Skip to main content

Biobased Nanohydrogels for Controlled Drug Delivery

  • Chapter
  • First Online:
  • 848 Accesses

Part of the book series: Materials Horizons: From Nature to Nanomaterials ((MHFNN))

Abstract

Advances in biobased polymers have great considerable attention leading to the evolution of various novel drug delivery systems (DDS). The biocompatibility and biodegradability of these biopolymers, coupled to the large variety of chemical functionalities make them a promising carrier for DDS. The encapsulation of drugs using high molecular weight polymers can improve significantly both tumour targeting and therapeutic efficacy due to the improved permeability and water retention behaviour. However, polysaccharide-based nanohydrogels are prepared by reinforcing different nanomaterials in polysaccharides matrix for drug delivery applications. Further, the drugs release efficiency of biobased nanohydrogels can be enhanced, when tailor-made carbon quantum dot and specific nanostructured materials are reinforced to the specific materials. In this chapter, the preparation and characterization of different biobased nanohydrogels are discussed with suitability of their applications as potential drugs transporter. Moreover, the toxicity and stability of biobased nanohydrogels are studied after encapsulation of various drugs. The present chapter aims to explore the possibilities of safe and controlled release of various therapeutic drugs with the help of different biobased nanohydrogels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Beneke CE, Viljoen AM, Hamman JH (2009) Polymeric plant-derived excipients in drug delivery. Molecules 14:2602–2620. https://doi.org/10.3390/molecules14072602

    Article  Google Scholar 

  2. Guenther U, Smirnova I, Neubert RHH (2008) Hydrophilic silica aerogels as dermal drug delivery systems—dithranol as a model drug. Eur J Pharm Biopharm 69:935–942. https://doi.org/10.1016/j.ejpb.2008.02.003

    Article  CAS  Google Scholar 

  3. García-González CA, Argemí A, Sousa ARSD, Duarte CMM, Saurina J, Domingo C (2010) Encapsulation efficiency of solid lipid hybrid particles prepared using the PGSS® technique and loaded with different polarity active agents. J Supercrit Fluids 54:342–347. https://doi.org/10.1016/j.supflu.2010.05.011

    Article  CAS  Google Scholar 

  4. Jagur-Grodzinski J (2010) Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polym Adv Technol 21:27–47. https://doi.org/10.1002/pat.1504

    Article  CAS  Google Scholar 

  5. Joshi MD, Müller RH (2009) Lipid nanoparticles for parenteral delivery of actives. Eur J Pharm Biopharm 71:161–172. https://doi.org/10.1016/j.ejpb.2008.09.003

    Article  CAS  Google Scholar 

  6. Pose-Vilarnovo B, Rodríguez-Tenreiro C, Rosa Dos Santos JF, Vázquez-Doval J, Concheiro A, Alvarez-Lorenzo C, Torres-Labandeira JJ (2004) Modulating drug release with cyclodextrins in hydroxypropyl methylcellulose gels and tablets. J Control Release 94:351–363. https://doi.org/10.1016/j.jconrel.2003.10.002

    Article  CAS  Google Scholar 

  7. Huang HJ, Chen XD, Yuan WK (2006) Microencapsulation based on emulsification for producing pharmaceutical products: a literature review. Dev Chem Eng Min Process 14:515–544. https://doi.org/10.1002/apj.5500140318

    Article  Google Scholar 

  8. Malafaya PB, Silva GA, Reis RL (2007) Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59:207–233. https://doi.org/10.1016/j.addr.2007.03.012

    Article  CAS  Google Scholar 

  9. Domb AJ, Kost J (1997) Handbook of biodegradable polymers. Harwood, Amsterdam. ISBN 90-5702-153-6

    Google Scholar 

  10. Coviello T, Matricardi P, Marianecci C, Alhaigue F (2007) Polysaccharide hydrogels for modified release formulations. J Controlled Rel 119:5–24. https://doi.org/10.1016/j.jconrel.2007.01.004

    Article  CAS  Google Scholar 

  11. Pescosolido L, Piro T, Vermonden T, Coviello T, Allhaique F (2011) Biodegradable IPNs based on oxidized alginate and dextran-HEMA for controlled release of proteins. Carbohydr Polym 86:208–213. https://doi.org/10.1016/j.carbpol.2011.04.033

