PubMed  Google Scholar 

  • Ramos JL, Molina L, Segura A (2009) Removal of organic toxic chemicals in the rhizosphere and phyllosphere of plants. Microb Biotechnol 2:144–146

    Article  PubMed  PubMed Central  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  PubMed  Google Scholar 

  • Raskin I, Ensley BD (2000) Recent developments for in situ treatment of metal contaminated soils. In: Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, NY, p 304

    Google Scholar 

  • Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002) Thermotolerance conferred to plant host and fungal endophyte during mutualistic symbiosis. Science 298:1581

    Article  CAS  PubMed  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, NY, pp 193–230

    Google Scholar 

  • Ren AZ, Li CA, Gao YB (2011) Endophytic fungus improves growth and metal uptake of Lolium arundinaceum Darbyshire Ex. Schreb. Int J Phytoremediation 13:233–243

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Funct Plant Biol 28:897–906

    Article  Google Scholar 

  • Rivera-Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S et al (2002) Cadmium accumulation and buffering of cadmium induced stress by arbuscular mycorrhiza in three Pisum sativum L genotypes. J Exp Bot 53:1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Robinson BH, Lombi E, Zhao FJ, McGrath SP (2003) Uptake and distribution of nickel and other metals in the hyperaccumulator Berkheya coddii. New Phytol 158:279–285

    Article  CAS  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Rosa G, Peralta-Videa JR, Montes M, Parsons JG, Cano-Aguilera I, Gardea-Torresdey JL (2004) Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere 55:1159–1168

    Article  PubMed  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Wei HX, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci U S A 100:4927–4932

    Article  CAS  Google Scholar 

  • Saebo A, Popek R, Nawrot B, Hanslin HM, Gawronska H, Gawronski SW (2012) Plant species differences in particulate matter accumulation on leaf surfaces. Sci Total Environ 427–428:347–354

    Article  PubMed  CAS  Google Scholar 

  • Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42:267–272

    Article  CAS  Google Scholar 

  • Sakai Y, Ma Y, Xu C, Wu H, Zhu W et al (2012) Phytodesalination of a salt-affected soil with four halophytes in China. J Arid Land Stud 22:17–20

    Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Ann Rev Plant Physiol Plant MolBiol 49:643–668

    Article  CAS  Google Scholar 

  • Santos FS, Hernández-Allica J, Becerril JM, Amaral-Sobrinho N, Mazur N et al (2006) Chelate-induced phytoextraction of metal polluted soils with Brachiaria decumbens. Chemosphere 65:43–50

    Article  CAS  PubMed  Google Scholar 

  • Sanusi SNA, Abdullah SRS, Idris M (2012) Preliminary test of phytoremediation of hydrocarbon contaminated soil using Paspalum Vaginatum Sw. Aust J Basic Appl Sci 6(1):39–42

    Google Scholar 

  • Saravanan VS, Madhaiyan M, Thangaraju M (2007) Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66:1794–1798

    Article  CAS  PubMed  Google Scholar 

  • Sawada A, Oyabu T, Chen LM, Li KZ, Hirai N, Yurimoto H, Orita I, Sakai Y, Kato N, Izui K (2007) Purification capability of tobacco transformed with enzymes from a methylotrophic bacterium for formaldehyde. Int J Phytoremediation 9:487–496

    Article  CAS  PubMed  Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318–323

    Article  Google Scholar 

  • Schoenborn L, Yates PS, Grinton BE, Hugenholtz P, Janssen PH (2004) Liquid serial dilution is inferior to solid media for isolation of cultures representative of the phylum-level diversity of soil bacteria. Appl Environ Microbiol 70:4363–4366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwitzguebel JP (2000) Potential of phytoremediation, an emerging green technology. Ecosyst Serv Sustain Watershed Manage Sci 9:210–220

