Skip to main content

Production of Polyhydroxyalkanoates and Its Potential Applications

  • Chapter
  • First Online:
Advances in Sustainable Polymers

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

Polyhydroxyalkanoates (PHAs) are the emerging and sustainable biopolymers because of its biocompatibility, non-toxicity, and biological origin. There are many existing carbon sources which are inexpensive and readily available in nature; these include the waste organic acids, carbohydrates, fats, sugars, and oils. This chapter focuses on the use of all above-mentioned sources along with the agricultural waste residues such as lignocellulosic biomass and its pretreatment technologies for the efficient utilization of waste sources for the production of PHAs with maximum production yields. Further, the chapter discusses the effect of different fermentation processes like batch, fed-batch, and continuous processes on the yield of PHAs and the use of the mixed cultures in the specific processes. The major content of this chapter focuses on the applications of PHAs on articular cartilage repair, cardiovascular patch grafting, meniscus repair devices, molded products such as disposable needles, syringes, sutures, surgical gloves, gowns, and also the detailed study on the packaging applications. Therefore, the chapter discusses the different techniques and processes for the development and applications of PHA-based bioplastic with a view to develop the biocompatible and degradable medical aids and the biodegradable food packaging using sustainable and eco-friendly bioplastics for the sustainable future environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reddy CSK, Ghai R, Rashmi, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146

    Article  CAS  Google Scholar 

  2. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8:791–808

    Article  Google Scholar 

  3. Rai R, Keshavarz T, Roether JA et al (2011) Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Mater Sci Eng R Rep 72:29–47. https://doi.org/10.1016/j.mser.2010.11.002

    Article  CAS  Google Scholar 

  4. Abhishek DT, Tekraj J, Kianoush K (2016) Recovery and characterization of polyhydroxyalkanoates. Recent Adv Biotechnol 2:267–303

    Google Scholar 

  5. Masood F, Hasan F, Ahmed S, Hameed A (2012) Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from Bacillus cereus FA11 isolated from TNT-contaminated soil. Ann Microbiol 4:1377–1384. https://doi.org/10.1007/s13213-011-0386-3

    Article  CAS  Google Scholar 

  6. Fernandez-Castillo R, Rodriguez-Valera F, Gonzalez-Ramos J, Ruiz-Berraquero F (1986) Accumulation of poly (β-hydroxybutyrate) by halobacteria. Appl Environ Microbiol 51:214–216

    CAS  Google Scholar 

  7. Lillo JG, Rodriguez-Valera F (1990) Effects of culture conditions on poly(β-hydroxybutyric acid) production by Haloferax mediterranei. Appl Environ Microbiol 56:2517–2521

    Google Scholar 

  8. Quillaguamán J, Hashim S, Bento F et al (2005) Poly(β-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1 using starch hydrolysate as substrate. J Appl Microbiol 99:151–157. https://doi.org/10.1111/j.1365-2672.2005.02589.x

    Article  CAS  Google Scholar 

  9. Panda B, Jain P, Sharma L, Mallick N (2006) Optimization of cultural and nutritional conditions for accumulation of poly-β-hydroxybutyrate in Synechocystis sp. PCC 6803. Bioresour Technol 97:1296–1301. https://doi.org/10.1016/j.biortech.2005.05.013

    Article  CAS  Google Scholar 

  10. Yew SP, Jau MH, Yong KH et al (2005) Morphological studies of Synechocystis sp. UNIWG under polyhydroxyalkanoate accumulating conditions. https://www.ingentaconnect.com/content/doaj/18238262/2005/00000001/00000001/art00009. Accessed 19 Feb 2019

  11. Marangoni C, Furigo A Jr, de Aragão GMF (2002) Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Ralstonia eutropha in whey and inverted sugar with propionic acid feeding, 137–141. https://doi.org/10.1016/S0032-9592(01)00313-2

    Article  CAS  Google Scholar 

  12. Page WJ, Manchak J, Rudy B (1992) Azotobacter vinelandii UWD. Appl Env Microbiol 58:8

    Google Scholar 

  13. Kanjanachumpol P, Kulpreecha S, Tolieng V, Thongchul N (2013) Enhancing polyhydroxybutyrate production from high cell density fed-batch fermentation of Bacillus megaterium BA-019, 1463–1474. https://doi.org/10.1007/s00449-013-0885-7

    Article  CAS  Google Scholar 

  14. Van-Thuoc D, Quillaguamán J, Mamo G, Mattiasson B (2008) Utilization of agricultural residues for poly(3-hydroxybutyrate) production by Halomonas boliviensis LC1. J Appl Microbiol 104:420–428. https://doi.org/10.1111/j.1365-2672.2007.03553.x

    Article  CAS  Google Scholar 

  15. Kawata Y, Aiba S (2010) Poly(3-hydroxybutyrate) production by isolated Halomonas sp. KM-1 using waste glycerol. Biosci Biotechnol Biochem 74:175–177. https://doi.org/10.1271/bbb.90459

    Article  CAS  Google Scholar 

  16. Han J, Zhang F, Hou J et al (2012) Complete genome sequence of the metabolically versatile halophilic archaeon Haloferax mediterranei, a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) producer. J Bacteriol 194:4463–4464. https://doi.org/10.1128/JB.00880-12

    Article  CAS  Google Scholar 

  17. Chien C-C, Ho L-Y (2008) Polyhydroxyalkanoates production from carbohydrates by a genetic recombinant Aeromonas sp. Lett Appl Microbiol 47:587–593. https://doi.org/10.1111/j.1472-765X.2008.02471.x

    Article  CAS  Google Scholar 

  18. Yezza A, Fournier D, Halasz A, Hawari J (2006) Production of polyhydroxyalkanoates from methanol by a new methylotrophic bacterium Methylobacterium sp. GW2. Appl Microbiol Biotechnol 73:211–218. https://doi.org/10.1007/s00253-006-0458-7