    Article  CAS  Google Scholar 

  12. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Delivery Rev 64:18–23. https://doi.org/10.1016/j.addr.2012.09.010

    Article  Google Scholar 

  13. Das D, Das R, Ghosh P, Dhara S, Panda AB, Pal S (2013) Dextrin cross linked with poly (HEMA): a novel hydrogel for colon specific delivery of ornidazole. RSC Adv 3:25340. https://doi.org/10.1039/C3RA44716B

    Article  CAS  Google Scholar 

  14. Das D, Das R, Ghosh A, Pal S (2014) Dextrin crosslinked with poly (lactic acid): a novel hydrogel for controlled drug release application. J Appl Polym Sci 131:40039. https://doi.org/10.1002/app.40039

    Article  CAS  Google Scholar 

  15. Das D, Pal S (2015) Dextrin/poly (HEMA): pH responsive porous hydrogel for controlled release of ciprofloxacin. Int J Biol Macromol 72:171–178. https://doi.org/10.1016/j.ijbiomac.2014.08.007

    Article  CAS  Google Scholar 

  16. Cao Y, Gu Y, Ma H, Bai J, Liu L, Zhao P, He H (2010) Self-assembled nanoparticle drug delivery systems from galactosylated polysaccharide–doxorubicin conjugate loaded doxorubicin. Int J Biol Macromol 46:245–249. https://doi.org/10.1016/j.ijbiomac.2009.11.008

    Article  CAS  Google Scholar 

  17. Wu W, Aiello M, Zhou T, Berliner A, Banerjee P, Zhou S (2010) In-situ immobilization of quantum dots in polysaccharide-based nanogels for integration of optical pH-sensing, tumor cell imaging, and drug delivery. Biomaterials 31:3023–3031. https://doi.org/10.1016/j.biomaterials.2010.01.011

    Article  CAS  Google Scholar 

  18. Vandamme TF, Lenourry A, Charrueau C, Chaumeil JC (2002) The use of polysaccharides to target drugs to the colon. Carbohydr Polym 48:219–231. https://doi.org/10.1016/S0144-8617(01)00263-6

    Article  CAS  Google Scholar 

  19. Vijan V, Kaity S, Biswas S, Isaac J, Ghosh A (2012) Microwave assisted synthesis and characterization of acrylamide grafted gellan, application in drug delivery. Carbohydr Polym 90:496–506. https://doi.org/10.1016/j.carbpol.2012.05.071

    Article  CAS  Google Scholar 

  20. Singh B, Sharma N (2008) Development of novel hydrogels by functionalization of sterculia gum for use in anti-ulcer drug delivery. Carbohydr Polym 74:489–497. https://doi.org/10.1016/j.carbpol.2008.04.003

    Article  CAS  Google Scholar 

  21. Zhou ZF, Sun TW, Chen F, Zuo DQ, Wang HS, Hua YQ, Cai ZD, Tan J (2017) Calcium phosphate phosphorylated adenosine hybrid microspheres for anti-osteosarcoma drug delivery and osteogenic differentiation. Biomaterials 121:1–14. https://doi.org/10.1016/j.biomaterials.2016.12.031

    Article  CAS  Google Scholar 

  22. Darwish GH, Fakih HH, Karam P (2017) Temperature mapping in hydrogel matrices using unmodified digital camera. J Phys Chem B 121:1033–1040. https://doi.org/10.1021/acs.jpcb.6b11844

    Article  CAS  Google Scholar 

  23. Mano JF (2008) Stimuli-responsive polymeric systems for biomedical applications. Adv Eng Mater 10:515–527. https://doi.org/10.1002/adem.200700355

    Article  CAS  Google Scholar 

  24. Devi VK, Jain N, Valli KS (2010) Importance of novel drug delivery systems in herbal medicines. Pharmacogn Rev 4:27–31. https://doi.org/10.4103/0973-7847.65322

    Article  CAS  Google Scholar 

  25. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK (2012) Drug delivery systems: an updated review. Int J Pharm Investing 2:2–11. https://doi.org/10.4103/2230-973X.96920

    Article  CAS  Google Scholar 

  26. Paolino D, Sinha P, Fresta M, Ferrari M (2006) Drug delivery systems. Encycl Med Devices. https://doi.org/10.1002/0471732877.emd274

    Article  Google Scholar 

  27. Robinson DH, Mauger JW (1991) Drug delivery systems. Am J Hosp Pharm 48:14–23. https://doi.org/10.1093/ajhp/48.10_Suppl_1.S14

