Skip to main content

Biocompatible Polymer Based Nanofibers for Tissue Engineering

  • Chapter
  • First Online:
  • 882 Accesses

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

In the past decade, various biocompatible polymer-based electrospun nanofiber scaffolds have been used extensively for tissue repair and regeneration. Variety of biomolecules, therapeutics, and other biologically active molecules have been embedded either into the scaffolds prior to electrospinning or functionalized on the surface of the nanofiber for drug delivery applications. Moreover, various electrospinning techniques have been developed in order to increase the porosity and surface area of nanofibers for higher bioavailability and improved cell growth and proliferation. The present chapter provides a brief and comprehensive review of the recent trends and challenges of the use of these nanofiber scaffolds with and without drugs for tissue engineering applications. Further, a few drug delivery studies of drug-incorporated scaffolds have been summarized in the present chapter. The chapter also briefly covers the drug delivery studies of the authors’ own work based on chloramphenicol-loaded poly(ε-caprolactone) scaffolds. Lastly, the summary and future prospects of tissue engineering have been deliberated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bolaina-Lorenzo E, Martinez-Ramos C, Monleón-Pradas M et al (2017) Electrospun polycaprolactone/chitosan scaffolds for nerve tissue engineering: physicochemical characterization and schwann cell biocompatibility. Biomed Mater 12:1–11. https://doi.org/10.1088/1748-605X/12/1/015008

    Article  Google Scholar 

  2. Altman GH, Horan RL, Lu HH et al (2002) Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23:4131–4141. https://doi.org/10.1016/S0142-9612(02)00156-4

    Article  CAS  Google Scholar 

  3. Kim DY, Pyun JH, Choi JW et al (2010) Tissue-engineered allograft tracheal cartilage using fibrin/hyaluronan composite gel and its in vivo implantation. Laryngoscope 120:30–38. https://doi.org/10.1002/lary.20652

    Article  CAS  Google Scholar 

  4. Kim GK, Trang H, Rainer A, Trombetta M (2013) Electrospinning of PCL/PVP blends for tissue engineering scaffolds. J Mater Sci Mater Med 24(6):1425–1442. https://doi.org/10.1007/s10856-013-4893-6

    Article  CAS  Google Scholar 

  5. Maurmann N, Pereira DP, Burguez D et al (2017) Mesenchymal stem cells cultivated on scaffolds formed by 3D printed PCL matrices, coated with PLGA electrospun nanofibers for use in tissue engineering mesenchymal stem cells cultivated on scaffolds formed by 3D printed PCL matrices, coated with PLGA el. Biomed Phys Eng Express 3:045005

    Article  Google Scholar 

  6. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689. https://doi.org/10.1016/j.cell.2006.06.044

    Article  CAS  Google Scholar 

  7. Al-Enizi A, Zagho M, Elzatahry A (2018) Polymer-based electrospun nanofibers for biomedical applications. Nanomaterials 8:259. https://doi.org/10.3390/nano8040259

    Article  CAS  Google Scholar 

  8. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4:518–524. https://doi.org/10.1038/nmat1683

    Article  CAS  Google Scholar 

  9. Chong EJ, Phan TT, Lim IJ et al (2007) Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomaterials 3:321–330. https://doi.org/10.1016/j.actbio.2007.01.002

    Article  CAS  Google Scholar 

  10. Salerno A, Zeppetelli S, Oliviero M et al (2012) Microstructure, degradation and in vitro MG63 cells interactions of a new poly(ε-caprolactone), zein, and hydroxyapatite composite for bone tissue engineering. J Bioact Compat Polym 27:210–226. https://doi.org/10.1177/0883911512442564

    Article  CAS  Google Scholar 

  11. Chaudhuri R, Ramachandran M, Moharil P et al (2017) Biomaterials and cells for cardiac tissue engineering: current choices. Mater Sci Eng C 79:950–957. https://doi.org/10.1016/j.msec.2017.05.121

    Article  CAS  Google Scholar 

  12. Gomes ME, Reis RL (2004) Biodegradable polyers and composites in biomedical applications: from catgut to tissue engineering. Int Mater Rev 49:274–285. https://doi.org/10.1179/095066004225021927

    Article  CAS  Google Scholar 

  13. Tayalia P, Mooney DJ (2009) Controlled growth factor delivery for tissue engineering. Adv Mater 21:3269–3285. https://doi.org/10.1002/adma.200900241

    Article  CAS  Google Scholar 

  14. Zupancic S, Baumgartner S, Lavri Z, Petelin M, Kristl J (2015) Local delivery of resveratrol using polycaprolactone nanofibers for treatment of periodontal disease. J Drug Deliv Sci Technol 30:408–416. https://doi.org/10.1016/j.jddst.2015.07.009