    Article  CAS  Google Scholar 

  19. Pantazaki AA, Tambaka MG, Langlois V et al (2003) Polyhydroxyalkanoate (PHA) biosynthesis in Thermus thermophilus: purification and biochemical properties of PHA synthase. Mol Cell Biochem 254:173–183

    Article  CAS  Google Scholar 

  20. Munoz LEA, Riley MR (2008) Utilization of cellulosic waste from tequila bagasse and production of polyhydroxyalkanoate (PHA) bioplastics by Saccharophagus degradans. Biotechnol Bioeng 100:882–888. https://doi.org/10.1002/bit.21854

    Article  CAS  Google Scholar 

  21. Kimura H, Yamamoto T, Iwakura K (2002) Biosynthesis of polyhydroxyalkanoates from 1,3-propanediol by Chromobacterium sp. Polym J 34:659–665. https://doi.org/10.1295/polymj.34.659

    Article  CAS  Google Scholar 

  22. Fidler S, Dennis D (1992) Polyhydroxyalkanoate production in recombinant Escherichia coli. FEMS Microbiol Lett 103:231–235. https://doi.org/10.1016/0378-1097(92)90314-E

    Article  CAS  Google Scholar 

  23. Chen G, Zhang G, Park S, Lee S (2001) Industrial scale production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Appl Microbiol Biotechnol 57:50–55. https://doi.org/10.1007/s002530100755

    Article  CAS  Google Scholar 

  24. Kim BS, Lee SC, Lee SY et al (1994) Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control, 892–898

    Google Scholar 

  25. Young FK, Kastner JR, May SW (1994) Microbial production of poly-β-hydroxybutyric acid from d-xylose and lactose by Pseudomonas cepacia. Appl Environ Microbiol 60:4195–4198

    CAS  Google Scholar 

  26. Yamane T, Fukunaga M, Lee YW (1996) Increased PHB productivity by high-cell-density fed-batch culture of Alcaligenes latus, a growth-associated PHB producer. Biotechnol Bioeng 50:197–202. https://doi.org/10.1002/(SICI)1097-0290(19960420)50:2%3c197:AID-BIT8%3e3.0.CO;2-H

    Article  CAS  Google Scholar 

  27. Eggink G, Steinbüchel A, Poirier Y, Witholt B (1997) 1996 International symposium on bacterial polyhydroxyalkanoates. NRC Research Press

    Google Scholar 

  28. Obruca S, Benesova P, Marsalek L, Marova I (2015) Use of lignocellulosic materials for PHA production. Chem Biochem Eng Q 29:135–144. https://doi.org/10.15255/CABEQ.2014.2253

    Article  CAS  Google Scholar 

  29. Ahn WS, Park SJ, Lee SY (2000) Production of poly(3-hydroxybutyrate) by fed-batch culture of recombinant Escherichia coli with a highly concentrated whey solution. Appl Environ Microbiol 66:3624–3627

    Article  CAS  Google Scholar 

  30. Budde CF, Riedel SL, Willis LB et al (2011) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha Strains. Appl Environ Microbiol 77:2847–2854. https://doi.org/10.1128/AEM.02429-10

    Article  CAS  Google Scholar 

  31. Morais C, Freitas F, Cruz MV et al (2014) Conversion of fat-containing waste from the margarine manufacturing process into bacterial polyhydroxyalkanoates. Int J Biol Macromol 71:68–73. https://doi.org/10.1016/j.ijbiomac.2014.04.044

    Article  CAS  Google Scholar 

  32. Zhu C, Nomura CT, Perrotta JA et al (2010) Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759. Biotechnol Prog 26:424–430. https://doi.org/10.1002/btpr.355

    Article  CAS  Google Scholar 

  33. Kim SW, Kim P, Lee HS, Kim JH (1996) High production of poly-β-hydroxybutyrate (PHB) from Methylobacterium organophilum under potassium limitation. Biotechnol Lett 18:25–30. https://doi.org/10.1007/BF00137805

    Article  CAS  Google Scholar 

  34. Preusting H, van Houten R, Hoefs A et al (1993) High cell density cultivation of Pseudomonas oleovorans: growth and production of poly (3-hydroxyalkanoates) in two-liquid phase batch and fed-batch systems. Biotechnol Bioeng 41:550–556. https://doi.org/10.1002/bit.260410507

    Article  CAS  Google Scholar 

  35. Ward PG, Goff M, Donner M et al (2006) A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environ Sci Technol 40:2433–2437. https://doi.org/10.1021/es0517668

    Article  CAS  Google Scholar 

  36. Wendlandt KD, Jechorek M, Helm J, Stottmeister U (2001) Producing poly-3-hydroxybutyrate with a high molecular mass from methane. J Biotechnol 86:127–133

    Article  CAS  Google Scholar 

  37. Solaiman DKY, Ashby RD, Hotchkiss AT, Foglia TA (2006) Biosynthesis of medium-chain-length poly(hydroxyalkanoates) from soy molasses. Biotechnol Lett 28:157–162. https://doi.org/10.1007/s10529-005-5329-2

    Article  CAS  Google Scholar 

  38. Akaraonye E, Moreno C, Knowles JC et al (2012) Poly(3-hydroxybutyrate) production by Bacillus cereus SPV using sugarcane molasses as the main carbon source. Biotechnol J 7:293–303

    Article  CAS  Google Scholar 

  39. Mozumder MSI, De Wever H, Volcke E, Garcia-Gonzalez L (2014) A robust fed-batch feeding strategy independent of the carbon source for optimal polyhydroxybutyrate production. Process Biochem 49:365–373. https://doi.org/10.1016/j.procbio.2013.12.004

    Article  CAS  Google Scholar 

  40. Ting YH, Kow JD, Shin YH, Will Chen C (2006) Production of polyhydroxybutyrates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J Ind Microbiol 33:701–106