    Article  Google Scholar 

  28. Sharman W (2004) Targeted photodynamic therapy via receptor mediated delivery systems. Adv Drug Deliv Rev 56:53–76. https://doi.org/10.1016/j.addr.2003.08.015

    Article  CAS  Google Scholar 

  29. Kozlowska D, Foran P, MacMahon P, Shelly MJ, Eustace S, O’Kennedy R (2009) Molecular and magnetic resonance imaging: the value of immunoliposomes. Adv Drug Deliv Rev 61:1402–1411. https://doi.org/10.1016/j.addr.2009.09.003

    Article  CAS  Google Scholar 

  30. De Jong WH, Borm PJA (2008) Drug delivery and nanoparticles: applications andhazards. Int J Nanomedicine 3:133–149 (PMCID: PMC2527668)

    Google Scholar 

  31. Luo C, Sun J, Sun B, He Z (2014) Prodrug-based nanoparticulate drug delivery strategies for cancer therapy. Trends Pharmacol Sci 35:556–566. https://doi.org/10.1016/j.tips.2014.09.008

    Article  CAS  Google Scholar 

  32. Florence AT, Hussain N (2001) Transcytosis of nanoparticle and dendrimer delivery systems: evolving vistas. Adv Drug Deliv Rev 50:69–89. https://doi.org/10.1016/S0169-409X(01)00184-3

    Article  Google Scholar 

  33. Chakravarthi SS, Robinson DH (2011) Enhanced cellular association of Paclitaxel delivered in chitosan-PLGA particles. Int J Pharm 409:111–120. https://doi.org/10.1016/j.ijpharm.2011.02.034

    Article  CAS  Google Scholar 

  34. Basu S, Samanta HS, Ganguly J (2018) Green synthesis and swelling behaviour of Ag nanocomposites semi-IPN hydrogels and their drug delivery using Dolichos biflorus Linn. Soft Materials 16:7–19. https://doi.org/10.1080/1539445X.2017.1368559

    Article  CAS  Google Scholar 

  35. Kajjari PB, Manjeshwar LS, Aminabhavi TM (2011) Novel interpenetrating polymer network hydrogel microspheres of chitosan and poly (acrylamide)-grafted-Guar gum for controlled release of ciprofloxacin. Ind Eng Chem Res 50:13280–13287. https://doi.org/10.1021/ie2012856

    Article  CAS  Google Scholar 

  36. Garcia MC, Cuggino JC, Rosset CI, Paez PL, Strumia MC, Manzo RH, Alovero FL, Alvarez Igarzabal CI, Jimenez-Kairuz AF (2016) A novel gel based on an ionic complex from a dendronized polymer and ciprofloxacin: evaluation of its use for controlled topical drug release. Mater Sci Eng, C 69:236–246. https://doi.org/10.1016/j.msec.2016.06.071

    Article  CAS  Google Scholar 

  37. Prusty K, Swain SK (2018) Nano silver decorated polyacrylamide/dextran nanohydrogels hybrid composites for drug delivery applications. Mater Sci Eng C 85:130–141. https://doi.org/10.1016/j.msec.2017.11.028

    Article  CAS  Google Scholar 

  38. Wang Q, Xie X, Zhang X, Zhang J, Wang A (2010) Preparation and swelling properties of pH-sensitive composite hydrogel beads based on chitosan-g-poly (acrylic acid) vermiculite and sodium alginate for diclofenac controlled release. Int J Biol Macromol 46:356–362. https://doi.org/10.1016/j.ijbiomac.2010.01.009

    Article  CAS  Google Scholar 

  39. Singh B, Sharma V (2017) Crosslinking of poly (vinylpyrrolidone) acrylic acid with tragacantth gum for hydrogels formation for use in drug delivery applications. Carbohydr Polym 157:185–195. https://doi.org/10.1016/j.carbpol.2016.09.086

    Article  CAS  Google Scholar 

  40. Yu S, Zhang X, Tan G, Tian L, Liu D, Liu Y, Yang X, Pan W (2017) A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydr Polym 155:208–217. https://doi.org/10.1016/j.carbpol.2016.08.073