    Article  CAS  Google Scholar 

  15. Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17:467–479. https://doi.org/10.1007/s00586-008-0745-3

    Article  CAS  Google Scholar 

  16. Andersson AS, Bäckhed F, Von Euler A et al (2003) Nanoscale features influence epithelial cell morphology and cytokine production. Biomaterials 24:3427–3436. https://doi.org/10.1016/S0142-9612(03)00208-4

    Article  CAS  Google Scholar 

  17. Saha S, Duan X, Wu L et al (2012) Electrospun fibrous scaffolds promote breast cancer cell alignment and epithelial-mesenchymal transition. Langmuir 28:2028–2034. https://doi.org/10.1021/la203846w

    Article  CAS  Google Scholar 

  18. Pan X, Medina-Ramirez I, Mernaugh R, Liu J (2010) Nanocharacterization and bactericidal performance of silver modified titania photocatalyst. Colloids SurfS B Biointerfaces 77:82–89. https://doi.org/10.1016/j.colsurfb.2010.01.010

    Article  CAS  Google Scholar 

  19. Jeffries EM, Wang Y (2012) Biomimetic micropatterned multi-channel nerve guides by templated electrospinning. Biotechnol Bioeng 109:1571–1582. https://doi.org/10.1002/bit.24412

    Article  CAS  Google Scholar 

  20. Dai Z, Ronholm J, Tian Y et al (2016) Sterilization techniques for biodegradable scaffolds in tissue engineering applications. J Tissue Eng 7:1–3. https://doi.org/10.1177/2041731416648810

    Article  CAS  Google Scholar 

  21. Kuppan P, Vasanthan KS, Sundaramurthi D et al (2011) Development of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers for skin tissue engineering: effects of topography, mechanical, and chemical stimuli. Biomacromolecules 12:3156–3165. https://doi.org/10.1021/bm200618w

    Article  CAS  Google Scholar 

  22. Gupta KC, Haider A, Choi Y, Kang I (2014) Nanofibrous scaffolds in biomedical applications. Biomater Res 18:1–11. https://doi.org/10.1186/2055-7124-18-5

    Article  Google Scholar 

  23. Kundu J, Pati F, Hun Jeong Y, Cho DW (2013) Biomaterials for biofabrication of 3D tissue scaffolds, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  24. Pant HR, Neupane MP, Pant B et al (2011) Fabrication of highly porous poly (caprolactone) fibers for novel tissue scaffold via water-bath electrospinning. Colloids SurfS B Biointerfaces 88:587–592. https://doi.org/10.1016/j.colsurfb.2011.07.045

    Article  CAS  Google Scholar 

  25. Wang H, Feng Y, Fang Z et al (2012) Co-electrospun blends of PU and PEG as potential biocompatible scaffolds for small-diameter vascular tissue engineering. Mater Sci Eng C 32:2306–2315. https://doi.org/10.1016/j.msec.2012.07.001

    Article  CAS  Google Scholar 

  26. Zheng F, Wang S, Shen M et al (2013) Antitumor efficacy of doxorubicin-loaded electrospun nano-hydroxyapatite-poly(lactic-co-glycolic acid) composite nanofibers. Polym Chem 4:933–941. https://doi.org/10.1039/C2PY20779F

    Article  CAS  Google Scholar 

  27. Doustgani A, Vasheghani-Farahani E, Soleimani M, Hashemi-Najafabadi S (2012) Optimizing the mechanical properties of electrospun polycaprolactone and nanohydroxyapatite composite nanofibers. Compos Part B Eng 43:1830–1836. https://doi.org/10.1016/j.compositesb.2012.01.051

    Article  CAS  Google Scholar 

  28. Fernandes EM, Correlo VM, Mano JF, Reis RL (2015) Cork–polymer biocomposites: mechanical, structural and thermal properties. Mater Des 82:282–289. https://doi.org/10.1016/j.matdes.2015.05.040

    Article  CAS  Google Scholar 

  29. Zheng F, Wang S, Wen S et al (2013) Characterization and antibacterial activity of amoxicillin-loaded electrospun nano-hydroxyapatite/poly(lactic-co-glycolic acid) composite nanofibers. Biomaterials 34:1402–1412. https://doi.org/10.1016/j.biomaterials.2012.10.071

    Article  CAS  Google Scholar 

  30. Suwantong O (2016) Biomedical applications of electrospun polycaprolactone fiber mats. Polym Adv Technol, 1–10. https://doi.org/10.1002/pat.3876

    Article  CAS  Google Scholar 

  31. Komur B, Lohse T, Can HM et al (2016) Fabrication of natural pumice/hydroxyapatite composite for biomedical engineering. Biomed Eng Online 15:1–20. https://doi.org/10.1186/s12938-016-0203-0

