Skip to main content

Environmental and Human Exposure to Antimicrobial Agent Triclosan: A Review

  • Chapter
  • First Online:
Book cover In vitro Plant Breeding towards Novel Agronomic Traits

Abstract

Triclosan, commonly found in the ingredient list of several household and personal care products, exploded onto the market because of its broad-spectrum antimicrobial activity. Triclosan was introduced in the market owing to its antibacterial and antifungal properties but has now become a ubiquitous pollutant. Excessive use of triclosan has resulted in its presence not only in the environment but in the human body as well. The different mechanisms by which triclosan acts include efflux mechanisms, inhibition of fatty acid synthesis, and membrane destabilization. The major source of triclosan pollution in the environment is through wastewater. There are growing concerns regarding the possible harmful effects of triclosan on animal and human health. Triclosan, a known endocrine disruptor, has been reported to be a potent carcinogen, mutagen, and a teratogen. It is feared that its overuse may contribute to the growth of super-resistant bacteria. By the virtue of being similar in its mode of action to various antibiotics, it might confer antibiotic resistance among different bacterial species. This review article aims to present an overview of the advanced research on triclosan, primarily focusing on its toxicity and environmental persistence. It also highlights the potential hazards of triclosan including its link to developing cross-resistance. Keeping in view the limitation of the present knowledge base, future research directions have also been highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adolfsson-Erici M, Patterson M, Parkkonen J, Sturve J (2002) Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere 46:1485–1489

    Article  CAS  PubMed  Google Scholar 

  • Al-Doori Z, Morrison D, Edwards G, Gemmell C (2003) Susceptibility of MRSA to triclosan. J Antimicrob Chemother 51:185–186

    Article  CAS  PubMed  Google Scholar 

  • Allmyr M, Adolfsson-Erici M, McLachlan MS, Sandborgh-Englund G (2006) Triclosan in plasma and milk from Swedish nursing mothers and their exposure via personal care products. Sci Total Environ 372:87–93

    Article  CAS  PubMed  Google Scholar 

  • Aranami K, Readman JW (2007) Photolytic degradation of triclosan in freshwater and seawater. Chemosphere 66:1052–1056

    Article  CAS  PubMed  Google Scholar 

  • Arancibia R, Caceres M, Martinez J, Smith PC (2009) Triclosan inhibits tumor necrosis factor-stimulated urokinase production in human gingival fibroblasts. J Periodontal Res 44:726–735

    Article  CAS  PubMed  Google Scholar 

  • Azzouz A, Rascon AJ, Ballesteros E (2016) Simultaneous determination of parabens, alkylphenols, phenylphenols, bisphenol A and triclosan in human urine, blood and breast milk by continuous solid-phase extraction and gas-chromatography-mass spectrometry. J Pharm Biomed Anal 119:16–26

    Article  CAS  PubMed  Google Scholar 

  • Bagley DM, Lin YJ (2000) Clinical evidence for the lack of triclosan accumulation from daily use in dentifrices. Am J Dent 13:148–152

    CAS  PubMed  Google Scholar 

  • Bai X, Acharya K (2016) Removal of trimethoprim, sulfamethoxazole and triclosan by the green alga Nannochloris sp. J Hazard Mater 315:70–75

    Article  CAS  PubMed  Google Scholar 

  • Bailey AM, Constantinidou C, Ivens A, Garvey MI, Webber MA et al (2009) Exposure of Escherichia coli and Salmonella enterica serovar typhimurium to triclosan induces a species-specific response, including drug detoxification. J Antimicrob Chemother 64:973–985

    Article  CAS  PubMed  Google Scholar 

  • Balmer ME, Poiger T, Droz C, Romanin K, Bergqvist PA et al (2004) Occurrence of methyl triclosan, a transformation product of the bactericide triclosan, in fish from various lakes in Switzerland. Environ Sci Technol 38:390–395

    Article  CAS  PubMed  Google Scholar 

  • Beck H, Droβ A, Eckart K, Mathar W, Wittkowski R (1989) Determination of PCDDs and PCDFs in Irgasan DP 300. Chemosphere 19:167–170

    Article  Google Scholar 

  • Bennett ER, Ross PS, Huff D, Alaee M, Letcher RJ (2009) Chlorinated and brominated organic contaminants and metabolites in the plasma and diet of a captive killer whale (Orcinus orca). Mar Pollut Bull 58:1078–1083

    Article  CAS  PubMed  Google Scholar 

  • Bergler H, Wallner P, Ebeling A, Leitinger B, Fuchsbichler S et al (1994) Protein EnvM is the NADH-dependent enoyl-ACP reductase (FabI) of Escherichia coli. J Biol Chem 269:5493–5496