    Article  CAS  Google Scholar 

  41. EI-Sherbiny IM (2010) Enhanced pH-responsive carrier system based on alginate and chemically modified carboxymethyl chitosan for oral delivery of protein drug: preparation and in-vitro assessment. Carbohydr Polym 80:1125–1136. https://doi.org/10.1016/j.carbpol.2010.01.034

    Article  CAS  Google Scholar 

  42. Wang J, Liu C, Shuai Y, Cui X, Nie L (2014) Controlled release of anticancer drug using graphene oxide as a drug-binding effector in konjac glucomannan/sodium alginate hydrogels. Colloids Surf B Biointerfaces 113:223–229. https://doi.org/10.1016/j.colsurfb.2013.09.009

    Article  CAS  Google Scholar 

  43. Das D, Ghosh P, Ghosh A, Haldar C, Dhara S, Panda AB, Pal S (2015) Stimulus responsive, biodegradable, biocompatible, covalently crosslinked hydrogel based on dextrin and poly(N-isopropylacrylamide) for in vitro/in vivo controlled drug release. ACS Appl Mater Interf 7:14338–14351. https://doi.org/10.1021/acsami.5b02975

    Article  CAS  Google Scholar 

  44. Luckanagul JA, Pitakchatwong C, Bhuket PRN, Muangnci C, Rojsitthisak P, Chirachan Chai S, Wang Q, Roj Sitthisak P (2018) Chitosan-based polymer hybrids for thermo-responsive nanogels delivery of curcumin. Carbohydr Polym 181:1119–1127. https://doi.org/10.1016/j.carbpol.2017.11.027

    Article  CAS  Google Scholar 

  45. Cascone MG, Pot PM, Lazzeri L (2002) Release of dexamethasone from PLGA nanoparticles entrapped into dextran/poly (vinyl alcohol) hydrogels. J Mater Sci Mater Med 13:265–269. https://doi.org/10.1023/A:101400680

    Article  CAS  Google Scholar 

  46. Rokhade AP, Patil SA, Aminabhavi TM (2007) Synthesis and characterization of semi-interpenetrating polymer network microspheres of acrylamide grafted dextran and chitosan for controlled release of acyclovir. Carbohydr Polym 67:605–613. https://doi.org/10.1016/j.carbpol.2006.07.001

    Article  CAS  Google Scholar 

  47. Mu B, Liu P, Tang Z, Du P, Dong Y (2011) Temperature and pH dual-responsive cross-linked polymeric nanocapsules with controllable structures via surface-initiated atom transfer radical polymerization from templates. Nanomed Nanotechnol Biol Med 7:789–796. https://doi.org/10.1016/j.nano.2011.02.009

    Article  CAS  Google Scholar 

  48. Pileni MP (2003) The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat Mater 2:145–150. https://doi.org/10.1038/nmat817

    Article  CAS  Google Scholar 

  49. Sun Y, Guo G, Tao D, Wang Z (2007) Reverse microemulsion-directed synthesis of hydroxyapatite nanoparticles under hydrothermal conditions. J Phys Chem Solids 68:373–377. https://doi.org/10.1016/j.jpcs.2006.11.026

    Article  CAS  Google Scholar 

  50. Singh S, Bhardwaj P, Singh V, Aggarwal S, Mandal UK (2008) Synthesis of nanocrystalline calcium phosphate in microemulsion—effect of nature of surfactants. J Colloid Interf Sci 319:322–329. https://doi.org/10.1016/j.jcis.2007.09.059

    Article  CAS  Google Scholar 

  51. Lim GK, Wang J, Ng SC, Gan LM (1996) Processing of fine hydroxyapatite powders via an inverse microemulsion route. Mater Lett 28:431–446. https://doi.org/10.1016/0167-577X(96)00095-X

    Article  CAS  Google Scholar 

  52. Karagiozov C, Momchilova D (2005) Synthesis of nano-sized particles from metal carbonates by the method of reversed mycelles. Chem Eng Process 44:115–119. https://doi.org/10.1016/j.cep.2004.05.004

    Article  CAS  Google Scholar 

  53. Arriagada FJ (1999) Synthesis of nanosize silica in a nonionic water-in-oil microemulsion. J Colloid Interf Sci 211:210–220. https://doi.org/10.1006/jcis.1998.5985

    Article  CAS  Google Scholar 

  54. Paul BK, Moulik SP (1998) Microemulsions: an overview. Adv in Colloid Interf Sci 78:99–195. https://doi.org/10.1016/S0001-8686(98)00063-3