    Article  Google Scholar 

  32. Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150. https://doi.org/10.1016/j.biotechadv.2009.11.001

    Article  CAS  Google Scholar 

  33. Garg T, Rath G, Goyal AK (2015) Biomaterials-based nanofiber scaffold: targeted and controlled carrier for cell and drug delivery. J Drug Target 23:202–221. https://doi.org/10.3109/1061186X.2014.992899

    Article  CAS  Google Scholar 

  34. Subianto S, Qin X (2017) Electrospun nanofibers for filtration applications. In: Electrospun nanofibers. Woodhead Publishing Series in Textiles, pp 449–466

    Google Scholar 

  35. Thenmozhi S, Dharmaraj N, Kadirvelu K, Kim HY (2017) Electrospun nanofibers: new generation materials for advanced applications. Mater Sci Eng B 217:36–48. https://doi.org/10.1016/j.mseb.2017.01.001

    Article  CAS  Google Scholar 

  36. Ding B (2018) Electrospinning: nanofabrication and applications, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  37. Ramakrishna S, Fujihara K, Teo W-E, et al (2005) An introduction to electrospinning and nanofibers, 1st edn. World Scientific

    Google Scholar 

  38. Teck C (2017) Progress in polymer science nanofiber technology: current status and emerging developments. Prog Polym Sci 70:1–17. https://doi.org/10.1016/j.progpolymsci.2017.03.002

    Article  CAS  Google Scholar 

  39. Li Z, Wang C (2013) One-dimensional nanostructures. Springer, Berlin

    Book  Google Scholar 

  40. Xie J, Macewan MR, Schwartz AG, Xia Y (2010) Electrospun nanofibers for neural tissue engineering electrospun nanofibers for neural tissue engineering. Nanoscale 2:35–44. https://doi.org/10.1039/b9nr00243j

    Article  CAS  Google Scholar 

  41. Haider A, Haider S, Kang IK (2018) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem 11:1165–1188

    Article  CAS  Google Scholar 

  42. Ekaputra AK, Prestwich GD, Cool SM, Hutmacher DW (2008) Combining electrospun scaffolds with electrosprayed hydrogels leads to three-dimensional cellularization of hybrid constructs. Biomacromolecules 9:2097–2103. https://doi.org/10.1021/bm800565u

    Article  CAS  Google Scholar 

  43. Nam J, Huang Y, Agarwal S, Lannutti J (2007) Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng 13:2249–2257. https://doi.org/10.1089/ten.2006.0306

    Article  CAS  Google Scholar 

  44. Wu J, Hong Y (2016) Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioact Mater 1:56–64. https://doi.org/10.1016/j.bioactmat.2016.07.001

    Article  Google Scholar 

  45. Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3:232–238. https://doi.org/10.1021/bm015533u

    Article  CAS  Google Scholar 

  46. Xia Z, Yu X, Jiang X, Brody HD, Rowe DW, Wei M (2014) Fabrication and characterization of biomimetic collagen-apatite scaffolds with tunable structures for bone tissue engineering. Acta Biomater 9:7308–7319. https://doi.org/10.1016/j.actbio.2013.03.038.Fabrication

    Article  Google Scholar 

  47. Boland Eugene D (2004) Electrospinning collagen and elastin: preliminary vascular tissue engineering. Front Biosci 9:1422. https://doi.org/10.2741/1313

    Article  CAS  Google Scholar 

  48. Sell SA, McClure MJ, Garg K et al (2009) Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv Drug Deliv Rev 61:1007–1019. https://doi.org/10.1016/j.addr.2009.07.012

    Article  CAS  Google Scholar 

  49. Madhurakkat Perikamana SK, Lee J, Ahmad T et al (2015) Effects of immobilized BMP-2 and nanofiber morphology on in vitro osteogenic differentiation of hMSCs and in vivo collagen assembly of regenerated bone. ACS Appl Mater Interfaces 7:8798–8808. https://doi.org/10.1021/acsami.5b01340

    Article  CAS  Google Scholar 

  50. Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32:991–1007. https://doi.org/10.1016/j.progpolymsci.2007.05.013

    Article  CAS  Google Scholar 

  51. Zhang X, Reagan MR, Kaplan DL (2009) Electrospun silk biomaterial scaffolds for regenerative medicine. Adv Drug Deliv Rev 61:988–1006. https://doi.org/10.1016/j.addr.2009.07.005

    Article  CAS  Google Scholar 

  52. Kearns V, MacIntosh A (2008) Silk-based biomaterials for tissue engineering. In: Reis R, Chiellini F (eds) Topics in tissue engineering, pp 1–19