    CAS  PubMed  Google Scholar 

  • Bertelsen RJ, Longnecker MP, Løvik M, Calafat AM, Carlsen KH et al (2013) Triclosan exposure and allergic sensitization in Norwegian children. Allergy 68:84–91

    Article  CAS  PubMed  Google Scholar 

  • Birosova L, Mikulasova M (2009) Development of triclosan and antibiotic resistance in Salmonella enterica serovar typhimurium. J Med Microbiol 58:436–441

    Article  CAS  PubMed  Google Scholar 

  • Brady LM, Thomson M, Palmer MA, Harkness JL (1990) Successful control of endemic MRSA in a cardiothoracic surgical unit. Med J Aust 152:240–245

    Article  CAS  PubMed  Google Scholar 

  • Braoudaki M, Hilton AC (2005) Mechanisms of resistance in Salmonella enterica adapted to erythromycin, benzalkonium chloride and triclosan. Int J Antimicrob Agents 25:31–37

    Article  CAS  PubMed  Google Scholar 

  • Brenwald N, Fraise A (2003) Triclosan resistance in methicillin-resistant Staphylococcus aureus (MRSA). J Hosp Infect 55:141–144

    Article  CAS  PubMed  Google Scholar 

  • Buser HR, Balmer ME, Schmid P, Kohler M (2006) Occurrence of UV filters 4-methylbenzylidene camphor and octocrylene in fish from various Swiss rivers with inputs from wastewater treatment plants. Environ Sci Technol 40:1427–1431

    Article  CAS  PubMed  Google Scholar 

  • Buth JM, Grandbois M, Vikesland PJ, McNeill K, Arnold WA (2009) Aquatic photochemistry of chlorinated triclosan derivatives: potential source of polychlorodibenzo-p-dioxins. Environ Toxicol Chem 28:2555–2563

    Article  CAS  PubMed  Google Scholar 

  • Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL (2008) Urinary concentrations of triclosan in the U.S. population: 2003–2004. Environ Health Perspect 116:303–307

    Article  CAS  PubMed  Google Scholar 

  • Canosa P, Rodriguez I, Rubi E, Cela R (2007) Determination of parabens and triclosan in indoor dust using matrix solid-phase dispersion and gas chromatography with tandem mass spectrometry. Anal Chem 79:1675–1681

    Article  CAS  PubMed  Google Scholar 

  • Carey DE, MacNamara PJ (2014) The impact of triclosan on the spread of antibiotic resistance in the environment. Front Microbiol 5:780–786

    PubMed  Google Scholar 

  • Chalew TE, Halden RU (2009) Environmental exposure of aquatic and terrestrial biota to triclosan and triclocarban. J Am Water Works Assoc 45:4–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Pi B, Zhou H, Yu Y, Li L (2009) Triclosan resistance in clinical isolates of Acinetobacter baumannii. J Med Microbiol 58:1086–1091

    Article  CAS  PubMed  Google Scholar 

  • Cherednichenko G, Zhang R, Bannister RA (2012) Triclosan impairs excitation – contraction coupling and Calcium ions dynamics in striated muscle. PNAS 109:14158–14163

    Article  CAS  PubMed  Google Scholar 

  • Ciusa ML, Furi L, Knight D, Decorosi F, Fondi M et al (2012) A novel resistance mechanism to triclosan that suggests horizontal gene transfer and demonstrates a potential selective pressure for reduced biocide susceptibility in clinical strains of Staphylococcus aureus. Int J Antimicrob Agents 40:210–220

    Article  CAS  PubMed  Google Scholar 

  • Clayton EM, Todd M, Dowd JB, Aiello AE (2011) The impact of bisphenol A and triclosan on immune parameters in the US population, NHANES 2003-2006. Environ Health Perspect 119:390–396

    Article  CAS  PubMed  Google Scholar 

  • Coogan MA, La Point TW (2008) Snail bioaccumulation of triclocarban, triclosan and methyltriclosan in a North Texas, USA, stream affected by wastewater treatment plant runoff. Environ Toxicol Chem 27:1788–1793

    Article  CAS  PubMed  Google Scholar 

  • Cottell A, Denyer SP, Hanlon GW, Maillard JY (2009) Triclosan-tolerant bacteria: changes in susceptibility to antibiotics. J Hosp Infect 72:71–76

    Article  CAS  PubMed  Google Scholar 

  • Cutter CN (1999) The effectiveness of triclosan-incorporated plastic against bacteria on beef surfaces. J Food Prot 62:474–479

