Skip to main content

Stress Protectant Secondary Metabolites and their Metabolic Engineering to Enhance Abiotic Stress Tolerance in Plants

  • Chapter
  • First Online:
In vitro Plant Breeding towards Novel Agronomic Traits

Abstract

Plants produce huge numbers of secondary metabolites, which play many essential roles in their adaptation to the changing environment and during abiotic stresses, such as drought, temperature, salinity, etc. Major classes of secondary metabolites, such as isoprenoids, carotenoids, and flavonoids, exhibited potential of abiotic stress tolerance. Synthesis and accumulation of secondary metabolites markedly increased during abiotic stress to cope with harsh abiotic stress conditions, suggesting a tight link between secondary metabolite accumulation and tolerance of plants to abiotic stresses. Therefore, abiotic stress tolerance of plants can be enhanced by manipulating the synthesis and accumulation of secondary metabolites. Metabolic engineering approaches have been very useful to manipulate biosynthesis and accumulation of secondary metabolites such as isoprenoids, carotenoids, and flavonoids and plant hormones, such as abscisic acid. In the past few years, metabolic engineering of secondary metabolic pathways to confer abiotic stress tolerance has been successfully performed in Arabidopsis (Arabidopsis thaliana), tobacco (Nicotiana tabacum), sweet potato (Ipomoea batatas), alfalfa (Medicago sativa L.), S. europaea, and Brassica (Brassica napus). The present chapter highlights roles of abiotic stress-protecting secondary metabolites and discusses progresses and prospects of metabolic engineering of secondary metabolite biosynthesis to enhance abiotic stress tolerance of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aharoni A, Jongsma MA, Bouwmeester HJ (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci 10:594–602

    Article  CAS  PubMed  Google Scholar 

  • Andrade-Souza V, Costa MGC, Chen CX, Gmitter FG Jr, Costa MA (2011) Physical location of the carotenoid biosynthesis genes Psy and b-Lcy in Capsicum annuum (Solanaceae) using heterologous probes from Citrus sinensis (Rutaceae). Genet Mol Res 10:404–409

    Article  CAS  PubMed  Google Scholar 

  • Bajda A, Konopka-Postupolska D, Krzymowska M et al (2009) Role of polyisoprenoids in tobacco resistance against biotic stresses. Physiol Plant 135:351–364

    Article  CAS  PubMed  Google Scholar 

  • Bakhsh A, Hussain T (2015) Engineering crop plants against abiotic stress: current achievements and prospects. Emir J Food Agric 27:24–39

    Article  Google Scholar 

  • Bakshi M, Oelmüller R (2014) WRKY transcription factors: Jack of many trades in plants. Plant Signal Behav 9:e27700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatnagar-Mathur P, Vadez V, Sharma KK (2008) Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects. Plant Cell Rep 27:411–424

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bramley PM (1997) The regulation and genetic manipulation of carotenoid biosynthesis in tomato fruit. Pure Appl Chem 69:2159–2162

    Article  CAS  Google Scholar 

  • Bromham L, Saslis-Lagoudakis CH, Bennett TH, Flowers TJ (2013) Soil alkalinity and salt tolerance: adapting to multiple stresses. Biol Lett 9:1744

    Article  Google Scholar 

  • Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52:98–111

    Article  CAS  PubMed  Google Scholar 

  • Butelli E, Titta L, Giorgio M et al (2008) Enrichment of tomato fruit with health-promoting anthocyanins by expression of select transcription factors. Nat Biotechnol 26:1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P, Reforgiato-Recupero G, Martin C (2012) Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell 24:1242–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Tony HH, Murata N (2002) Enhancement of tolerance of abiotic stress by metabolic engineering of betaines and other compatible solutes. Curr Opin Plant Biol 5:250–257

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Han H, Jiang P, Nie L, Bao H, Fan P, Lv S, Feng J, Li Y (2011) Transformation of beta-lycopene cyclase genes from Salicornia europaea and Arabidopsis conferred salt tolerance in Arabidopsis and tobacco. Plant Cell Physiol 52:909–921

    Article  CAS  PubMed  Google Scholar 

  • Cordoba E, Salmi M, Leon P (2009) Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. J Exp Bot 60:2935–2943

    Article  CAS  Google Scholar 

  • Cunningham FX, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557–583

    Article  CAS  PubMed  Google Scholar 

  • Dall’Osto L, Fiore A, Cazzaniga S, Giuliano G, Bassi R (2007) Different roles of - and -branch xanthophylls in photosystem assembly and photoprotection. J Biol Chem 282:35056–35068