    Google Scholar 

  53. Pillai CKS, Sharma CP (2009) Electrospinning of chitin and chitosan nanofibres. Trends Biomater Artif Organs 22:179–201. https://doi.org/10.1166/jbn.2009.1003

    Article  CAS  Google Scholar 

  54. Bolaina-Lorenzo E, Martinez-Ramos C, Monleón-Pradas M, Herrera-Kao W, Cauich-Rodriguez JC-UJ (2016) Electrospun polycaprolactone/chitosan scaffolds for nerve tissue engineering: physicochemical characterization and schwann cell biocompatibility. Biomed Mater 12:015008. https://doi.org/10.1088/1748-605X/12/1/015008

    Article  Google Scholar 

  55. Jayakumar R, Prabaharan M, Sudheesh Kumar PT et al (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29:322–337. https://doi.org/10.1016/j.biotechadv.2011.01.005

    Article  CAS  Google Scholar 

  56. Ma G, Fang D, Liu Y et al (2012) Electrospun sodium alginate/poly(ethylene oxide) core-shell nanofibers scaffolds potential for tissue engineering applications. Carbohydr Polym 87:737–743. https://doi.org/10.1016/j.carbpol.2011.08.055

    Article  CAS  Google Scholar 

  57. Jeong SI, Krebs MD, Bonino CA et al (2010) Electrospun alginate nanofibers with controlled cell adhesion for tissue engineering. Macromol Biosci 10:934–943. https://doi.org/10.1002/mabi.201000046

    Article  CAS  Google Scholar 

  58. Prang P, Müller R, Eljaouhari A et al (2006) The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials 27:3560–3569. https://doi.org/10.1016/j.biomaterials.2006.01.053

    Article  CAS  Google Scholar 

  59. Bao X, Hayashi K, Li Y et al (2010) Novel agarose and agar fibers: fabrication and characterization. Mater Lett 64:2435–2437. https://doi.org/10.1016/j.matlet.2010.08.008

    Article  CAS  Google Scholar 

  60. Sadrearhami Z, Morshed M, Varshosaz J (2015) Production and evaluation of polyblend of agar and polyacrylonitrile nanofibers for in vitro release of methotrexate in cancer therapy. Fibers Polym 16:254–262. https://doi.org/10.1007/s12221-015-0254-z

    Article  CAS  Google Scholar 

  61. Zhang Y, Ouyang H, Chwee TL et al (2005) Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res Part B Appl Biomater 72:156–165. https://doi.org/10.1002/jbm.b.30128

    Article  CAS  Google Scholar 

  62. Arbade GK, Jathar S, Tripathi V, Patro TU (2018) Antibacterial, sustained drug release and biocompatibility studies of electrospun poly (ε-caprolactone)/chloramphenicol blend nanofiber scaffolds. Biomed Phys Eng Express 4:045011. https://doi.org/10.1088/2057-1976/aac1a4

    Article  Google Scholar 

  63. Abedalwafa M, Wang F, Wang L, Li C (2013) Biodegradable Poly-Epsilon-Caprolactone (PCL) for tissue engineering applications: a review. Rev Adv Mater Sci 34:123–140. https://doi.org/10.1016/j.progpolymsci.2013.02.003

    Article  CAS  Google Scholar 

  64. Kim G-M, Le KHT, Giannitelli SM et al (2013) Electrospinning of PCL/PVP blends for tissue engineering scaffolds. J Mater Sci Mater Med 24:1425–1442. https://doi.org/10.1007/s10856-013-4893-6

    Article  CAS  Google Scholar 

  65. Alves Da Silva ML, Martins A, Costa-Pinto AR et al (2010) Cartilage tissue engineering using electrospun PCL nanofiber meshes and MSCs. Biomacromolecules 11:3228–3236. https://doi.org/10.1021/bm100476r

    Article  CAS  Google Scholar 

  66. Yu H, Jia Y, Yao C, Lu Y (2014) PCL/PEG core/sheath fibers with controlled drug release rate fabricated on the basis of a novel combined technique. Int J Pharm 469:17–22. https://doi.org/10.1016/j.ijpharm.2014.04.045

    Article  CAS  Google Scholar 

  67. Anaraki NA, Rad LR, Irani M, Haririan I (2015) Fabrication of PLA/PEG/MWCNT electrospun nanofibrous scaffolds for anticancer drug delivery. J Appl Polym Sci 132:1–9. https://doi.org/10.1002/app.41286

    Article  CAS  Google Scholar 

  68. Hasrul N, Ngadiman A, Noordin MY et al (2015) Influence of polyvinyl alcohol molecular weight on the electrospun nanofiber mechanical properties. Procedia Manuf 2:568–572. https://doi.org/10.1016/j.promfg.2015.07.098