    Article  CAS  PubMed  Google Scholar 

  • Dayan AD (2007) Risk assessment of triclosan (Irgasan R) in human breast milk. Food Chem Toxicol 45:125–129

    Article  CAS  PubMed  Google Scholar 

  • DeLorenzo ME, Keller JM, Arthur CD, Finnegan MC, Harper HE et al (2008) Toxicity of the antimicrobial compound triclosan and formation of the metabolite methyl-triclosan in estuarine systems. Environ Toxicol 23:224–232

    Article  CAS  PubMed  Google Scholar 

  • Durbize E, Vigan M, Puzenat E (2003) Spectrum of cross-photosensitization in 18 consecutive patients with contact photoallergy to ketoprofen: associated photoallergies to non-benzophenone-containing microbe. Contact Dermatitis 48:144–149

    Article  CAS  PubMed  Google Scholar 

  • Efstratiou M, Papaioannou W, Nakou M, Ktenas E, Vrotsos IA et al (2007) Contamination of a toothbrush with antibacterial properties by oral microorganisms. J Dent 35:331–337

    Article  CAS  PubMed  Google Scholar 

  • Fair PA, Lee HB, Adams J, Darling C, Pacepavicius G et al (2009) Occurrence of triclosan in plasma of wild Atlantic bottlenose dolphins (Tursiops truncatus) and in their environment. Environ Pollut 157:2248–2254

    Article  CAS  PubMed  Google Scholar 

  • Fang JL, Vanlandin M, DaCosta GG, Beland FA (2016) Absorption and metabolism of triclosan after application to the skin of B6C3F1 mice. Environ Toxicol 31:609–623

    CAS  PubMed  Google Scholar 

  • Farre M, Asperger D, Kantiani L, Gonzalez S (2008) Assessment of the acute toxicity of triclosan and methyl triclosan in wastewater based on the bioluminescence inhibition of Vibrio fischeri. Anal Bioanal Chem 390:1999–2007

    Article  CAS  PubMed  Google Scholar 

  • Franz S, Altenburger R, Heilmeier H, Schmitt-Jansen M (2008) What contributes to the sensitivity of microalgae to triclosan? Aquat Toxicol 90:102–108

    Article  CAS  PubMed  Google Scholar 

  • Fuchsman P, Lyndall J, Bock M, Lauren D, Barber T et al (2010) Terrestrial ecological risk evaluation for triclosan in land-applied biosolids. Integr Environ Assess Manag 6:405–418

    Article  CAS  PubMed  Google Scholar 

  • Geens T, Neels H, Covaci A (2012) Distribution of bisphenol A, triclosan and n-nonylphenol in human adipose tissue, liver and brain. Chemosphere 87:796–802

    Article  CAS  PubMed  Google Scholar 

  • Geyer HJ, Schramm KW, Feicht EA, Behechti A, Steinberg C et al (2002) Half-lives of tetra-, penta-, hexa-, hepta-, and octachlorodibenzo-p-dioxin in rats, monkeys, and humans—a critical review. Chemosphere 48:631–644

    Article  CAS  PubMed  Google Scholar 

  • Glaser A (2004) The ubiquitous triclosan. A common antibacterial agent exposed. Pestic You 24:12–17

    Google Scholar 

  • Gomez-Escalda M, Maillard JY, Russell AD (2001) Effects of triclosan-sensitive and resistant strains of gram-negative bacteria. Soc Appl Microbiol 30:9–13

    Google Scholar 

  • Guillén J, Bernabeu A, Shapiro S, Villalaín J (2004) Location and orientation of Triclosan in phospholipid model membranes. Eur Biophys J 33:448–453

    Article  PubMed  CAS  Google Scholar 

  • Hay AG, Dees PM, Sayler GS (2001) Growth of bacterial consortium on triclosan. FEMS Microbiol Ecol 36:105–112

    Article  CAS  PubMed  Google Scholar 

  • Heath RJ, Rock CO (1996) Inhibition of graphic-ketoacyl-acyl carrier protein synthase III (FabH) by acyl-acyl carrier protein in Escherichia coli. J Biol Chem 271:10996–11000

    Article  CAS  PubMed  Google Scholar 

  • Heath RJ, Rubin JR, Holland DR, Zhang E, Snow ME et al (1999) Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J Biol Chem 274:11110–11114

    Article  CAS  PubMed  Google Scholar 

  • Henry ND, Fair PA (2013) Comparison of in vitro cytotoxicity, estrogenicity and anti-estrogenicity of triclosan, perfluorooctane sulfonate and perfluorooctanoic acid. J Appl Toxicol 33:265–272