    Article  PubMed  CAS  Google Scholar 

  • Davison PA, Hunter CN, Horton P (2002) Overexpression of beta-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418:203–206

    Article  CAS  PubMed  Google Scholar 

  • Dixon RA, Liu C, Jun JH (2013) Metabolic engineering of anthocyanins and condensed tannins in plants. Curr Opin Biotechnol 24:329–335

    Article  CAS  PubMed  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  CAS  PubMed  Google Scholar 

  • Edreva A, Velikova V, Tsonev T, Dagnon A, Gurel L, Gesheva AE (2008) Stress-protective role of secondary metabolites: diversity of functions and mechanisms. Gen Appl Plant Physiol 34:67–78

    CAS  Google Scholar 

  • Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66:94–116

    Article  CAS  PubMed  Google Scholar 

  • Ferdinando MD, Brunetti C, Fini A, Tattini M (2012) Flavonoids as antioxidants in plants under abiotic stresses. In: Ahmad P, Prasad M (eds) Abiotic stress responses in plants. Springer, New York

    Google Scholar 

  • FL, Schnitzler JP (2010) Abiotic stresses and induced BVOCs. Trends Plant Sci 15(3):154–166

    Article  CAS  Google Scholar 

  • Franke RB, Dombrink I, Schreiber L (2012) Suberin goes genomics: use of a short living plant to investigate a long lasting polymer. Front Plant Sci 3:4–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    Article  CAS  PubMed  Google Scholar 

  • Galpaz N, Ronen G, Khalfa Z, Zamir D, Hirschberg J (2006) A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. Plant Cell 18:1947–1960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ganjewala D (2016) Secondary metabolite credentials and biological properties of Litchi chinensis. In: Kumar M, Kumar V, Prasad R, Varma A (eds) The Litchi: biotechnology. Springer, Heidelberg, pp 213–242

    Google Scholar 

  • Ganjewala D, Kumar S, Luthra R (2009) An account of cloned genes of methyl-erythritol-4-phosphate pathway of isoprenoid biosynthesis in plants. Curr Issues Mol Biol S1:34–44

    Google Scholar 

  • Gomez Galera S, Pelacho AM, Gene A, Capell T, Christou P (2007) The genetic manipulation of medicinal and aromatic plants. Plant Cell Rep 26:1689–1715

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez A, Zhao M, Leavitt JM, Lloyd AM (2008) Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53:814–827

    Article  CAS  PubMed  Google Scholar 

  • Gotz T, Sandmann G, Romer S (2002) Expression of a bacterial carotene hydroxylase gene (crtZ) enhances UV tolerance in tobacco. Plant Mol Biol 50:129–142

    Article  PubMed  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    Article  CAS  PubMed  Google Scholar 

  • Han H, Li Y, Zhou S (2008) Overexpression of phytoene synthase gene from Salicornia europaea alters response to reactive oxygen species under salt stress in transgenic Arabidopsis. Biotechnol Lett 30:1501–1507

    Article  CAS  PubMed  Google Scholar 

  • Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    Article  CAS  PubMed  Google Scholar 

  • Jain M (2013) Emerging role of metabolic pathways in abiotic stress tolerance. J Plant Biochem Physiol 1:2–3

    Article  Google Scholar 

  • Kang L, Park SC, Ji CY, Kim HS, Lee HS, Kwak SS (2017) Metabolic engineering of carotenoids in transgenic sweet potato. Breed Sci 67:27–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur G, Kumar S, Nayyar H, Upadhyaya HD (2008) Cold stress injury during the pod-filling phase in chickpea (Cicer arietinum L.): effects on quantitative and qualitative components of seeds. J Agron Crop Sci 194:457–464

    Google Scholar 

  • Kim SH, Ahn YO, Ahn MJ, Lee HS, Kwak SS (2012) Down-regulation of β-carotene hydroxylase increasesβ-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweet potato. Phytochemistry 74:69–78

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Kim YH, Ahn YO, Ahn MJ, Jeong JC, Lee HS et al (2013a) Down regulation of the lycopene ϵ-cyclase gene increases carotenoid synthesis via the β-branch-specific pathway and enhances salt-stress tolerance in sweet potato transgenic calli. Physiol Plant 147:432–442