    Article  Google Scholar 

  55. Lim GK, Wang J, Ng SC, Gan LM (1999) Formation of nanocrystalline Hydroxyapatite in nonionic surfactant emulsions. Langmuir 15:7472–7477. https://doi.org/10.1021/la981659+

    Article  CAS  Google Scholar 

  56. Bose S, Saha SK (2003) Synthesis and characterization of Hydroxyapatite nanopowders by emulsion technique. Chem Mater 15:4464–4469. https://doi.org/10.1021/cm0303437

    Article  CAS  Google Scholar 

  57. Nunes J, Herlihy KP, Mair L, Superfine R, De Simone JM (2010) Multifunctional shape and size specific magneto-polymer composite particles. Nano Lett 10:1113–1119. https://doi.org/10.1021/nl904152e

    Article  CAS  Google Scholar 

  58. Pelton R (2004) Unresolved issues in the preparation and characterization of thermo responsive microgels. Macromolecular Symposia 207:57–66. https://doi.org/10.1002/masy.200450306

    Article  CAS  Google Scholar 

  59. Li X, Zuo J, Guo Y, Yuan X (2004) Preparation and characterization of narrowly distributed nanogels with temperature-responsive core and pH-responsive shell. Macromolecules 37:10042–10046. https://doi.org/10.1021/ma048658a

    Article  CAS  Google Scholar 

  60. Wu T, Wu C, Fu S, Wang L, Yuan C, Chen S, Hu Y (2017) Integration of lysozyme into chitosan nanoparticles for improving antibacterial activity. Carbohydr Polym 155:192–200. https://doi.org/10.1016/j.carbpol.2016.08.076

    Article  CAS  Google Scholar 

  61. Wu T, Huang J, Jiang Y, Hu Y, Ye X, Liu D, Chen J (2018) Formation of hydrogels based on chitosan/ for the delivery of lysozyme and their antibacterial activity. Food Chem 240:361–369. https://doi.org/10.1016/j.foodchem.2017.07.052

    Article  CAS  Google Scholar 

  62. Peng XW, Ren JL, Zhong LX, Peng F, Sun RC (2011) Xylan-rich hemicelluloses-graft-acrylic acid ionic hydrogels with rapid responses to pH, salt, and organic solvents. J Agric Food Chem 59:8208–8215. https://doi.org/10.1021/jf201589y

    Article  CAS  Google Scholar 

  63. Sun XF, Wang HL, Jing ZX, Mohanathas R (2013) Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery. Carbohydr Polym 92:1357–1366. https://doi.org/10.1016/j.carbpol.2012.10.032

    Article  CAS  Google Scholar 

  64. Gao CD, Ren JL, Kong WQ, Sun RC, Chen QF (2015) Comparative study on temperature/pH sensitive xylan-based hydrogels: their properties and drug controlled release. RSC Adv 5:90671–90681. https://doi.org/10.1039/C5RA16703E

    Article  CAS  Google Scholar 

  65. Zhang WM, Sha Z, Bai YP, Ning X, Wang SY, Yang B, Li Xiaowei, Yulang Z (2015) Glow discharge electrolysis plasma initiated preparation of temperature/pH dual sensitivity reed hemicellulose-based hydrogels. Carbohydr Polym 122:11–17. https://doi.org/10.1016/j.carbpol.2015.01.007

    Article  CAS  Google Scholar 

  66. Peng XW, Ren JL, Zhong LX, Sun RC, Shi WB, Hu BJ (2012) Glycidyl methacrylate derivatized xylan-rich hemicelluloses: synthesis and characterizations. Cellulose 19:1361–1372. https://doi.org/10.1007/s10570-012-9718-0

    Article  CAS  Google Scholar 

  67. Gao JZ, Ma DL, Lu QF, Li Y, Li XF, Yang W (2010) Synthesis and characterization of montmorillonite-graft-acrylic acid superabsorbent by using glow-discharge electrolysis plasma. Plasma Chem Plasma Process 30:873–883. https://doi.org/10.1007/s11090-010-9251-6

    Article  CAS  Google Scholar 

  68. Gao C, Ren J, Zhao C, Kong W, Dai Q, Chen Q, Liu C, Sun RC (2016) Xylan-based temperature/pH sensitive hydrogels for drug controlled release. Carbohydr Polym 151:189–197. https://doi.org/10.1016/j.carbpol.2016.05.075