    Article  PubMed  CAS  Google Scholar 

  • Houtman CJ, Van Oostveen AM, Brouwer A, Lamoree MH, Legler J (2004) Identification of estrogenic compounds in fish bile using bioassay directed fractionation. Environ Sci Technol 38:6415–6423

    Article  CAS  PubMed  Google Scholar 

  • Hovander L, Malmberg T, Athanasiadou M, Athanassiadis I, Rahm S et al (2002) Identification of hydroxylated PCB metabolites and other phenolic halogenated pollutants in human blood plasma. Arch Environ Contam Toxicol 42:105–117

    Article  CAS  PubMed  Google Scholar 

  • Hundt K, Martin D, Hammer E, Jonas U, Kindermann MK et al (2000) Transformation of triclosan by Trametes versicolor and Pycnoporus cinnabarinus. Appl Environ Microbiol 66:4157–4160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibtisham F, Nawab A, Zhao Y, Li G, Xiao M et al (2016) Effect of antimicrobial triclosan on reproductive system of male rat. Pharm Anal Acta 7(1000516):1–5

    Google Scholar 

  • Ishibashi H, Matsumura N, Hirano M, Matsuoka M, Shiratsuchi H et al (2004) Effects of triclosan on the early life stages and reproduction of medaka Oryzias latipes and induction of hepatic vitellogenin. Aquat Toxicol 67:167–179

    Article  CAS  PubMed  Google Scholar 

  • Jachero L, Ahumada I, Fuentes E, Richter P (2016) Decrease in the bioconcentration of triclosan in wheat plants according to increasing amounts of biosolids added to soil. Geoderma 276:19–25

    Article  CAS  Google Scholar 

  • James MO, Li W, Summerlot DP, Rowland-Faux L, Wood CE (2010) Triclosan is a potent inhibitor of estradiol and estrone sulfonation in sheep placenta. Environ Int 36:942–949

    Article  CAS  PubMed  Google Scholar 

  • Johnson EF, Hsu MH, Savas U, Griffin KJ (2002) Regulation of P450 4A expression by peroxisome proliferator activated receptors. Toxicology 181:203–206

    Article  PubMed  Google Scholar 

  • Jung EM, An BS, Choi KC, Jeung EB (2012) Potential estrogenic activity of triclosan in the uterus of immature rats and rat pituitary GH3 cells. Toxicol Lett 208:142–148

    Article  CAS  PubMed  Google Scholar 

  • Junker LM, Hay AG (2004) Effects of triclosan incorporation into ABS plastic on biofilm communities. J Antimicrob Chemother 53:989–996

    Article  CAS  PubMed  Google Scholar 

  • Karatzas KA, Webber MA, Jorgensen F, Woodward MJ, Piddock LJ et al (2007) Prolonged treatment of Salmonella enterica serovar typhimurium with commercial disinfectants selects for multiple antibiotic resistance, increased efflux and reduced invasiveness. J Antimicrob Chemother 60:947–955

    Article  CAS  PubMed  Google Scholar 

  • Karnjanapiboonwong A, Chase DA, Canas JE, Jackson WA, Maul JD et al (2011) Uptake of 17 α-ethynylestradiol and triclosan in pinto bean, Phaseolus vulgaris. Ecotoxicol Environ Saf 74:1336–1342

    Article  CAS  PubMed  Google Scholar 

  • Kinney CA, Furlong ET, Kolpin DW, Burkhardt MR, Steven D et al (2008) Bioaccumulation of pharmaceuticals and other anthropogenic waste indicators in earthworms from agricultural soil amended with biosolid or swine manure. Environ Sci Technol 42:1863–1870

    Article  CAS  PubMed  Google Scholar 

  • Kodavanti PRS, Curras-Collazo MC (2010) Neuroendocrine actions of organohalogens: thyroid hormones, arginine vasopressin, and neuroplasticity. Front Neuroendocrinol 31:479–496

    Article  CAS  PubMed  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM (2002) Pharmaceuticals, hormones and other organic wastewater contaminants in U.S. Streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Chakraborty A, Kural MR, Roy P (2009) Alteration of testicular steroidogenesis and histopathology of reproductive system in male rats treated with triclosan. Reprod Toxicol 27:177–185

    Article  CAS  PubMed  Google Scholar 

  • Kumar KR, Rohini P, Md AR, Devi YP (2015) A review on occurrence, fate and toxicity of Triclosan. World J Pharm Sci 4:336–369