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Ahn YO, Ahn MJ, Jeong JC, Lee HS, Kwak SS (2013b) Cloning and characterization of an Orange gene that increases carotenoid accumulation and salt stress tolerance in transgenic sweet potato cultures. Plant Physiol Biochem 70:445–454

    Article  CAS  PubMed  Google Scholar 

  • Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355

    Article  CAS  PubMed  Google Scholar 

  • Krauss S, Schnitzler WH, Grassmann J, Woitke M (2005) The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato. J Agric Food Chem 54:441–448

    Article  CAS  Google Scholar 

  • Kusano M, Tohge T, Fukushima A, Kobayashi M, Hayashi N, Otsuki H, Kondou Y, Goto H, Kawashima M, Matsuda F, Niida R, Matsui M, Saito K, Fernie AR (2011) Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light. Plant J 67:354–369

    Article  CAS  PubMed  Google Scholar 

  • Lawlor DW (2013) Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J Exp Bot 64:83–108

    Article  CAS  PubMed  Google Scholar 

  • Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L et al (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430

    Article  CAS  PubMed  Google Scholar 

  • Loivamäki M, Gilmer F, Fischbach RJ, Sorgel C, Bachl A, Walter A, Schnitzler JP (2007) Arabidopsis, a model to study biological functions of isoprene emission? Plant Physiol 144:1066–1078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malhotra C, Kapoor RT, Ganjewala D (2016a) Alleviation of abiotic and biotic stresses in plants by silicon supplementation. Sci Agric 13:59–73

    CAS  Google Scholar 

  • Malhotra C, Kapoor RT, Ganjewala D (2016b) Protective role of sodium silicate against water stress in Lycopersicon esculentum mill. Int J Pharm Biosci 7:909–917

    CAS  Google Scholar 

  • Malhotra C, Kapoor RT, Ganjewala D, Singh NB (2017) Sodium silicate mediated response of antioxidative defense system in Lycopersicon esculentum mill. under water stress. Int J Phytomedicine 9:364–378

    Article  CAS  Google Scholar 

  • Mantri N, Patade V, Penna S, Ford R (2012) Abiotic stress responses in plants: present and future. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants. Springer, New York, pp 1–19

    Google Scholar 

  • Mazid M, Khan TA, Mohammad F (2011) Effect of abiotic stress on synthesis of secondary plant products: a critical review. Agric Rev 32:172–182

    Google Scholar 

  • Mierziak J, Kostyn K, Kulma A (2014) Flavonoids as important molecules of plant interactions with the environment. Molecules 19:16240–16265

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ 33:453–467

    Article  CAS  PubMed  Google Scholar 

  • Min DH, Zhao Y, Huo DY, Li LC, Chen M, Xu ZS, Ma YZ (2013) Isolation and identification of a wheat gene encoding a zinc finger protein (TaZnFP) responsive to abiotic stresses. Acta Physiol Plant 35:1597–1604

    Article  CAS  Google Scholar 

  • Muhammad R, Khurram S, Rashid A, Moddassir A, Imran H, Shahid M, Gerald AB, Asir AS (2014) Cloning and characterization of Na+/H+ antiporter (LfNHX1) gene from a halophyte grass Leptochloa fusca for drought and salt tolerance. Mol Biol Rep 41:1669–1682

    Article  CAS  Google Scholar 

  • Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K, Michael AJ, Tohge T, Yamazaki M, Saito K (2014) Enhancement of oxidative and drought tolerance in Arabidopsis by over accumulation of antioxidant flavonoids. Plant J 77:367–379

    Article  CAS  PubMed  Google Scholar 

  • Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56:165–185

    Article  CAS  PubMed  Google Scholar 

  • Naqvi S, Zhu C, Farre G, Ramessar K, Bassie L, Breitenbach J et al (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci U S A 106:7762–7767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nascimento NC, Fett-Neto AG (2010) Plant secondary metabolism and challenges in modifying its operation: an overview. In: Fett-Neto A (ed) Plant secondary metabolism engineering. Methods in molecular biology (methods and protocols), vol 643. Humana Press, Totowa

    Google Scholar 

  • Natwar S, Avinash M, Bhavanath J (2014) Over-expression of the peroxisomalascorbate peroxidase (SbpAPX) gene cloned from Halophyte Salicornia brachiata confers salt and drought stress tolerance in transgenic tobacco. Mar Biotechnol 16:321–332