    Google Scholar 

  • Scullion J (2006) Remediating polluted soils. Naturwissenschaften 93:51–65

    Article  CAS  PubMed  Google Scholar 

  • Sekara A, Poniedzialeek M, Ciura J, Jedrszczyk E (2005) Cadmium and lead accumulation and distribution in the organs of nine crops: implications for phytoremediation. Pol J Environ Stud 14:509–516

    CAS  Google Scholar 

  • Sharma A, Johri BN, Sharma AK, Glick BR (2003) Plant growth-promoting bacterium Pseudomonas sp. strain GRP3 influences iron acquisition in mung bean (Vigna radiata L. Wilzeck). Soil Biol Biochem 35:887–894

    Article  CAS  Google Scholar 

  • Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere 64:1036–1042

    Article  CAS  PubMed  Google Scholar 

  • Sheng X, Chen X, He L (2008a) Characteristics of an endophytic pyrene-degrading bacterium of Enterobacter sp. 12J1 from Allium macrostemon Bunge. Int Biodeterior Biodegrad 62:88–95

    Article  CAS  Google Scholar 

  • Sheng X, Xia J, Jiang C, He L, Qian M (2008b) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170

    Article  CAS  PubMed  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2009) Phytomining: a review. Miner Eng 22(12):1007–1019

    Article  CAS  Google Scholar 

  • Shi Y, Xie H, Cao L, Zhang R, Xu Z, Wang Z, Deng Z (2017) Effects of Cd- and Pb-resistant endophytic fungi on growth and phytoextraction of Brassica napus in metal-contaminated soils. Environ Sci Pollut Res Int 24:417–426

    Article  CAS  PubMed  Google Scholar 

  • Siciliano SD, Germida JJ, Banks K, Greer CW (2003) Changes in microbial community composition and function during a polyaromatic hydrocarbon phytoremediation field trial. Appl Environ Microbiol 69:483–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh PK (2012) Role of glomalin related soil protein produced by arbuscular mycorrhizal fungi: a review. Agric Sci Res J 2:119–125

    Google Scholar 

  • Singh OV, Jain RK (2003) Phytoremediation of toxic aromatic pollutants from soil. Appl Microbiol Biotechnol 63:128–135

    Article  CAS  PubMed  Google Scholar 

  • Singh PP, Shin YC, Park CS, Chung YR (1999) Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89:92–99

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Soleimani M, Afyuni M, Hajabbasi MA, Nourbakhsh F, Sabzalian MR, Christensen JH (2010) Phytoremediation of an aged petroleum contaminated soil using endophyte infected and non-infected grasses. Chemosphere 81:1084e1090

    Article  CAS  Google Scholar 

  • Suresh B, Ravishankar GA (2004) Phytoremediation – a novel and promising approach for environmental clean-up. Crit Rev Biotechnol 24:97–124

    Article  CAS  PubMed  Google Scholar 

  • Susarla S, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658

    Article  Google Scholar 

  • Sziderics AH, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L.). Can J Microbiol 53:195–1202

    Article  CAS  PubMed  Google Scholar 

  • Taller BJ, Wong TY (1989) Cytokinins in Azotobacter vinelandii culture medium. Appl Environ Microbiol 55:266–267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tank N, Saraf M (2009) Enhancement of plant growth and decontamination of nickel-spiked soil using PGPR. J Basic Microbiol 49:195–204

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    Article  PubMed  Google Scholar 

  • Tien T, Gaskin M, Hubbel D (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37:1016–1024

    Google Scholar 

  • Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852

    Article  CAS  Google Scholar 

  • Tripathi M, Munot HP, Shouche Y, Meyer JM, Goel R (2005) Isolation and functional characterization of siderophore-producing lead- and cadmium-resistant Pseudomonas putida KNP9. Curr Microbiol 50:233–237

    Article  CAS  PubMed  Google Scholar 

  • Trivedi P, Pandey A, Sa T (2007) Chromate reducing and plant growth-promoting activities of psychrotrophic Rhodococcus erythropolis MTCC 7905. J Basic Microbiol 47:513–517