    CAS  Google Scholar 

  • Kumari R, Ghosh Sachan S (2018) Bioconversion of toxic micropollutant triclosan to 2,4-dichlorophenol using a wastewater isolate Pseudomonas aeruginosa KS2002. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-018-2129-5

    Article  CAS  Google Scholar 

  • Larsson K, Bjorklund KL, Palm B, Wennberg M, Kaj L et al (2014) Exposure determinants of phthalates, parabens, bisphenol A and triclosan in Swedish mothers and their children. Environ Int 73:323–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Park M, Yi B, Choi K (2012) Octylphenol and triclosan induced proliferation of human breast cancer cells via an estrogen receptor-mediated signaling in vitro. Endocr Abstr 29:749

    Google Scholar 

  • Lee HR, Hwang KA, Nam KH, Kim HC, Choi KC (2014) Progression of breast cancer cells was enhanced by endocrine disrupting chemicals, triclosan and octylphenol, via an estrogen receptor-dependent signaling pathway in cellular and mouse xenograft models. Chem Res Toxicol 27:834–842

    Article  CAS  PubMed  Google Scholar 

  • Leiker TJ, Abney SR, Goodbred SL, Rosen MR (2009) Identification of methyl triclosan and halogenated analogues in male common carp (Cyprinus carpio) from Las Vegas Bay and semipermeable membrane devices from Las Vegas Wash, Nevada. Sci Total Environ 407:2102–2114

    Article  CAS  PubMed  Google Scholar 

  • Letterman RD, Amirtharajah A, O’Melia CR (2009) Coagulation and flocculation in water quality and treatment. In: Letterman RD (ed) A handbook of community water supplies, 2nd edn. McGraw-Hill, New York, pp 312–313

    Google Scholar 

  • Lin YJ (2000) Buccal absorption of triclosan following topical mouth rinse application. Am J Dent 13:215–217

    CAS  PubMed  Google Scholar 

  • Lindstorm A, Buerge IJ, Poiger T, Bergovist PA, Muller MD et al (2002) Occurrence and environmental behavior of the bactericide triclosan and its methyl derivative in surface waters and in wastewater. Environ Sci Technol 36:2322–2329

    Article  CAS  Google Scholar 

  • Lishman L, Smyth SA, Sarafin K, Kleywegt S, Toito J et al (2006) Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada. Sci Total Environ 367:544–558

    Article  CAS  PubMed  Google Scholar 

  • Lores M, Llompart M, Sanchez-Prado L, Garcia-Jares C, Cela R (2005) Confirmation of the formation of dichlorodibenzo-p-dioxin in the photodegradation of triclosan by photo-SPME. Anal Bioanal Chem 381:1294–1298

    Article  CAS  PubMed  Google Scholar 

  • Lozano N, Rice CP, Ramirez M, Torrents A (2010) Fate of triclosan in agricultural soils after biosolid applications. Chemosphere 78:760–766

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Zheng L, Li Y, Pan S, Hu J et al (2013) Triclosan reduces the levels of global DNA methylation in HepG2 cells. Chemosphere 90:1023–1029

    Article  CAS  PubMed  Google Scholar 

  • MacIsaac JK, Gerona RR, Blanc PD, Apatira L, Friesen MW et al (2014) Health care worker exposures to the antibacterial agent triclosan. J Occup Environ Med 56:834–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathew J, Joy NS, Kuppuswamy S (2017) A review on “Triclosan a controversial antibacterial”. Int J Pharm Pharm Sci 8:200–216

    CAS  Google Scholar 

  • McAvoy DC, Schatowitz B, Jacob M, Hauk A, Eckhoff WS (2002) Measurement of triclosan in wastewater treatment systems. Environ Toxicol Chem 21:1323–1329

    Article  CAS  PubMed  Google Scholar 

  • McLeod R, Muench SP, Rafferty JB (2001) Triclosan inhibits the growth of Plasmodium falciparum and Toxoplasma gondii by inhibition of apicompexan FabI. Int J Parasitol 31:109–113

    Article  CAS  PubMed  Google Scholar 

  • McMurry LM, McDermott PF, Levy SB (1999a) Genetic evidence that InhA of Mycobacterium smegmatis is a target for triclosan. Antimicrob Agents Chemother 43:711–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMurry LM, McDermott PF, Lev SB (1999b) Genetic evidence that InhA of Mycobacterium smegmatis is a target for triclosan. Antimicrob Agents Chemother 43:711–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meade MJ, Waddell RL, Callahan TM (2001) Soil bacteria Pseudomonas putida and Alcaligenes xylosoxidans subsp. denitrificans inactivate triclosan in liquid and solid substrates. FEMS Microbiol Lett 204:45–48