    Article  CAS  Google Scholar 

  • Oh SK, Kim IJ, Shin DH, Yang J, Kang H, Han KH (2000) Cloning, characterization, and heterologous expression of a functional geranylgeranyl pyrophosphate synthase from sunflower (Helianthus annuus L.). J Plant Physiol 157:535–542

    Article  CAS  Google Scholar 

  • Pande A, Arora S (2017) Molecular strategies for development of abiotic stress tolerance in plants. Cell Cellular Life Sci J 2:000112

    Google Scholar 

  • Pogson BJ, Rissler HM (2000) Genetic manipulation of carotenoid biosynthesis and photoprotection. Philos Trans R Soc Lond B 355:1395–1403

    Article  CAS  Google Scholar 

  • Qiu J, Sun S, Luo S, Zhang J, Xiao X et al (2014) Arabidopsis AtPAP1 transcription factor induces anthocyanin production in transgenic Taraxacum brevicorniculatum. Plant Cell Rep 33:669–680

    Article  CAS  PubMed  Google Scholar 

  • Rathinasabapathi B (2000) Metabolic engineering for stress tolerance: installing osmoprotectant synthesis pathways. Ann Bot 86:709–716

    Article  CAS  Google Scholar 

  • Rontein D, Basset G, Hanson AD (2002) Metabolic engineering of osmoprotectant accumulation in plants. Metab Eng 4:49–56

    Article  CAS  PubMed  Google Scholar 

  • Sasaki K, Saito T, Lamsa M, Oksman-Caldentey KM, Suzuki M, Ohyama K, Muranaka T, Ohara K, Yazaki K (2007) Plants utilize isoprene emission as a thermotolerance mechanism. Plant Cell Physiol 48:1254–1262

    Article  CAS  PubMed  Google Scholar 

  • Stracke R, Favory JJ, Gruber H, Bartelniewoehner L, Bartels S, Binkert M, Funk M, Weisshaar B, Ulm R (2010a) The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. Plant Cell Environ 33:88–103

    CAS  PubMed  Google Scholar 

  • Stracke R, Jahns O, Keck M, Tohge T, Niehaus K, Fernie AR, Weisshaar B (2010b) Analysis of production of flavonol glycosides-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation. New Phytol 188:985–1000

    Article  CAS  PubMed  Google Scholar 

  • Sun PP, Zhu XF, Huang XS, Liu JH (2014) Overexpression of a stress-responsive MYB transcription factor of Poncirus trifoliata confers enhanced dehydration tolerance and increases polyamine biosynthesis. Plant Physiol Biochem 78:71–79

    Article  CAS  PubMed  Google Scholar 

  • Shi GR, Cai QS, Liu QQ, Wu L (2009) Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes. Acta Physiol Plant 31:969–977

    Article  CAS  Google Scholar 

  • Tang LL, Cai H, Zhai H, Luo X, Wang ZY, Cui L, Bai X (2014) Overexpression of Glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa (Medicago sativa L.). Plant Cell Tissue Organ Cult 118:77–86

    Article  CAS  Google Scholar 

  • Tao N, Hu Z, Liu Q, Xu J, Cheng Y, Guo L et al (2007) Expression of phytoene synthase gene (Psy) is enhanced during fruit ripening of Cara Cara navel orange (Citrus sinensis Osbeck). Plant Cell Rep 26:837–843

    Article  CAS  PubMed  Google Scholar 

  • Taylor IB, Sonneveld T, Bugg TDH, Thompson AJ (2005) Regulation and manipulation of the biosynthesis of abscisic acid, including the supply of xanthophyll precursors. J Plant Growth Regul 24:253–273

    CAS  Google Scholar 

  • Tuteja N (2007) Abscisic acid and abiotic stress signaling. Plant Signal Behav 2:135–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Ribaut JM, Buckler ES, Tuberosa R, Rafalski JA, Langridge P (2012) Can genomics boost productivity of orphan crops? Nat Biotechnol 30:1172–1176

    Article  CAS  PubMed  Google Scholar 

  • Vickers CE, Gershenzon J, Lerdau MT, Loreto F (2009a) A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 5:283–291

    Article  CAS  PubMed  Google Scholar 

  • Vickers CE, Possell M, Cojocariu CI, Velikova VB, Laothawornkitkul J, Ryan A, Mullineaux PM, Nicholas Hewitt C (2009b) Isoprene synthesis protects transgenic tobacco plants from oxidative stress. Plant Cell Environ 32:520–531