    Article  CAS  PubMed  Google Scholar 

  • Trotta A, Falaschi P, Cornara L, Minganti V, Fusconi A, Drava G, Berta G (2006) Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere 65:74–81

    Article  CAS  PubMed  Google Scholar 

  • Ugrekhelidze D, Korte F, Kvesitadze G (1997) Uptake and transformation of benzene and toluene by plant leaves. Ecotoxicol Environ Saf 37:24–29

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya H, Panda SK, Bhattacharjee MK, Dutta S (2010) Role of arbuscular mycorrhiza in heavy metal tolerance in plants: prospects for phytoremediation. J Phytology 2:16–27

    Google Scholar 

  • USEPA (United States Environmental Protection Agency) (2000a) Introduction to phytoremediation, EPA 600/R-99/107. U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH

    Google Scholar 

  • USEPA (United States Environmental Protection Agency) (2000b) Electrokinetic and phytoremediation in situ treatment of metal-contaminated soil: state of-the-practice. Draft for final review, EPA/542/R-00/XXX. US Environmental Protection Agency,Office of Solid Waste and Emergency Response Technology Innovation Office, Washington, DC

    Google Scholar 

  • Van der Ent S, Van Wees SC, Pieterse CM (2009) Jasmonate signalling in plant interactions with resistance–inducing beneficial microbes. Phytochemistry 70:1581–1588

    Article  PubMed  CAS  Google Scholar 

  • Van Loon LC, Bakker PA, Pieterse CM (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • van Scholl L, Kuyper TW, Smits MM, Landeweert R, Holffland E, van Breemen N (2008) Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles. Plant Soil 303:35e47

    Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K et al (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    Article  CAS  Google Scholar 

  • Vassilev A, Berova M, Stoeva N, Zlatev Z (2005) Phytotechnologies for sustainable use management of metal contaminated soils: short review. Manag Sustain Dev 3(4):90–96. (In Bulgarian)

    Google Scholar 

  • Venkatesh NM, Vedaraman N (2012) Remediation of soil contaminated with copper using rhamnolipids produced from Pseudomonas aeruginosa MTCC 2297 using waste frying rice bran oil. Ann Microbiol 62:85–91

    Article  CAS  Google Scholar 

  • Verhagen BWM, Glazebrook J, Zhu T, Chang HS, van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria- induced systemic resistance in Arabidopsis. Mol Plant-Microbe Interact 17:895–908

    Article  CAS  PubMed  Google Scholar 

  • Verma SCC, Ladha JKK, Tripathi AKK (2001) Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. J Biotechnol 91:127–141

    Article  CAS  PubMed  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Vijayarengan P (2005) Nitrogen and potassium status of greengram (Vigna radiata) cultivars under nickel stress. Nat Environ Pollut Technol 4:65–69

    CAS  Google Scholar 

  • Vivas A, Bir O, Ruíz-Lozano B, Barea JM, Azcón R (2006) Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62:1523–1533

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Liu X, Zhang X, Liang X, Zhang W (2011) Growth response and phytoremediation ability of reed for diesel contaminant. Procedia Environ Sci 8:68–74

    Article  CAS  Google Scholar 

  • Wang W, Deng Z, Tan H, Cao L (2013) Effects of Cd, Pb, Zn, Cu-resistant endophytic Enterobacter sp. CBSB1 and Rhodotorula sp. CBSB79 on the growth and phytoextraction of Brassica plants in multimetal contaminated soils. Int J Phytoremediation 15:488e497

    Google Scholar 

  • Wang L, Gong H, Liao W, Wang Z (2015) Accumulation of particles on the surface of leaves during leaf expansion. Sci Total Environ 532:420–434

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J (2009a) Exploiting plant–microbe partnerships for improving biomass production and remediation. Trends Biotechnol 27:591–598

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009b) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, Truyens S, Dupae J, Newman L, Taghavi S, Lelie D, Carleer R, Vangronsveld J (2010) Potential of the TCE degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings. Environ Pollut 158:2915–2919