    Article  CAS  PubMed  Google Scholar 

  • Mendez MO, Valdez EM, Martinez EM, Sancedo M, Wilson BA (2016) Fate of triclosan in irrigated soil: degradation in soil and translocation into onion and tomato. J Environ Qual 45:1029–1035

    Article  CAS  PubMed  Google Scholar 

  • Miller TL, Lorusso DJ, Walsh ML, Deinzer ML (1983) The acute toxicity of penta-, hexa- and heptachlorohydroxydiphenyl ethers in mice. J Toxicol Environ Health 12:245–253

    Article  CAS  PubMed  Google Scholar 

  • Miller TR, Heidler J, Chillrud SN, Delaquil A, Ritchie JC et al (2008) Fate of triclosan and evidence for reductive dechlorination of triclocarban in estuarine sediments. Environ Sci Technol 42:4570–4576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra S, Karmodiya K, Parasuraman P, Surolia A, Surolia N (2008) Design, synthesis, and application of novel Triclosan prodrugs as potential antimalarial and antibacterial agents. Bioorg Med Chem 16:5536–5546

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki T, Yamagishi T, Matsumoto M (1984) Residues of 4-chloro- 1-(2,4-dichlorophenoxy)-2-methoxybenzene (triclosan methyl) in aquatic biota. Bull Environ Contam Toxicol 32:227–232

    Article  CAS  PubMed  Google Scholar 

  • Moss T, Howes D, Williams F (2000) Percutaneous penetration and dermal metabolism of triclosan (2,4,4′-trichloro-2′-hydroxydiphenyl ether). Food Chem Toxicol 38:361–370

    Article  CAS  PubMed  Google Scholar 

  • Nester EW, Anderson DG, Robert CE Jr, Pearsall NN, Nester MT (2001) Microbiology: a human perspective. McGraw-Hills, New York

    Google Scholar 

  • Ni Y, Zhang Z, Zhang Q, Chen J, Wu Y et al (2005) Distribution patterns of PCDD/Fs in chlorinated chemicals. Chemosphere 60:779–784

    Article  CAS  PubMed  Google Scholar 

  • NIH, Household Products Database (2007) Available online: https://householdproducts.nlm.nih.gov/cgi-bin/household/brands?tbl=chem&id=75. Accessed 20 Feb 2018

  • Orvos DR, Versteeg DJ, Inauen J, Capdevielle M, Rothenstein A et al (2002) Aquatic toxicity of triclosan. Environ Toxicol Chem 21:1338–1349

    Article  CAS  PubMed  Google Scholar 

  • Pannu MW, Toor GS, O’Connor GA, Wilson PC (2012) Toxicity and bioaccumulation of biosolids-borne triclosan in food crops. Environ Toxicol Chem 31:2130–2137

    Article  CAS  PubMed  Google Scholar 

  • Park I, Zhang N, Ogunyoku AT, Young TM, Scow KM (2013) Effects of triclosan and biosolids on microbial community composition in an agricultural soil. Water Environ Res 85:2237–2242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pi J, Bai Y, Zhang Q, Wong V, Floering LM et al (2007) Reactive oxygen species as a signal in glucose-stimulated insulin secretion. Diabetes 56:1783–1791

    Article  CAS  PubMed  Google Scholar 

  • Queckenberg C, Meins J, Wachall B, Doroshyenko O, Tomalik-Scharte D et al (2010) Absorption, pharmacokinetics and safety of triclosan after dermal administration. Antimicrob Agents Chemother 54:570–572

    Article  CAS  PubMed  Google Scholar 

  • Ramaswamy BR, Shanmugam G, Velu G, Rengarajan B, Larsson DG (2011) GCMS analysis and ecotoxicological risk assessment of Triclosan, carbamazepine and parabens in Indian rivers. J Hazard Master 186:1586–1593

    Article  CAS  Google Scholar 

  • Reiss R, Mackay N, Habig C, Griffin J (2002) An ecological risk assessment for triclosan in lotic systems following discharge from wastewater treatment plants in the United States. Environ Toxicol Chem 21:2483–2492

    Article  CAS  PubMed  Google Scholar 

  • Ricart M, Guasch H, Alberch M, Barcelo D, Bonnineau C et al (2010) Triclosan persistence through wastewater system plants and its potential toxic effects on river biofilms. Aquat Toxicol 100:346–353

