Skip to main content

Burn Wound Healing and Scarring Pathophysiology

  • Chapter
  • First Online:
Total Scar Management

Abstract

According to the American Burn Association, approximately 486,000 annual burns occur in the United States and approximately 40,000 of these require inpatient hospitalization (Burn Incidence Fact Sheet 2016. American Burn Association. http://ameriburn.org/who-we-are/media/burn-incidence-fact-sheet/. Accessed 29 Aug 2017). With the introduction of early excision and grafting and better critical care management, decreased mortality rates have introduced an opportunity for burn providers to address functional recovery after burn injury including management of late wound complications. Years after patients’ burns have “healed,” they continue to present to clinic with various problems including pruritus, contractures, and cosmesis (Thomspon et al., J Burn Care Res 34:477–482, 2013). In spite of this, clinicians have limited understanding of scar pathophysiology and continue to struggle with management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dupuytren G, Doane AS. Clinical lectures on surgery: delivered at Hotel Dieu. Boston: Carter, Hendee; 1832.

    Google Scholar 

  2. Center for Disease Control. Release of ICD-10-CM https://www.cdc.gov/nchs/icd/icd10cm.htm#FY%202018%20release%20of%20ICD-10-CM (2018).

  3. Jackson D. The diagnosis of depth of burning. J Br Surg. 1953;40:588–96.

    Article  CAS  Google Scholar 

  4. Jackson D. Second thoughts on the burn wound. J Trauma. 1969;9:839–62.

    Article  CAS  PubMed  Google Scholar 

  5. Rowan MP, Cancio LC, Elster EA, et al. Burn wound healing and treatment: review and advancements. Crit Care. 2015;19:243–55.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tiwari VK. Burn wound: how it differs from other wounds? Indian J Plast Surg. 2012;45:364–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Santoro MM, Gaudino G. Cellular and molecular facets of keratinocyte reepithelization during wound healing. Exp Cell Res. 2005;304:274–86.

    Article  CAS  PubMed  Google Scholar 

  8. Zhu Z, Ding J, Shankowsky HA, et al. The molecular mechanism of hypertrophic scar. J Cell Commun Signal. 2013;7:239–52.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gurtner GC, Werner S, Barrandon Y, et al. Wound repair and regeneration. Nature. 2008;453:314–21.

    Article  CAS  PubMed  Google Scholar 

  10. Santoro MM, Gaudino G. Cellular and molecular facets of keratinocyte reepithelization during wound healing. Exp Cell Res. 2005;30:274–86.

    Article  CAS  Google Scholar 

  11. Leibovich SJ, Ross R. The role of the macrophage in wound repair. Am J Pathol. 1975;78:71–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ladak A, Tredget EE. Pathophysiology and management of the burn scar. Clin Plast Surg. 2009;36:661–74.

    Article  PubMed  Google Scholar 

  13. Mills CD, Ley K. M1 and M2 macrophages: the chicken and the egg of immunity. J Innate Immun. 2014;6:716–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tacchio C, Cassatella MA. Neutrophil-derived cytokines involved in physiological and pathological angiogenesis. Chem Immunol Allergy. 2014;99:123–37.

    Article  CAS  Google Scholar 

  15. Levy V, Lindon C, Zheng Y, et al. Epidermal stem clels arise from the hair follicle after wounding. FASEB J. 2007;21:1358–66.

    Article  CAS  PubMed  Google Scholar 

  16. Martin P. Wound healing: aiming for perfect skin regeneration. Science. 1997;276:75–81.

    Article  CAS  PubMed  Google Scholar 

  17. Koster MI. Making an epidermis. Ann N Y Acad Sci. 2009;1170:7–10.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Garner WL. Epidermal regulation of dermal fibroblast activity. Plast Reconstr Surg. 1996;102:135–9.

    Article  Google Scholar 

  19. Chetty BV, Boissey RE, Warden GD, et al. Basement membrane and fibroblast aberration in blisters at the donor, graft, and spontaneously healed sites in patients with burns. Arch Dermatol. 1992;125:181–6.

    Article  Google Scholar 

  20. Sarrazy V, Billet F, Micallef L, et al. Mechanisms of pathological scarring: role of myofibroblasts and current developments. Wound Repair Regen. 2011;19(Suppl):s10–5.

    Article  PubMed  Google Scholar 

  21. Tonnesen MG, Feng X, Clark RA. Angiogenesis in wound healing. J Investig Dermatol Symp Proc. 2000;5:40–6.

    Article  CAS  PubMed  Google Scholar 

  22. Hollander DA, Erli HJ, Theisen A, Falk S, Kreck T, Muller S. Standardized qualitative evaluation of scar tissue properties in an animal wound healing model. Wound Repair Regen. 2003;4:150–7.