    Article  Google Scholar 

  69. Ye M, Mohanty P, Ghosh G (2014) Morphology and properties of poly vinyl alcohol (PVA) scaffolds: impact of process variables. Mater Sci Eng C 42:289–294. https://doi.org/10.1016/j.msec.2014.05.029

    Article  CAS  Google Scholar 

  70. Alavarse AC, de Oliveira Silva FW, Colque JT et al (2017) Tetracycline hydrochloride-loaded electrospun nanofibers mats based on PVA and chitosan for wound dressing. Mater Sci Eng C 77:271–281. https://doi.org/10.1016/j.msec.2017.03.199

    Article  CAS  Google Scholar 

  71. Sousa AMM, Souza HKS, Uknalis J et al (2015) Electrospinning of agar/PVA aqueous solutions and its relation with rheological properties. Carbohydr Polym 115:348–355. https://doi.org/10.1016/j.carbpol.2014.08.074

    Article  CAS  Google Scholar 

  72. Nguyen T, Padalhin AR, Seo HS, Lee B (2013) A hybrid electrospun PU/PCL scaffold satisfied the requirements of blood vessel prosthesis in terms of mechanical properties, pore size, and biocompatibility. J Biomater Sci:37–41. https://doi.org/10.1080/09205063.2013.792642

    Article  CAS  Google Scholar 

  73. Kenawy E, Abdel-hay FI, El-newehy MH, Wnek GE (2009) Processing of polymer nanofibers through electrospinning as drug delivery systems. Mater Chem Phys 113:296–302. https://doi.org/10.1016/j.matchemphys.2008.07.081

    Article  CAS  Google Scholar 

  74. Jeong H, Sook J, Gon T et al (2008) Preparation of poly (e-caprolactone)-based polyurethane nanofibers containing silver nanoparticles. Appl Surf Sci 254:5886–5890. https://doi.org/10.1016/j.apsusc.2008.03.141

    Article  CAS  Google Scholar 

  75. Nishida Y, Domura R, Sakai R et al (2015) Fabrication of PLLA/HA composite scaffolds modified by DNA. Polym (United Kingdom) 56:73–81. https://doi.org/10.1016/j.polymer.2014.09.063

    Article  CAS  Google Scholar 

  76. Jaiswal AK, Kadam SS, Soni VP, Bellare JR (2013) Improved functionalization of electrospun PLLA/gelatin scaffold by alternate soaking method for bone tissue engineering. Appl Surf Sci 268:477–488. https://doi.org/10.1016/j.apsusc.2012.12.152

    Article  CAS  Google Scholar 

  77. Oyama HTT, Cortella LRX, Rosa INS et al (2015) Assessment of the biocompatibility of the PLLA-PLCL scaffold obtained by electrospinning. Procedia Eng 110:135–142. https://doi.org/10.1016/j.proeng.2015.07.021

    Article  CAS  Google Scholar 

  78. Online VA, Goonoo N, Rodriguez IA et al (2015) Poly(ester-ether)s: III. assessment of cell behaviour on nanofibrous scaffolds of PCL, PLLA and PDX blended with amorphous PMeDX. J Mater Chem B 3:673–687. https://doi.org/10.1039/C4TB01350F

    Article  CAS  Google Scholar 

  79. Chou SF, Woodrow KA (2017) Relationships between mechanical properties and drug release from electrospun fibers of PCL and PLGA blends. J Mech Behav Biomed Mater 65:724–733. https://doi.org/10.1016/j.jmbbm.2016.09.004

    Article  CAS  Google Scholar 

  80. Ru C, Wang F, Pang M et al (2015) Suspended, shrinkage-free, electrospun PLGA nanofibrous scaffold for skin tissue engineering. ACS Appl Mater Interfaces 7:10872–10877. https://doi.org/10.1021/acsami.5b01953

    Article  CAS  Google Scholar 

  81. Hiep NT, Khon HC, Hai ND, Taek L (2017) Fabrication of PCL/PLGA-BCP porous scaffold for bone tissue engineering applications. J Biomater Sci Polym Ed 5063:1. https://doi.org/10.1080/09205063.2017.1311821 (Publisher : taylor & francis engineering applications)

    Article  Google Scholar 

  82. Kikuchi M, Koyama Y, Yamada T et al (2004) Development of guided bone regeneration membrane composed of β-tricalcium phosphate and poly (l-lactide-co-glycolide-co-ε-caprolactone) composites. Biomaterials 25:5979–5986. https://doi.org/10.1016/j.biomaterials.2004.02.001

    Article  CAS  Google Scholar 

  83. Park JH, Kang HJ, Kwon DY et al (2015) Biodegradable poly(lactide-co-glycolide-co-ε-caprolactone) block copolymers—evaluation as drug carriers for a localized and sustained delivery system. J Mater Chem B 3:8143–8153. https://doi.org/10.1039/C5TB01542A