    Google Scholar 

  41. Hassan MA, Yee L-N, Yee PL et al (2013) Sustainable production of polyhydroxyalkanoates from renewable oil-palm biomass. Biomass Bioenergy 50:1–9. https://doi.org/10.1016/j.biombioe.2012.10.014

    Article  CAS  Google Scholar 

  42. Cesário MT, Raposo RS, de Almeida MCMD et al (2014) Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates. New Biotechnol 31:104–113. https://doi.org/10.1016/j.nbt.2013.10.004

    Article  CAS  Google Scholar 

  43. Sandhya M, Aravind J, Kanmani P (2013) Production of polyhydroxyalkanoates from Ralstonia eutropha using paddy straw as cheap substrate. Int J Environ Sci Technol 10:47–54. https://doi.org/10.1007/s13762-012-0070-6

    Article  CAS  Google Scholar 

  44. Cheng C-L, Lo Y-C, Lee K-S et al (2011) Biohydrogen production from lignocellulosic feedstock. Bioresour Technol 102:8514–8523. https://doi.org/10.1016/j.biortech.2011.04.059

    Article  CAS  Google Scholar 

  45. Kucera D, Benesova P, Ladicky P et al (2017) Production of polyhydroxyalkanoates using hydrolyzates of spruce sawdust: comparison of hydrolyzates detoxification by application of overliming, active carbon, and lignite. Bioengineering 4:53. https://doi.org/10.3390/bioengineering4020053

    Article  CAS  Google Scholar 

  46. Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559. https://doi.org/10.1039/C5PY00263J

    Article  CAS  Google Scholar 

  47. Amin FR, Khalid H, Zhang H et al (2017) Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express 7:72. https://doi.org/10.1186/s13568-017-0375-4

    Article  CAS  Google Scholar 

  48. Cheng JJ, Timilsina G (2011) Status and barriers of advanced biofuel technologies: a review. Renew Energy 36:3541–3549

    Article  CAS  Google Scholar 

  49. O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99:6709–6724. https://doi.org/10.1016/j.biortech.2008.01.036

    Article  CAS  Google Scholar 

  50. Brodeur G, Yau E, Badal K et al (2011) Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res. https://www.hindawi.com/journals/er/2011/787532/. Accessed 19 Jan 2019

  51. da Silva ARG, Errico M, Rong B-G (2018) Evaluation of organosolv pretreatment for bioethanol production from lignocellulosic biomass: solvent recycle and process integration. Biomass Convers Biorefinery 8:397–411. https://doi.org/10.1007/s13399-017-0292-4

    Article  CAS  Google Scholar 

  52. Agbor VB, Cicek N, Sparling R et al (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005

    Article  CAS  Google Scholar 

  53. Saratale GD, Oh M-K (2015) Improving alkaline pretreatment method for preparation of whole rice waste biomass feedstock and bioethanol production. RSC Adv 5:97171–97179. https://doi.org/10.1039/C5RA17797A

    Article  CAS  Google Scholar 

  54. Hirano K, Kurosaki M, Nihei S et al (2016) Enzymatic diversity of the Clostridium thermocellum cellulosome is crucial for the degradation of crystalline cellulose and plant biomass. Sci Rep 6:35709. https://doi.org/10.1038/srep35709

  55. Karp EM, Resch MG, Donohoe BS et al (2015) Alkaline pretreatment of switchgrass. ACS Sustain Chem Eng 3:1479–1491. https://doi.org/10.1021/acssuschemeng.5b00201

    Article  CAS  Google Scholar 

  56. Zhuang X, Wang W, Yu Q et al (2016) Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour Technol 199:68–75. https://doi.org/10.1016/j.biortech.2015.08.051

    Article  CAS  Google Scholar 

  57. Hasegawa I, Tabata K, Okuma O, Mae K (2004) New pretreatment methods combining a hot water treatment and water/acetone extraction for thermo-chemical conversion of biomass. Energy Fuels 18:755–760. https://doi.org/10.1021/ef030148e

    Article  CAS  Google Scholar 

  58. Zhang B, Shahbazi A (2011) Recent developments in pretreatment technologies for production of lignocellulosic biofuels. J Pet Environ Biotechnol 02. https://doi.org/10.4172/2157-7463.1000108

  59. Sendich EN, Laser M, Kim S et al (2008) Recent process improvements for the ammonia fiber expansion (AFEX) process and resulting reductions in minimum ethanol selling price. Bioresour Technol 99:8429–8435. https://doi.org/10.1016/j.biortech.2008.02.059

    Article  CAS  Google Scholar 

  60. Langan P, Petridis L, O’Neill HM et al (2014) Common processes drive the thermochemical pretreatment of lignocellulosic biomass. Green Chem 16:63–68. https://doi.org/10.1039/C3GC41962B

    Article  CAS  Google Scholar 

  61. Bals B, Dale B, Balan V (2006) Enzymatic hydrolysis of distiller’s dry grain and solubles (DDGS) using ammonia fiber expansion pretreatment. Energy Fuels 20:2732–2736. https://doi.org/10.1021/ef060299s

    Article  CAS  Google Scholar 

  62. Teresa L-A, Punit R, Edgar R-M, Mauricio S-C (2010) Acid pretreatment of lignocellulosic biomass: steady state and dynamic analysis. Chem Eng Trans, 445–450. https://doi.org/10.3303/CET1021075

  63. Jönsson LJ, Martín C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112. https://doi.org/10.1016/j.biortech.2015.10.009

    Article  CAS  Google Scholar 

  64. Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729. https://doi.org/10.1021/ie801542g

    Article  CAS  Google Scholar 

  65. Singh P, Sulaiman O, Hashim R et al (2010) Biopulping of lignocellulosic material using different fungal species: a review. Rev Environ Sci Biotechnol 9:141–151. https://doi.org/10.1007/s11157-010-9200-0