    Article  CAS  Google Scholar 

  69. Patterson AL (1939) The Scherrer formula for X-Ray particle size determination. Phys Rev 56:978–982. https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

  70. Singh V, Tiwari A, Tripathi DN, Sanghi R (2006) Microwave enhanced synthesis of chitosan-graft-polyacrylamide. Polymer 47:254–260. https://doi.org/10.1016/j.polymer.2005.10.101

    Article  CAS  Google Scholar 

  71. Anirudhan TS, Divya PL, Nima J (2016) Synthesis and characterization of novel drug delivery system using modified chitosan based hydrogels grafted with cyclodextrin. Chem Eng J 284:1259–1269. https://doi.org/10.1016/j.cej.2015.09.057

    Article  CAS  Google Scholar 

  72. Zhang NN, Li RQ, Zhang L, Chen HB, Wang WC, Liu Y, Wu T, Wang XD, Wang W, Li Y, Zhao Y, Gao JP (2011) Actuator materials based on grapheneoxide/polyacrylamide composite hydrogels prepared by in situ polymerization. Soft Matter 7:7231–7239. https://doi.org/10.1039/C1SM05498H

    Article  CAS  Google Scholar 

  73. Kin D, Nikles DE, Brazel CS (2010) Synthesis and characterisation of multifunctional chitosan–MnFe2O4 nanoparticles formagnetichyperthermiaanddrug delivery. Materials 3:4051–4065. https://doi.org/10.3390/ma3074051

    Article  CAS  Google Scholar 

  74. Cheng C, Xia DD, Zhang XL, Chen L, Zhang QQ (2015) Biocompatible poly (N-isopropylacrylamide)-g-carboxymethyl chitosan hydrogels as carriers for sustained release of cisplatin. J Mater Sci 50:4914–4925. https://doi.org/10.1007/s10853-015-9036-7

    Article  CAS  Google Scholar 

  75. Zhao WF, Glavas L, Odelius K, Edlund U, Albertsson AC (2014) A robust pathway to electrically conductive hemicellulose hydrogels with high and controllable swelling behavior. Polymer 55:2967–2976. https://doi.org/10.1016/j.polymer.2014.05.003

    Article  CAS  Google Scholar 

  76. Sullad AG, Manjeshwar LS, Aminabhavi TM (2011) Novel semi-interpenetrating microspheres of dextran-grafted acrylamide and poly (vinyl alcohol) for controlled release of Abacavir sulphate. Ind Eng Chem Res 50:11778–11784. https://doi.org/10.1021/ie2006438

    Article  CAS  Google Scholar 

  77. Lanthong P, Nuisin R, Kiatkamjornwong S (2006) Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbent. Carbohydr Polym 66:229–245. https://doi.org/10.1016/j.carbpol.2006.03.006

    Article  CAS  Google Scholar 

  78. Bao Y, Ma J, Na Li (2011) Synthesis and swelling behaviours of sodium carboxymethyl cellulose-g-poly (AA-CO-AM-CO-AMPS)/MMT superabsorbent hydrogel. Carbohydr Polym 84:76–82. https://doi.org/10.1016/j.carbpol.2010.10.061

    Article  CAS  Google Scholar 

  79. Dong H, Wang D, Sun G, Hinestroza JP (2008) Assembly of metal nanoparticles on electrospun nylon 6 nanofibers by control of interfacial hydrogen bonding interactions. Chem Mater 20:6627–6632. https://doi.org/10.1021/cm801077p

    Article  CAS  Google Scholar 

  80. Kanmani P, Rhim JW (2014) Physical, mechanical, and antimicrobial properties of gelatin based active nanocomposite films containing AgNps and nano clay. Food Hydrocoll 35:644–652. https://doi.org/10.1016/j.foodhyd.2013.08.011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ms. K. Prusty earnestly acknowledged the Department of Science and Technology, Government of India for awarding Inspire Fellowship to pursue doctoral degree.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarat K. Swain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Swain, S.K., Prusty, K. (2019). Biobased Nanohydrogels for Controlled Drug Delivery. In: Katiyar, V., Gupta, R., Ghosh, T. (eds) Advances in Sustainable Polymers. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-32-9804-0_2

Download citation

Publish with us

Policies and ethics