    Article  CAS  PubMed  Google Scholar 

  • Vickers CE, Possell M, Laothawornkitku J, Ryan AC, Hewitt CN, Mullineaux PM (2011) Isoprene synthesis in plants: lessons from a transgenic tobacco model. Plant Cell Environ 34:1043–1053

    Article  CAS  PubMed  Google Scholar 

  • Wagner T, Windhovel U, Romer S (2002) Bansformation of tobacco with a mutated cyanobacterial phytoene desaturase gene confers resistance to bleaching herbicides. Z Naturforsch C 57:671–679

    Article  CAS  PubMed  Google Scholar 

  • Wang ZY, Xiong L, Li W, Zhu JK, Zhu J (2011) The plant cuticle is required for osmotic stress regulation of abscisic acid biosynthesis and osmotic stress tolerance in Arabidopsis. Plant Cell 23:1971–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Fan W, Li H, Yang J, Huang J, Zhang P (2013) Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses. PLoS One 8:e78484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang FB, Tong WJ, Zhu H, Kong WL, Peng RH et al (2016a) A novel Cys2/His2 zinc finger protein gene from sweet potato, IbZFP1, is involved in salt and drought tolerance in transgenic Arabidopsis. Planta 243:783–797

    Article  CAS  PubMed  Google Scholar 

  • Wang FB, Zhu H, Chen DH, Li ZJ, Peng RH, Yao QH (2016b) A grape bHLH transcription factor gene, VvbHLH1, increases the accumulation of flavonoids and enhances salt and drought tolerance in transgenic Arabidopsis thaliana. Plant Cell Tissue Org Cult 125:387–398

    Article  CAS  Google Scholar 

  • Wani SH, Singh NB, Haribhushan A, Mir JI (2013) Compatible solute engineering in plants for abiotic stress tolerance-role of glycine betaine. Curr Genomics 14:157–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Wang G, Ji J, Gao H, Guan W, Wu J, Guan C, Wang Y (2014) Cloning of a cytosolic ascorbate peroxidase gene from Lycium chinense Mill. and enhanced salt tolerance by overexpressing in tobacco. Gene 543:85–92

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Xu D, Cui W, Shen W (2012) Mutation of Arabidopsis Hy1 causes Uv-C hypersensitivity by impairing carotenoid and flavonoid biosynthesis and the down-regulation of antioxidant defence. J Exp Bot 63:3869–3883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Q, He Q, Li S, Tian Z (2014) Molecular characterization of StNAC2 in potato and its overexpression confers drought and salt tolerance. Acta Physiol Plant 36:1841–1851

    Article  CAS  Google Scholar 

  • Yarra R, He SJ, Abbagani S, Ma B, Bulle M, Zhang WK (2012) Overexpression of a wheat Na+/H+ antiporter gene (TaNHX2) enhances tolerance to salt stress in transgenic tomato plants (Solanum lycopersicum L.). Plant Cell Tissue Org Cult 111:49–57

    Article  CAS  Google Scholar 

  • Yogendra KM, Nirmaljit K (2017) Antioxidants: environmental stress mitigating metabolites. Curr Trends Biomed Eng Biosci 5:555660

    Google Scholar 

  • Yonekura-Sakakibara K, Tohge T, Matsuda F, Nakabayashi R, Takayama H, Niida R, Watanabe-Takahashi A, Inoue E, Saito K (2008) Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis. Plant Cell 20:2160–2176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DY, Yang HL, Li XS, Li HY, Wang YC (2014) Overexpression of Tamarix albiflonum TaMnSOD increases drought tolerance in transgenic cotton. Mol Breed 34:1–11

    Article  CAS  Google Scholar 

  • Zhao Q, Zhang H, Wang T, Chen SX, Dai SJ (2013) Proteomics based investigation of salt-responsive mechanisms in plant roots. J Proteome 82:230–253

    Article  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Corresponding author of this article is grateful to Dr. Ashok Kumar Chauhan, Founder President, and Atul Chauhan, Chancellor, Amity University, Uttar Pradesh, Noida, India, for providing necessary support and facilities.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, G., Ganjewala, D. (2019). Stress Protectant Secondary Metabolites and their Metabolic Engineering to Enhance Abiotic Stress Tolerance in Plants. In: Kumar, M., Muthusamy, A., Kumar, V., Bhalla-Sarin, N. (eds) In vitro Plant Breeding towards Novel Agronomic Traits. Springer, Singapore. https://doi.org/10.1007/978-981-32-9824-8_11

Download citation

Publish with us

Policies and ethics