    Article  CAS  Google Scholar 

  66. Tian X, Fang Z, Guo F (2012) Impact and prospective of fungal pre-treatment of lignocellulosic biomass for enzymatic hydrolysis. Biofuels Bioprod Biorefining 6:335–350. https://doi.org/10.1002/bbb.346

    Article  CAS  Google Scholar 

  67. Akhtar M, Blanchette RA, Kent Kirk T (1997) Fungal delignification and biomechanical pulping of wood. In: Eriksson K-EL, Babel W, Blanch HW et al (eds) Biotechnology in the pulp and paper industry. Springer, Berlin, pp 159–195

    Chapter  Google Scholar 

  68. Gupta R, Mehta G, Khasa YP, Kuhad RC (2011) Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation 22:797–804. https://doi.org/10.1007/s10532-010-9404-6

    Article  CAS  Google Scholar 

  69. Giacobbe S, Pezzella C, Lettera V et al (2018) Laccase pretreatment for agrofood wastes valorization. Bioresour Technol 265:59–65. https://doi.org/10.1016/j.biortech.2018.05.108

    Article  CAS  Google Scholar 

  70. Hosseini Koupaie E, Dahadha S, Bazyar Lakeh AA et al (2019) Enzymatic pretreatment of lignocellulosic biomass for enhanced biomethane production—a review. J Environ Manage 233:774–784. https://doi.org/10.1016/j.jenvman.2018.09.106

    Article  CAS  Google Scholar 

  71. Roth S, Spiess AC (2015) Laccases for biorefinery applications: a critical review on challenges and perspectives. Bioprocess Biosyst Eng 38:2285–2313. https://doi.org/10.1007/s00449-015-1475-7

    Article  CAS  Google Scholar 

  72. Pham LTM, Kim SJ, Kim YH (2016) Improvement of catalytic performance of lignin peroxidase for the enhanced degradation of lignocellulose biomass based on the imbedded electron-relay in long-range electron transfer route. Biotechnol Biofuels 9:247. https://doi.org/10.1186/s13068-016-0664-1

    Article  CAS  Google Scholar 

  73. Cragg SM, Beckham GT, Bruce NC et al (2015) Lignocellulose degradation mechanisms across the tree of life. Curr Opin Chem Biol 29:108–119. https://doi.org/10.1016/j.cbpa.2015.10.018

    Article  CAS  Google Scholar 

  74. Thangavelu K, Desikan R, Taran OP, Uthandi S (2018) Delignification of corncob via combined hydrodynamic cavitation and enzymatic pretreatment: process optimization by response surface methodology. Biotechnol Biofuels 11:203. https://doi.org/10.1186/s13068-018-1204-y

    Article  CAS  Google Scholar 

  75. Qiu W, Chen H (2012) Enhanced the enzymatic hydrolysis efficiency of wheat straw after combined steam explosion and laccase pretreatment. Bioresour Technol 118:8–12. https://doi.org/10.1016/j.biortech.2012.05.033

    Article  CAS  Google Scholar 

  76. Ayyachamy M, Gupta VK, Cliffe FE, Tuohy MG (2013) Enzymatic saccharification of lignocellulosic biomass. In: Gupta VK, Tuohy MG, Ayyachamy M et al (eds) Laboratory protocols in fungal biology: current methods in fungal biology. Springer, New York, pp 475–481

    Chapter  Google Scholar 

  77. Santos ALF, Kawase KYF, Coelho GLV (2011) Enzymatic saccharification of lignocellulosic materials after treatment with supercritical carbon dioxide. J Supercrit Fluids 56:277–282. https://doi.org/10.1016/j.supflu.2010.10.044

    Article  CAS  Google Scholar 

  78. Sartori T, Tibolla H, Prigol E et al (2015) Enzymatic saccharification of lignocellulosic residues by cellulases obtained from solid state fermentation using trichoderma viride. Biomed Res Int. https://www.hindawi.com/journals/bmri/2015/342716/. Accessed 29 Jan 2019

  79. Alrumman SA, Alrumman SA (2016) Enzymatic saccharification and fermentation of cellulosic date palm wastes to glucose and lactic acid. Braz J Microbiol 47:110–119. https://doi.org/10.1016/j.bjm.2015.11.015

    Article  CAS  Google Scholar 

  80. Improvement of saccharification and fermentation by removal of endogenous chemicals from pretreated lignocellulosic biomass (1). Effect of ion-exchange resin treatment. https://www.omicsonline.org/open-access/improvement-of-saccharification-and-fermentation-by-removal-of-endogenouschemicals-from-pretreated-lignocellulosic-biomass-1-effect-of-ionexchangeresin-treatment-2167-7972-1000114.php?aid=58754. Accessed 29 Jan 2019

  81. Roche CM, Dibble CJ, Stickel JJ (2009) Laboratory-scale method for enzymatic saccharification of lignocellulosic biomass at high-solids loadings. Biotechnol Biofuels 2:28. https://doi.org/10.1186/1754-6834-2-28

    Article  CAS  Google Scholar 

  82. Batch fermentation—an overview sciencedirect topics. https://www.sciencedirect.com/topics/engineering/batch-fermentation. Accessed 17 Feb 2019

  83. Senior PJ, Beech GA, Ritchie GA, Dawes EA (1972) The role of oxygen limitation in the formation of poly-β-hydroxybutyrate during batch and continuous culture of Azotobacter beijerinckii. Biochem J 128:1193–1201

    CAS  Google Scholar 

  84. Ramsay BA, Lomaliza K, Chavarie C et al (1990) Production of poly-(beta-hydroxybutyric-co-beta-hydroxyvaleric) acids. Appl Environ Microbiol 56:2093–2098