    Article  CAS  PubMed  Google Scholar 

  • Weyens N, Thijs S, Popek R, Witters N, Przybysz A, Espenshade J, Gawronska H, Vangronsveld J, Gawronski SW (2015) The role of plant–microbe interactions and their exploitation for phytoremediation of air pollutants. Int J Mol Sci 16:25576–25604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler CT, Hughes LT, Oldroyd J, Pulford ID (2001) Effect of nickel on Frankia and its symbiosis with Alnus glutinosa (L.) gaertn. Plant Soil 231:81–90

    Google Scholar 

  • Whipps JM (1990) Carbon utilization. In: Lynch JM (ed) The rhizosphere. Wiley-Interscience, Chichester, pp 59–97

    Google Scholar 

  • White PM, Wolf DC, Thoma GJ, Reynolds CM (2006) Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water Air Soil Pollut 169:207–220

    Article  CAS  Google Scholar 

  • Williams PM, de Mallorca MS (1982) Abscisic acid and gibberellin-like substances in roots and root nodules of Glycine max. Plant Soil 65:19–26

    Article  CAS  Google Scholar 

  • Wilson D (1993) Fungal endophytes: out of sight but should not be out of mind. Oikos 68:379–384

    Article  Google Scholar 

  • World Health Organization (WHO) (2000) The right to healthy indoor air-report on a WHO meeting. World Health Organization (WHO): Bilthoven, The Netherlands

    Google Scholar 

  • Wu SC, Cheung KC, Luo YM, Wong MH (2006) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135

    Article  CAS  PubMed  Google Scholar 

  • Wu QS, He XH, Zou YN, Liu CY, Xiao J, Li Y (2012) Arbuscular mycorrhizas alter root system architecture of Citrus tangerine through regulating metabolism of endogenous polyamines. Plant Growth Regul 68:27–35

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:1–20

    Article  Google Scholar 

  • Yang X, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. J Trace Elem Med Biol 18:339–353

    Article  CAS  PubMed  Google Scholar 

  • Yeh TY, Pan CT (2012) Effect of chelating agents on copper, zinc, and lead uptake by sunflower, Chinese cabbage, cattail, and reed for different organic contents of soils. J Environ Anal Toxicol 2:2161–0525

    Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    Article  CAS  PubMed  Google Scholar 

  • Yousaf S, Andria V, Reichenauer TG, Smalla K, Sessitsch A (2010) Phylogenetic and functional diversity of alkane degrading bacteria associate with Italian ryegrass (Lolium multiflorum) and birds foot trefoil (Lotus corniculatus) in a petroleum oil-contaminated environment. J Hazard Mater 184:523–532

    Article  CAS  PubMed  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  CAS  PubMed  Google Scholar 

  • Zamioudis C, Pieterse CM (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Zheng LC, Yi XY (2009) Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.). Int J Environ Sci Technol 6:249–258

    Article  Google Scholar 

  • Zhang X, Xia H, Li ZA, Zhuang P, Gao B (2011a) Identification of a new potential Cd-hyperaccumulator Solanum photeinocarpum by soil seed bank-metal concentration gradient method. J Hazard Mater 189:414–419

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, He L, Chen Z, Wang Q, Qian M, Sheng X (2011b) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper-tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83:57–62

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Lin L, Chen M, Zhu Z, Yang W, Chen B, Yang X, An Q (2012) A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance. J Hazard Mater 229:361–370

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Prakash, G., Soni, R., Mishra, R., Sharma, S. (2019). Role of Plant-Microbe Interaction in Phytoremediation. In: Kumar, M., Muthusamy, A., Kumar, V., Bhalla-Sarin, N. (eds) In vitro Plant Breeding towards Novel Agronomic Traits. Springer, Singapore. https://doi.org/10.1007/978-981-32-9824-8_6

Download citation

Publish with us

Policies and ethics