    Article  CAS  PubMed  Google Scholar 

  • Robertshaw H, Leppard B (2007) Contact dermatitis to triclosan in toothpaste. Contact Dermatitis 57:383–384

    Article  PubMed  Google Scholar 

  • Rodricks JV, Swenberg JA, Borzelleca JF, Maronpot RR, Shipp AM (2010) Triclosan: a critical review of the experimental data and development of margins of safety for consumer products. Crit Rev Toxicol 40:422–484

    Article  CAS  PubMed  Google Scholar 

  • Rule KL, Ebbett VR, Vikesland PJ (2005) Formation of chloroform and chlorinated organics by free-chlorine-mediated oxidation of Triclosan. Environ Sci Technol 39:3176–3185

    Article  CAS  PubMed  Google Scholar 

  • Russell AD (2003) Similarities and differences in the responses of microorganisms to biocides. J Antimicrob Chemother 52:750–763

    Article  CAS  PubMed  Google Scholar 

  • Russell AD, McDonnell G (2000) Concentration: a major factor in studying biocidal action. J Hosp Infect 44:1–3

    Article  CAS  PubMed  Google Scholar 

  • Russell AD, Furr JR, Maillard JY (1997) Microbial susceptibility and resistance to biocides: an understanding. ASM News 63:481–487

    Google Scholar 

  • Sanchez P, Moreno E, Martinez JL (2005) The biocide triclosan selects Stenotrophomonas maltophilia mutants that overproduce the SmeDEF multidrug efflux pump. Antimicrob Agents Chemother 49:781–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Prado L, Llompart M, Lores M, Fernandez-Alvarez M, Garcia-Jares C et al (2006) Further research on the photo-SPME of triclosan. Anal Bioanal Chem 384:1548–1557

    Article  CAS  PubMed  Google Scholar 

  • Sandborgh-Englund G, Adolfsson-Erici M, Odham G, Ekstrand J (2006) Pharmacokinetics of triclosan following oral ingestion in humans. J Toxicol Environ Health 69:1861–1873

    Article  CAS  Google Scholar 

  • SCCP. Scientific Committee on Consumer Products opinion on: Triclosan (SCCP/1251/09) Adopted by the SCCP during the 7th plenary meeting on 22 June 2010

    Google Scholar 

  • Schiffer C, Muller A, Egeberg CL, Alvarez L, Brenker CA et al (2014) Direct action of endocrine disrupting chemicals on human sperm. EMBO Rep 15:758–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid MD, Kalpan N (2004) Reduced triclosan susceptibility in methicillin-resistant Staphylococcus epidermidis. Antimicrob Agents Chemother 48:1397–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweizer HP (2001) Triclosan: a widely used biocide and its link to antibiotics. FEMS Microbiol Lett 202:1–7

    Article  CAS  PubMed  Google Scholar 

  • Shanguman G, Ramasamy K, Selvaraj KK, Sampath S, Ramaswamy BR (2014) Triclosan in fresh water fish Gibelion catla from the Kaveri river, India, and its consumption risk assessment. Environ Forensics 15:207–212

    Article  CAS  Google Scholar 

  • Singer H, Muller S, Tixier C, Pillonel L (2002) Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ Sci Technol 36:4998–5004

    Article  CAS  PubMed  Google Scholar 

  • Spanier AJ, Fausnight T, Camacho TF, Braun JM (2014) The associations of triclosan and paraben exposure with allergen sensitization and wheeze in children. Allergy Asthma Proc 35:475–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura I, Kanbara Y, Saito M, Horimoto K, Satoh M et al (2012) Triclosan, an antibacterial agent, increases intracellular Zn+2 concentration in rat thymocytes: its relation to oxidative stress. Chemosphere 86:70–75

    Article  CAS  PubMed  Google Scholar 

  • Tastana BE, Donmeza G (2015) Biodegradation of pesticide triclosan by A. versicolor in simulated wastewater and semi-synthetic media. Pestic Biochem Physiol 118:33–37

    Article  CAS  Google Scholar 

  • Tatarazako N, Ishibashi H, Teshima K, Kishi K, Arizono K (2004) Effects of triclosan on various organisms. Environ Sci 11:133–140

    CAS  PubMed  Google Scholar 

  • Thompson A, Griffin P, Stuetz R, Cartmell E (2005) The fate and removal of triclosan during wastewater treatment. Water Environ Res 77:63–67

    Article  CAS  PubMed  Google Scholar 

  • Valters K, Li HX, Alaee M, D’Sa I, Marsh G (2005) Polybrominated diphenyl ethers and hydroxylated and methoxylated brominated and chlorinated analogues in the plasma of fish from the Detroit River. Environ Sci Technol 39:5612–5619