    CAS  Google Scholar 

  85. Ishizaki H, Hasumi K (2014) Chapter 10—Ethanol production from biomass. In: Tojo S, Hirasawa T (eds) Research approaches to sustainable biomass systems. Academic Press, Boston, pp 243–258

    Chapter  Google Scholar 

  86. Koller M, Hesse P, Bona R et al (2007) Potential of various archae-and eubacterial strains as industrial polyhydroxyalkanoate producers from whey. Macromol Biosci 7:218–226. https://doi.org/10.1002/mabi.200600211

    Article  CAS  Google Scholar 

  87. Wang F, Lee SY (1997) Poly(3-hydroxybutyrate) production with high productivity and high polymer content by a fed-batch culture of Alcaligenes latus under nitrogen limitation. Appl Environ Microbiol 63:3703–3706

    CAS  Google Scholar 

  88. Choi J, Lee SY (1999) High-level production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by fed-batch culture of recombinant Escherichia coli. Appl Environ Microbiol 65:4363–4368

    CAS  Google Scholar 

  89. (PDF) Continuous and batch fermentation processes: advantages and disadvantages of these processes in the Brazilian ethanol production. In: ResearchGate. https://www.researchgate.net/publication/289874380_Continuous_and_batch_fermentation_processes_Advantages_and_disadvantages_of_these_processes_in_the_Brazilian_ethanol_production. Accessed 17 Feb 2019

  90. Salehizadeh H, Van Loosdrecht MCM (2004) Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotechnol Adv 22:261–279. https://doi.org/10.1016/j.biotechadv.2003.09.003

    Article  CAS  Google Scholar 

  91. van Loosdrecht MCM, Hooijmans CM, Brdjanovic D, Heijnen JJ (1997) Biological phosphate removal processes. Appl Microbiol Biotechnol 48:289–296. https://doi.org/10.1007/s002530051052

    Article  Google Scholar 

  92. Wen Q, Chen Z, Tian T, Chen W (2010) Effects of phosphorus and nitrogen limitation on PHA production in activated sludge. J Environ Sci 22:1602–1607. https://doi.org/10.1016/S1001-0742(09)60295-3

    Article  CAS  Google Scholar 

  93. Seviour RJ, Maszenan AM, Soddell JA et al Microbiology of the ‘G-bacteria’ in activated sludge minireview. Environ Microbiol 2:581–593

    Article  CAS  Google Scholar 

  94. Lü Y (2007) Advance on the production of polyhydroxyalkanoates by mixed cultures. Front Biol China 2:21–25. https://doi.org/10.1007/s11515-007-0003-9

    Article  Google Scholar 

  95. Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14. https://doi.org/10.1002/(SICI)1097-0290(19960105)49:1%3c1:AID-BIT1%3e3.0.CO;2-P

    Article  CAS  Google Scholar 

  96. Hong S-G, Hsu H-W, Ye M-T (2013) Thermal properties and applications of low molecular weight polyhydroxybutyrate. J Therm Anal Calorim 111:1243–1250. https://doi.org/10.1007/s10973-012-2503-3

    Article  CAS  Google Scholar 

  97. Koller M, Bona R, Braunegg G et al (2005) Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 6:561–565. https://doi.org/10.1021/bm049478b

    Article  CAS  Google Scholar 

  98. Keshavarz T, Roy I (2010) Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol 13:321–326. https://doi.org/10.1016/j.mib.2010.02.006

    Article  CAS  Google Scholar 

  99. Braunegg G, Lefebvre G, Genser KF (1998) Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol 65:127–161. https://doi.org/10.1016/S0168-1656(98)00126-6

    Article  CAS  Google Scholar 

  100. Nakamura S, Doi Y, Scandola M (1992) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules 25:4237–4241. https://doi.org/10.1021/ma00043a001

    Article  CAS  Google Scholar 

  101. Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol 85:732–743. https://doi.org/10.1002/jctb.2392

    Article  CAS  Google Scholar 

  102. Cheng T, Maddox NC, Wong AW et al (2012) Comparison of gene expression patterns in articular cartilage and dedifferentiated articular chondrocytes. J Orthop Res Off Publ Orthop Res Soc 30:234–245. https://doi.org/10.1002/jor.21503

    Article  CAS  Google Scholar 

  103. Zhao K, Deng Y, Chun Chen J, Chen G-Q (2003) Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials 24:1041–1045. https://doi.org/10.1016/S0142-9612(02)00426-X

    Article  CAS  Google Scholar 

  104. Cook JL, Hung CT, Kuroki K et al (2014) Animal models of cartilage repair. Bone Joint Res 3:89–94. https://doi.org/10.1302/2046-3758.34.2000238

    Article  CAS  Google Scholar 

  105. Ali I, Jamil N (2016) Polyhydroxyalkanoates: current applications in the medical field. Front Biol 11:19–27. https://doi.org/10.1007/s11515-016-1389-z

    Article  CAS  Google Scholar 

  106. Yao Y, He Y, Guan Q, Wu Q (2014) A tetracycline expression system in combination with Sox9 for cartilage tissue engineering. Biomaterials 35:1898–1906. https://doi.org/10.1016/j.biomaterials.2013.11.043

    Article  CAS  Google Scholar 

  107. Deng Y, Lin X, Zheng Z et al (2003) Poly(hydroxybutyrate-co-hydroxyhexanoate) promoted production of extracellular matrix of articular cartilage chondrocytes in vitro. Biomaterials 24:4273–4281

    Article  CAS  Google Scholar 

  108. Wang Y, Bian YZ, Wu Q, Chen GQ (2008) Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials 29:2858–2868. https://doi.org/10.1016/j.biomaterials.2008.03.021

    Article  CAS  Google Scholar 

  109. LeBaron RG, Athanasiou KA (2000) Ex vivo synthesis of articular cartilage. Biomaterials 21:2575–2587

    Article  CAS  Google Scholar 

  110. Chang HM, Wang ZH, Luo HN et al (2014) Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based scaffolds for tissue engineering. Braz J Med Biol Res 47:533–539. https://doi.org/10.1590/1414-431X20143930