    Article  CAS  Google Scholar 

  84. Wakuda Y, Nishimot S, Suye S, Fujita S (2018) Native collagen hydrogel nanofibres with anisotropic structure using core-shell electrospinning. Sci Rep 8:1–10. https://doi.org/10.1038/s41598-018-24700-9

    Article  CAS  Google Scholar 

  85. Sadeghi-avalshahr A, Nokhasteh S, Molavi AM (2017) Synthesis and characterization of collagen/PLGA biodegradable skin scaffold fibers. Regen Biomater, 309–314. https://doi.org/10.1093/rb/rbx026

    Article  CAS  Google Scholar 

  86. Sundaramurthi D (2012) Electrospun nanostructured chitosan-poly(vinyl alcohol) scaffolds : a biomimetic extracellular matrix as dermal. Biomed Mater 7:045005. https://doi.org/10.1088/1748-6041/7/4/045005

    Article  CAS  Google Scholar 

  87. El A, Lamme EN, Van Blitterswijk C et al (2004) The use of PEGT/PBT as a dermal scaffold for skin tissue engineering 25:2987–2996. https://doi.org/10.1016/j.biomaterials.2003.09.098

    Article  CAS  Google Scholar 

  88. Sadeghi-avalshahr A, Nokhasteh S, Molavi AM (2017) Synthesis and characterization of collagen/PLGA biodegradable skin scaffold fibers, 309–314. https://doi.org/10.1093/rb/rbx026

    Article  CAS  Google Scholar 

  89. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Progress in polymer science chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014. https://doi.org/10.1016/j.progpolymsci.2011.02.001

    Article  CAS  Google Scholar 

  90. Sarhan WA, Azzazy HME, El-Sherbiny IM (2016) Honey/Chitosan nanofiber wound dressing enriched with allium sativum and cleome droserifolia: enhanced antimicrobial and wound healing activity. ACS Appl Mater Interfaces 8:6379–6390. https://doi.org/10.1021/acsami.6b00739

    Article  CAS  Google Scholar 

  91. Unnithan AR, Barakat NAM, Pichiah PBT, et al (2012) Wound-dressing materials with antibacterial activity from electrospun polyurethane–dextran nanofiber mats containing ciprofloxacin HCl. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2012.07.071

    Article  CAS  Google Scholar 

  92. Anjum F, Agabalyan NA, Sparks HD, et al (2017) Biocomposite nanofiber matrices to support ECM remodeling by human dermal progenitors and enhanced wound closure. Sci Rep, 1–17. https://doi.org/10.1038/s41598-017-10735-x

  93. Ottosson M, Jakobsson A, Johansson F (2017) Accelerated wound closure—differently organized nanofibers affect cell migration and hence the closure of artificial wounds in a cell based in vitro model. PLoS One 12:1–15. https://doi.org/10.1371/journal.pone.0169419

    Article  CAS  Google Scholar 

  94. Ranjbar-Mohammadi M, Bahrami SH (2016) Electrospun curcumin loaded poly(ε-caprolactone)/gum tragacanth nanofibers for biomedical application. Int J Biol Macromol 84:448–456. https://doi.org/10.1016/j.ijbiomac.2015.12.024

    Article  CAS  Google Scholar 

  95. Yousefi I, Pakravan M, Rahimi H et al (2017) An investigation of electrospun henna leaves extract-loaded chitosan based nanofibrous mats for skin tissue engineering. Mater Sci Eng C 75:433–444. https://doi.org/10.1016/j.msec.2017.02.076

    Article  CAS  Google Scholar 

  96. Kashte S, Jaiswal AK, Kadam S (2017) Artificial bone via bone tissue engineering: current scenario and challenges. Tissue Eng Regen Med 14:1–14. https://doi.org/10.1007/s13770-016-0001-6

    Article  CAS  Google Scholar 

  97. Euler SA, Kralinger FS, Hengg C et al (2016) Allograft-augmentation proximal humerus fracture. Oper Orthop Traumatol 28:153–163. https://doi.org/10.1007/s00064-016-0446-8

    Article  CAS  Google Scholar 

  98. Zhao C, Tan A, Pastorin G, Ho HK (2013) Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnol Adv 31:654–668. https://doi.org/10.1016/j.biotechadv.2012.08.001

    Article  CAS  Google Scholar 

  99. Vagaska B, Bacakova L, Filova E, Balik K (2016) Osteogenic cells on bio-inspired materials for bone tissue engineering. 8408:309–322. https://doi.org/10.1155/2012/874149

    Article  Google Scholar 

  100. Ke Y, Yibin REN, Peng WAN (2012) High nitrogen nickel-free austenitic stainless steel: a promising coronary stent material. Sci China Tech Sci Febr 55:329–340. https://doi.org/10.1007/s11431-011-4679-3