    Article  CAS  PubMed  Google Scholar 

  • Veldhoen N, Skirrow RC, Osachoff H, Wigmore H, Clapson DJ et al (2006) The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. Aquat Toxicol 80:217–227

    Article  CAS  PubMed  Google Scholar 

  • Vermeiren L, Devlieghere F, Debevere J (2002) Effectiveness of some recent antimicrobial packaging concepts. Food Addit Contam 19:163–171

    Article  CAS  PubMed  Google Scholar 

  • Villalain J, Mateo CR, Aranda FJ, Shapiro S, Micol V (2001) Membranotropic effects of the antibacterial agent triclosan. Arch Biochem Biophys 390:128–136

    Article  CAS  PubMed  Google Scholar 

  • Wallet MA, Calderon NL, Alonso TR, Choe CS, Catalfamo DL et al (2013) Triclosan alters antimicrobial and inflammatory responses of epithelial of epithelial cells. Oral Dis 19:296–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Asimakopoulos AG, Kannan K (2015) Accumulation of 19 environmental phenolic and xenobiotic heterocyclic aromatic compounds in human adipose tissue. Environ Int 78:45–50

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Yin Y, Wang J (2018) Microbial degradation of triclosan by a novel strain of Dyella sp. Appl Microbiol Biotechnol 102:1997–2006

    Article  CAS  PubMed  Google Scholar 

  • Wilson BA, Salyers AA (2003) Is the evolution of bacterial pathogens an out-of-body experience? Trends Microbiol 11:347–350

    Article  CAS  PubMed  Google Scholar 

  • Wilson BA, Smith VH, DeNoyelles F, Larive CK (2003) Effects of three pharmaceutical and personal care products on natural freshwater algal assemblages. Environ Sci Technol 37:1713–1719

    Article  CAS  PubMed  Google Scholar 

  • Winitthana T, Lawanprasert S, Chanvorachote P (2014) Triclosan potentiates epithelial-to-mesenchymal transition in anoikis-resistant human lung cancer cells. PLoS One 9:110851

    Article  CAS  Google Scholar 

  • Wolff MS, Teitelbaum SL, Windham G, Pinney SM, Britton JA et al (2007) Pilot study of urinary biomarkers of phytoestrogens, phthalates, and phenols in girls. Environ Health Perspect 115:116–121

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Wu Q, Belanda FA, Gea P, Manjanathab MG et al (2014) Differential effects of triclosan on the activation of mouse and human peroxisome proliferator-activated receptor alpha. Toxicol Lett 231:17–28

    Article  CAS  PubMed  Google Scholar 

  • Xue J, Wu Q, Sakhtivel S, Pavithran PV, Vasukutty JR et al (2015) Urinary levels of endocrine-disrupting chemicals, including bisphenols, bisphenol A diglycidyl ethers, benzophenones, parabens and triclosan in obese and non-obese Indian children. Environ Res 137:120–128

    Article  CAS  PubMed  Google Scholar 

  • Yang LH, Ying GG, Su HC (2008) Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata. Environ Toxicol Chem 27:1201–1208

    Article  CAS  PubMed  Google Scholar 

  • Yin J, Wei L, Shi Y, Zhang J, Wu Q et al (2016) Chinese population exposure to triclosan and triclocarban as measured via human urine and nails. Environ Geochem Health 38:1125–1135

    Article  CAS  PubMed  Google Scholar 

  • Yueh MF, Taniguchi K, Chen S, Evans RM, Hammock BD et al (2014) The commonly used antimicrobial additive triclosan is a liver tumor promoter. PNAS 111:172005

    Article  CAS  Google Scholar 

  • Zhao F (2006) Biodegradation of triclosan by a triclosan degrading isolate and an ammonia oxidizing bacterium. PhD thesis, Texas A&M University

    Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to the Council of Scientific and Industrial Research (Scheme no. 24(0340)/16/EMR-II) for providing us with the financial assistance for the work, and we also acknowledge Birla Institute of Technology, Mesra, for providing us with the infrastructure to carry out our work.

Conflict of Interests

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Sachan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumari, R., Sachan, S.G., Sachan, A. (2019). Environmental and Human Exposure to Antimicrobial Agent Triclosan: A Review. In: Kumar, M., Muthusamy, A., Kumar, V., Bhalla-Sarin, N. (eds) In vitro Plant Breeding towards Novel Agronomic Traits. Springer, Singapore. https://doi.org/10.1007/978-981-32-9824-8_13

Download citation

Publish with us

Policies and ethics