    Article  CAS  Google Scholar 

  111. Zheng Z, Bei F-F, Tian H-L, Chen G-Q (2005) Effects of crystallization of polyhydroxyalkanoate blend on surface physicochemical properties and interactions with rabbit articular cartilage chondrocytes. Biomaterials 26:3537–3548. https://doi.org/10.1016/j.biomaterials.2004.09.041

    Article  CAS  Google Scholar 

  112. Sodian R, Hoerstrup SP, Sperling JS et al (2000) Early in vivo experience with tissue-engineered trileaflet heart valves. Circulation 102:III22–29

    Article  Google Scholar 

  113. Stock UA, Degenkolbe I, Attmann T et al (2006) Prevention of device-related tissue damage during percutaneous deployment of tissue-engineered heart valves. J Thorac Cardiovasc Surg 131:1323–1330. https://doi.org/10.1016/j.jtcvs.2006.01.053

    Article  CAS  Google Scholar 

  114. Qu X-H, Wu Q, Liang J et al (2005) Enhanced vascular-related cellular affinity on surface modified copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate (PHBHHx). Biomaterials 26:6991–7001. https://doi.org/10.1016/j.biomaterials.2005.05.034

    Article  CAS  Google Scholar 

  115. Bär A, Haverich A, Hilfiker A (2007) Cardiac tissue engineering: “reconstructing the motor of life”, cardiac tissue engineering: “reconstructing the motor of life”. Scand J Surg 96:154–158. https://doi.org/10.1177/145749690709600210

    Article  Google Scholar 

  116. Kajbafzadeh AM, Khorramirouz R, Akbarzadeh A, Sabetkish S, Sabetkish N, Saadat P, Tehrani MA (2015) A novel technique for simultaneous whole-body and multi-organ decellularization: umbilical artery catheterization as a perfusion-based method in a sheep foetus model. Int J Exp Pathol 96:116–132. https://doi.org/10.1111/iep.12124

    Article  CAS  Google Scholar 

  117. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543

    Article  CAS  Google Scholar 

  118. Wu Q, Wang Y, Chen G-Q (2009) Medical application of microbial biopolyesters polyhydroxyalkanoates. Artif Cells Blood Substit Biotechnol 37:1–12. https://doi.org/10.1080/10731190802664429

    Article  CAS  Google Scholar 

  119. Shriram D, Kumar GP, Cui F, Lee YHD, Subburaj K (2017) Evaluating the effects of material properties of artificial meniscal implant in the human knee joint using finite element analysis. Sci Rep 7:6011. https://doi.org/10.1038/s41598-017-06271-3

    Article  CAS  Google Scholar 

  120. Baker BM, Gee AO, Sheth NP et al (2009) Meniscus tissue engineering on the nanoscale: from basic principles to clinical application. J Knee Surg 22:45–59

    Article  Google Scholar 

  121. Noyes FR, Barber-Westin SD (2010) Repair of complex and avascular meniscal tears and meniscal transplantation. J Bone Joint Surg Am 92:1012–1029

    Google Scholar 

  122. Tarafder S, Gulko J, Sim KH et al (2018) Engineered healing of avascular meniscus tears by stem cell recruitment. Sci Rep 8:8150. https://doi.org/10.1038/s41598-018-26545-8

    Article  CAS  Google Scholar 

  123. Liang Y, Idrees E, Andrews SHJ et al (2017) Plasticity of Human meniscus fibrochondrocytes: a study on effects of mitotic divisions and oxygen tension. Sci Rep 7:12148. https://doi.org/10.1038/s41598-017-12096-x

    Article  CAS  Google Scholar 

  124. Drew L, Scott A, Morgan B, Gruber K (2017) Clinical devices and services: repair shops. Nature 545:21–24

    Article  CAS  Google Scholar 

  125. Zhang W, Ouyang H, Dass CR, Xu J (2016) Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Res 4:15040. https://doi.org/10.1038/boneres.2015.40

    Article  CAS  Google Scholar 

  126. Williams SF, Martin DP (2003) Polyhydroxyalkanoate compositions for soft tissue repair, augmentation, and viscosupplementation

    Google Scholar 

  127. Williams SF, Martin DP, Skraly F (2011) Medical devices and applications of polyhydroxyalkanoate polymers

    Google Scholar 

  128. Raza ZA, Abid S et al (2017) Polyhydroxyalkanoates: characteristics, production, recent developments and applications. Int Biodeterior Biodegrad

    Google Scholar 

  129. Whole meniscus regeneration using polymer scaffolds loaded with fibrochondrocytes. Sci-napse academic search engine for paper. Scinapse. https://scinapse.io/papers/1594949096. Accessed 1 Aug 2018

  130. Plastic moulding techniques—rotational, injection, compression, blow. https://www.plasticmoulding.ca/techniques.htm. Accessed 1 Aug 2018

  131. Syringes and needles market 2013–2023: production, revenue and leading manufacturer analysis and future potential 2023–healthcare sector. https://sectorhealthcare.com/syringes-and-needles-market-2013-2023-production-revenue-and-leading-manufacturer-analysis-and-future-potential-2023/. Accessed 1 Aug 2018

  132. Patel S (2015) Disposable items made from bioplastic resins

    Google Scholar 

  133. US Patent for films and absorbent articles comprising a biodegradable polyhydroxyalkanoate comprising 3-hydroxybutyrate and 3-hydroxyhexanoate comonomer units Patent (Patent # 5,990,271 issued November 23, 1999)—Justia Patents Search. https://patents.justia.com/patent/5990271. Accessed 1 Aug 2018

  134. Fedorov MB, Vikhoreva GA, Kil’deeva NR et al (2006) Structure and strength properties of surgical sutures modified with a polyhydroxybutyrate coating. Fibre Chem 38:471–475. https://doi.org/10.1007/s10692-006-0113-1