    Article  CAS  Google Scholar 

  101. Kasten P, Beyen I, Niemeyer P et al (2008) Porosity and pore size of b-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study. Acta Biomater 4:1904–1915. https://doi.org/10.1016/j.actbio.2008.05.017

    Article  CAS  Google Scholar 

  102. Livingston T, Ducheyne P, Garino J (2001) In vivo evaluation of a bioactive scaffold for bone. J Biomed Mater Res 62:1–13

    Article  Google Scholar 

  103. Nguyen T, Bao TQ, Park I, Lee B (2012) A novel fibrous scaffold composed of electrospun porous poly (e-caprolactone) fibers for bone tissue engineering. J Biomater Appl 28:514–528. https://doi.org/10.1177/0885328212462257

    Article  CAS  Google Scholar 

  104. Tsai K, Kao S, Wang C et al (2010) Type I collagen promotes proliferation and osteogenesis of human mesenchymal stem cells via activation of ERK and Akt pathways. J Biomed Mater Res Part A 94A:673–682. https://doi.org/10.1002/jbm.a.32693

    Article  CAS  Google Scholar 

  105. Muzzarelli RAA, Zucchini C, Ilari I, et al (1993) Osteocoiductive properties of methyl pyrrolidinone chitosan in an animal model. Biomater 14

    Google Scholar 

  106. Correia SI, Pereira H, Van Dijk CN et al (2013) Current concepts: tissue engineering and regenerative medicine applications in the ankle joint. J R Soc Interface 11:1–20

    Google Scholar 

  107. Haibin MA, Wenxin SU, Zhixin TAI et al (2012) Preparation and cytocompatibility of polylactic acid/hydroxyapatite/graphene oxide nanocomposite fibrous membrane. Chinese Sci Bull 57:3051–3058. https://doi.org/10.1007/s11434-012-5336-3

    Article  CAS  Google Scholar 

  108. Wang Y, Kim UJ, Blasioli DJ et al (2005) In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells. Biomaterials 26:7082–7094. https://doi.org/10.1016/j.biomaterials.2005.05.022

    Article  CAS  Google Scholar 

  109. Chen W, Chen S, Morsi Y et al (2016) Superabsorbent 3D scaffold based on electrospun nanofibers for cartilage tissue engineering. ACS Appl Mater Interfaces 8:24415–24425. https://doi.org/10.1021/acsami.6b06825

    Article  CAS  Google Scholar 

  110. Fu W, Liu Z, Feng B, Hu R, He X, H Wang, Ying M, Huang H, Zhang H, Wang W (2014) Electrospun gelatin/PCL and collagen/PLCL scaffolds for vascular tissue engineering. Int J Nanomedicine 9:2335–2344. https://doi.org/10.2147/IJN.S61375

    Article  Google Scholar 

  111. Tillman BW, Yazdani SK, Lee SJ et al (2009) The in vivo stability of electrospun polycaprolactone-collagen scaffolds in vascular reconstruction. Biomaterials 30:583–588. https://doi.org/10.1016/j.biomaterials.2008.10.006

    Article  CAS  Google Scholar 

  112. Ai J, Kiasat Dolatabadi A, Ebrahimi Barough S, Ai A et al (1999) Polymeric scaffolds in neural tissue engineering: a review. J Phys Chem B 103:2709–2717. https://doi.org/10.5812/archneurosci.9144

    Article  Google Scholar 

  113. Kim JI, Hwang TI, Aguilar LE et al (2016) A Controlled design of aligned and random nanofibers for 3D bi-functionalized nerve conduits fabricated via a novel electrospinning set-up. Sci Rep 6:1–12. https://doi.org/10.1038/srep23761

    Article  CAS  Google Scholar 

  114. Xie J, Macewan MR, Liu W et al (2014) Nerve guidance conduits based on double-layered scaffolds of electrospun nanofibers for repairing the peripheral nervous system. ACS Appl Mater Interfaces 6:9472–9480. https://doi.org/10.1021/am5018557

    Article  CAS  Google Scholar 

  115. Yang Y, Ding F, Wu J et al (2007) Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration. Biomaterials 28:5526–5535. https://doi.org/10.1016/j.biomaterials.2007.09.001

    Article  CAS  Google Scholar 

  116. Subramanian A, Krishnan UM, Sethuraman S (2012) Fabrication, characterization and in vitro evaluation of aligned PLGA—PCL nanofibers for neural regeneration. Ann Biomed Eng 40:2098–2110. https://doi.org/10.1007/s10439-012-0592-6

    Article  Google Scholar 

  117. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M et al (2008) Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 29:4532–4539. https://doi.org/10.1016/j.biomaterials.2008.08.007