    Article  CAS  Google Scholar 

  135. Shishatskaya EI, Volova TG, Puzyr AP et al (2004) Tissue response to the implantation of biodegradable polyhydroxyalkanoate sutures. J Mater Sci Mater Med 15:719–728

    Article  CAS  Google Scholar 

  136. Personal protective equipment PHA infection control. https://www.niinfectioncontrolmanual.net/personal-protective-equipment. Accessed 1 Aug 2018

  137. Carvalho RA, Santos TA, de Azevedo VM et al (2018) Bio-nanocomposites for food packaging applications: effect of cellulose nanofibers on morphological, mechanical, optical and barrier properties. Polym Int 67:386–392. https://doi.org/10.1002/pi.5518

    Article  CAS  Google Scholar 

  138. Tharanathan RN (2003) Biodegradable films and composite coatings: past, present and future. Trends Food Sci Technol 14:71–78. https://doi.org/10.1016/S0924-2244(02)00280-7

    Article  CAS  Google Scholar 

  139. Fabra MJ, Lopez-Rubio A, Lagaron JM (2014) Nanostructured interlayers of zein to improve the barrier properties of high barrier polyhydroxyalkanoates and other polyesters. J Food Eng 127:1–9. https://doi.org/10.1016/j.jfoodeng.2013.11.022

    Article  CAS  Google Scholar 

  140. Fabra MJ, López-Rubio A, Lagaron JM (2014) On the use of different hydrocolloids as electrospun adhesive interlayers to enhance the barrier properties of polyhydroxyalkanoates of interest in fully renewable food packaging concepts. Food Hydrocoll 39:77–84. https://doi.org/10.1016/j.foodhyd.2013.12.023

    Article  CAS  Google Scholar 

  141. Siracusa V, Rocculi P, Romani S, Rosa MD (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643. https://doi.org/10.1016/j.tifs.2008.07.003

    Article  CAS  Google Scholar 

  142. Rhim JW, Wang LF, Hong SI (2013) Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocoll 33:327–335. https://doi.org/10.1016/j.foodhyd.2013.04.002

    Article  CAS  Google Scholar 

  143. Brodnjak UV (2016) Microorganism based biopolymer materials for packaging applications: a review. J Compos Biodegradable Polym 4:32–40. https://doi.org/10.1080/10408690490464276

    Article  CAS  Google Scholar 

  144. Peelman N, Ragaert P, De Meulenaer B et al (2013) Application of bioplastics for food packaging. Trends Food Sci Technol 32:128–141. https://doi.org/10.1016/j.tifs.2013.06.003

    Article  CAS  Google Scholar 

  145. Xavier JR, Babusha ST, George J, Ramana KV (2015) Material properties and antimicrobial activity of polyhydroxybutyrate (PHB) films incorporated with vanillin. Appl Biochem Biotechnol 176:1498–1510. https://doi.org/10.1007/s12010-015-1660-9

    Article  CAS  Google Scholar 

  146. Narayanan A, Neera, Mallesha, Ramana KV (2013) Synergized antimicrobial activity of eugenol incorporated polyhydroxybutyrate films against food spoilage microorganisms in conjunction with pediocin. Appl Biochem Biotechnol 170:1379–1388. https://doi.org/10.1007/s12010-013-0267-2

    Article  CAS  Google Scholar 

  147. Solaiman DKY, Ashby RD, Zerkowski JA et al (2015) Control-release of antimicrobial sophorolipid employing different biopolymer matrices. Biocatal Agric Biotechnol 4:342–348. https://doi.org/10.1016/j.bcab.2015.06.006

    Article  Google Scholar 

  148. Cherpinski A, Torres-Giner S, Cabedo L et al (2018) Multilayer structures based on annealed electrospun biopolymer coatings of interest in water and aroma barrier fiber-based food packaging applications. J Appl Polym Sci 135:45501. https://doi.org/10.1002/app.45501

    Article  CAS  Google Scholar 

  149. Cyras VP, Commisso MS, Mauri AN, Vázquez A (2007) Biodegradable double-layer films based on biological resources: polyhydroxybutyrate and cellulose. J Appl Polym Sci 106:749–756. https://doi.org/10.1002/app.26663

    Article  CAS  Google Scholar 

  150. Bucci DZ, Tavares LBB, Sell I (2005) PHB packaging for the storage of food products. Polym Test 24:564–571. https://doi.org/10.1016/j.polymertesting.2005.02.008

    Article  CAS  Google Scholar 

  151. Modi S, Koelling K, Vodovotz Y (2011) Assessment of PHB with varying hydroxyvalerate content for potential packaging applications. Eur Polym J 47:179–186. https://doi.org/10.1016/j.eurpolymj.2010.11.010

    Article  CAS  Google Scholar 

  152. Cyras VP, Soledad CM, Analía V (2009) Biocomposites based on renewable resource: acetylated and non acetylated cellulose cardboard coated with polyhydroxybutyrate. Polymer 50:6274–6280. https://doi.org/10.1016/j.polymer.2009.10.065

    Article  CAS  Google Scholar 

  153. Koller M (2014) Poly(hydroxyalkanoates) for food packaging: application and attempts towards implementation. Appl Food Biotechnol 1:3–15. https://doi.org/10.22037/afb.v1i1.7127

  154. Correa JP, Molina V, Sanchez M et al (2017) Improving ham shelf life with a polyhydroxybutyrate/polycaprolactone biodegradable film activated with nisin. Food Packag Shelf Life 11:31–39. https://doi.org/10.1016/j.fpsl.2016.11.004

    Article  Google Scholar 

  155. Levkane V, Muizniece-Brasava S, Dukalska L (2008) Pasteurization effect to quality of salad with meat in mayonnaise. LLU

    Google Scholar 

  156. Dhall RK (2013) Advances in edible coatings for fresh fruits and vegetables: a review. Crit Rev Food Sci Nutr 53:435–450. https://doi.org/10.1080/10408398.2010.541568

    Article  CAS  Google Scholar 

  157. Mistriotis A, Briassoulis D, Giannoulis A, D’Aquino S (2016) Design of biodegradable bio-based equilibrium modified atmosphere packaging (EMAP) for fresh fruits and vegetables by using micro-perforated poly-lactic acid (PLA) films. Postharvest Biol Technol 111:380–389. https://doi.org/10.1016/j.postharvbio.2015.09.022

    Article  CAS  Google Scholar 

  158. Guillaume C, Schwab I, Gastaldi E, Gontard N (2010) Biobased packaging for improving preservation of fresh common mushrooms (Agaricus bisporus L.). Innov Food Sci Emerg Technol 11:690–696. https://doi.org/10.1016/j.ifset.2010.05.007

    Article  CAS  Google Scholar 

  159. Guillard V, Buche P, Destercke S et al (2015) A decision support system to design modified atmosphere packaging for fresh produce based on a bipolar flexible querying approach. Comput Electron Agric 111:131–139. https://doi.org/10.1016/j.compag.2014.12.010

    Article  Google Scholar 

  160. Avella M, De Vlieger JJ, Errico ME et al (2005) Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chem 93:467–474. https://doi.org/10.1016/j.foodchem.2004.10.024

    Article  CAS  Google Scholar 

  161. Brasava SM, Dukalska L (2006) Impact of biodegradable PHB packaging composite materials on dairy product quality. LLU Raksti 16(311):79–87

    Google Scholar 

  162. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864. https://doi.org/10.1002/mabi.200400043

    Article  CAS  Google Scholar 

  163. Valappil SP, Misra SK, Boccaccini AR, Roy I (2006) Biomedical applications of polyhydroxyalkanoates: an overview of animal testing and in vivo responses. Expert Rev Med Devices 3:853–868. https://doi.org/10.1586/17434440.3.6.853

    Article  CAS  Google Scholar 

  164. Haugaard VK, Udsen AM, Mortensen G et al (2001) Food biopackaging, in biobased packaging materials for the food industry—status and perspectives. Eur Concert Action, 13–14

    Google Scholar 

  165. Shalini R Biobased packaging materials for the food industry. solutionexchange.net.in

    Google Scholar 

  166. Hayati AN, Hosseinalipour SM, Rezaie HR, Shokrgozar MA (2012) Characterization of poly(3-hydroxybutyrate)/nano-hydroxyapatite composite scaffolds fabricated without the use of organic solvents for bone tissue engineering applications. Mater Sci Eng C 32:416–422. https://doi.org/10.1016/j.msec.2011.11.013

    Article  CAS  Google Scholar 

  167. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez VA (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. https://doi.org/10.3144/expresspolymlett.2014.82

    Article  Google Scholar 

  168. Shishatskaya EI, Nikolaeva ED, Vinogradova ON, Volova TG (2016) Experimental wound dressings of degradable PHA for skin defect repair. J Mater Sci Mater Med 27:165. https://doi.org/10.1007/s10856-016-5776-4

    Article  CAS  Google Scholar 

  169. Luef KP, Stelzer F, Wiesbrock F (2015) Poly(hydroxy alkanoate)s in medical applications. Chem Biochem Eng Q 29:287–297. https://doi.org/10.15255/CABEQ.2014.2261

    Article  CAS  Google Scholar 

  170. Babu R, O’Connor K, Seeram R (2013) Current progress on bio-based polymers and their future trends. Prog Biomater 2. https://doi.org/10.1186/2194-0517-2-8

    Article  Google Scholar 

  171. Lin H-R, Kuo C-J, Lin Y-J (2003) Synthesis and characterization of biodegradable polyhydroxy butyrate-based polyurethane foams. J Cell Plast 39:101–116. https://doi.org/10.1177/0021955X03039002002

    Article  CAS  Google Scholar 

  172. Muhammadi S, Afzal M, Hameed S (2015) Bacterial polyhydroxyalkanoates-eco-friendly next generation plastic: production, biocompatibility, biodegradation, physical properties and applications. Green Chem Lett Rev 8:56–77. https://doi.org/10.1080/17518253.2015.1109715

    Article  CAS  Google Scholar 

  173. Nhan DT, Wille M, de Schryver P et al (2010) The effect of poly β-hydroxybutyrate on larviculture of the giant freshwater prawn Macrobrachium rosenbergii. Aquaculture 302:76–81

    Article  CAS  Google Scholar 

  174. Najdegerami EH, Tran TN, Defoirdt T et al (2012) Effects of poly-β-hydroxybutyrate (PHB) on Siberian sturgeon (Acipenser baerii) fingerlings performance and its gastrointestinal tract microbial community. FEMS Microbiol Ecol 79:25–33. https://doi.org/10.1111/j.1574-6941.2011.01194.x

    Article  CAS  Google Scholar 

  175. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev MMBR 63:21–53

    CAS  Google Scholar 

  176. Miguel O, Fernandez-Berridi MJ, Iruin JJ (1997) Survey on transport properties of liquids, vapors, and gases in biodegradable poly(3-hydroxybutyrate) (PHB). J Appl Polym Sci 64:1849–1859. https://doi.org/10.1002/(SICI)1097-4628(19970531)64:9%3c1849:AID-APP22%3e3.0.CO;2-R

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimal Katiyar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mudenur, C., Mondal, K., Singh, U., Katiyar, V. (2019). Production of Polyhydroxyalkanoates and Its Potential Applications. In: Katiyar, V., Gupta, R., Ghosh, T. (eds) Advances in Sustainable Polymers. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-32-9804-0_7

Download citation

Publish with us

Policies and ethics