    Article  CAS  Google Scholar 

  118. Prabhakaran MP, Venugopal J (2008) Electrospun poly(ε-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Nanotechnology 9:1–8. https://doi.org/10.1016/j.biomaterials.2008.08.007

    Article  CAS  Google Scholar 

  119. Wei Y, Gong K, Zheng Z et al (2011) Chitosan/silk fibroin-based tissue-engineered graft seeded with adipose-derived stem cells enhances nerve regeneration in a rat model. J Mater Sci Mater Med 22:1947–1964. https://doi.org/10.1007/s10856-011-4370-z

    Article  CAS  Google Scholar 

  120. Ho VP, Barie PS, Stein SL et al (2011) Antibiotic regimen and the timing of prophylaxis are important for reducing surgical site infection after elective abdominal colorectal surgery. Surg Infect (Larchmt) 12:255–260. https://doi.org/10.1089/sur.2010.073

    Article  Google Scholar 

  121. Zhang Z, Tang J, Wang H et al (2015) Controlled antibiotics release system through simple blended electrospun fibers for sustained antibacterial effects. ACS Appl Mater Interfaces 7:26400–26404. https://doi.org/10.1021/acsami.5b09820

    Article  CAS  Google Scholar 

  122. Hu J, Prabhakaran MP, Tian L (2015) Drug-loaded emulsion electrospun nanofibers: characterization, drug release and in vitro biocompatibility. RSC Adv 5:100256–100267. https://doi.org/10.1039/C5RA18535A

    Article  CAS  Google Scholar 

  123. Beck-broichsitter M, Thieme M, Nguyen J, et al (2010) Novel ‘Nano in Nano’ composites for sustained drug delivery: biodegradable nanoparticles encapsulated into nanofiber non-wovens a, 1527–1535. https://doi.org/10.1002/mabi.201000100

    Article  CAS  Google Scholar 

  124. Yakub G, Toncheva A, Manolova N et al (2016) Electrospun polylactide-based materials for curcumin release: photostability, antimicrobial activity, and anticoagulant effect. J Appl Polym Sci 133:1–11. https://doi.org/10.1002/app.42940

    Article  CAS  Google Scholar 

  125. Sripanidkulchai B, Fangkrathok N (2014) Antioxidant, antimutagenic and antibacterial activities of extracts from phyllanthus emblica branches. Songklanakarin J Sci Technol 36:669–674

    Google Scholar 

  126. Alexis F (2005) Factors affecting the degradation and drug-release mechanism of poly (lactic acid) and poly [(lactic acid)-co-(glycolic acid)]. Polym Int 46:36–46. https://doi.org/10.1002/pi.1697

    Article  CAS  Google Scholar 

  127. Kenawy E, Bowlin GL, Mansfield K et al (2002) Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J Control Release 81:57–64

    Article  CAS  Google Scholar 

  128. Delplace V, Nicolas J (2015) Degradable vinyl polymers for biomedical applications. Nat Chem 7:771–784. https://doi.org/10.1038/nchem.2343

    Article  CAS  Google Scholar 

  129. Qi R, Guo R, Shen M et al (2010) Electrospun poly(lactic-co-glycolic acid)/halloysite nanotube composite nanofibers for drug encapsulation and sustained release. J Mater Chem 20:10622–10629. https://doi.org/10.1039/c0jm01328e

    Article  CAS  Google Scholar 

  130. Augustine R, Nethi S, Kalarikkal N, Thomas SPC (2007) Release of antibiotics from electrospun bicomponent fibers. Cellulose 14:553–562. https://doi.org/10.1007/s10570-007-9183-3

    Article  CAS  Google Scholar 

  131. Zupancic S, Ray SS, Sinha-ray S et al (2016) Long-term sustained ciprofloxacin release from pmma and hydrophilic polymer blended nanofibers long-term sustained ciprofloxacin release from pmma and hydrophilic polymer blended nanofibers. Mol Pharm 13:295–305. https://doi.org/10.1021/acs.molpharmaceut.5b00804

    Article  CAS  Google Scholar 

  132. Ruckh T, Oldinski R, Carroll D, Mikhova K, Bryers KPK (2012) Antimicrobial effects of nanofiber poly(caprolactone) tissue scaffolds releasing rifampicin. J Mater Sci Mater Med 23:1411–1420. https://doi.org/10.1007/s10856-012-4609-3

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arbade, G.K., Patro, T.U. (2019). Biocompatible Polymer Based Nanofibers for Tissue Engineering. In: Katiyar, V., Gupta, R., Ghosh, T. (eds) Advances in Sustainable Polymers. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-32-9804-0_3

Download citation

Publish with us

Policies and ethics