    Article  Google Scholar 

  23. Kischer CW. The microvessels in hypertrophic scars, keloids and related lesions: a review. J Submicrosc Cytol Pathol. 1992;24:281–96.

    CAS  PubMed  Google Scholar 

  24. Travis TE, Mino MJ, Moffatt LT, et al. Biphasic presence of fibrocytes in a porcine hypertrophic scar model. J Burn Care Res. 2015;36:e125–35.

    Article  PubMed  Google Scholar 

  25. Ehrlich HP. Wound closure: evidence of cooperation between fibroblasts and collagen matrix. Eye. 1988;2:149–57.

    Article  PubMed  Google Scholar 

  26. Gabbiani G. The myofibroblast in wound healing and fibrocontractive diseases. J Pathol. 2003;200:500–3.

    Article  CAS  PubMed  Google Scholar 

  27. Baum J, Duffy HS. Fibroblasts and myofibroblasts: what are we talking about? J Cardiovasc Pharmacol. 2011;57:37–379.

    Article  CAS  Google Scholar 

  28. Levenson SM, Geever EF, Crowley LV, et al. Healing of rat skin wounds. Ann Surg. 1965;161:293–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hocking AM, Gibran NS. Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Exp Cell Res. 2010;316:2213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nambu M, Kishimoto S, Nakamura S, et al. Accelerated wound healing in healing-impaired db/db mice by autologous adipose tissue-derived stromal cells combined with atelocollagen matrix. Ann Plast Surg. 2009;62:317–21.

    Article  CAS  PubMed  Google Scholar 

  31. Wu Y, Chen L, Scott PG, et al. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007;25:2648–59.

    Article  CAS  PubMed  Google Scholar 

  32. Lee SH, Jin SY, Song JS, et al. Paracrine effects of adipose derived stem cells on keratinocytes and dermal fibroblasts. Ann Dermatol. 2012;24:136–43.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mustoe TA, Cooter RD, Gold MH, et al. International clinical recommendations on scar management. Plast Reconstr Surg. 2002;110:560–71.

    Article  PubMed  Google Scholar 

  34. Ogawa R. The most current algorithms for the treatment and prevention of hyperrophic scars and keloids. Plast Reconstr Surg. 2010;125:557–68.

    Article  CAS  PubMed  Google Scholar 

  35. Tyack Z, Simons M, Spinks A, et al. A systematic review of the quality of burn scar rating scales for clinical and research use. Burns. 2012;38:6–18.

    Article  PubMed  Google Scholar 

  36. Tyack Z, Wasiak J, Spinks A, et al. A guide to choosing a burn scar rating scale for clinical or research use. Burns. 2013;39:1341–50.

    Article  PubMed  Google Scholar 

  37. Thompson CM, Sood RF, Honari S, et al. What score on the Vancouver scar scale constitutes a hypertrophic scar? Results from a survey of North American burn care providers. Burns. 2015;41:1442–8.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lumenta DB, Siepmann E, Kamolz LP, et al. Internet-based survey on current practice for evaluation, prevention, and treatment of scars, hypertrophic scars, and keloids. Wound Repair Regen. 2014;22:483–91.

    Article  PubMed  Google Scholar 

  39. Rinkevich R, Walmsley GG, Hu MS, et al. Science. 2015;348:aaa2151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Kwan PO, Tredget EE. Biological principles of scar and contracture. Hand Clin. 2017;33:277–92.

    Article  PubMed  Google Scholar 

  41. Kischer CW, Pindur J, Krasovith P, et al. Characteristics of granulation tissue which promote hypertrophic scarring. Scanning Microsc. 1990;4:877–87.

    CAS  PubMed  Google Scholar 

  42. Ogawa R. Keloid and hypertrophic scars are the results of chronic inflammation in the reticular dermis. Int J Mol Sci. 2017;18:606–16.

    Article  PubMed Central  Google Scholar 

  43. Honardoust D, Varkey M, Marcoux Y, et al. Reduced decorin, fibromodulin, and transforming growth factor: B3 in deep dermis leads to hypertrophic scarring. J Burn Care Res. 2012;33:218–27.

    Article  PubMed  Google Scholar 

  44. Tredget EE, Wang R, Shen Q, et al. Transforming growth factor-beta mRNA and protein in hypertrophic scar tissues and fibroblasts: antagonism by IFN-alpha and IFN-gamma in vitro and in vivo. J Interferon Cytokine Res. 2000;20:143–52.

    Article  CAS  PubMed  Google Scholar 

  45. Scott PG, Dodd CM, Tredget EE, et al. Immunohistochemical localization of the proteoglycan decorin, biglycan, and versican and transforming growth factor-beta in human post-burn hypertrophic and mature scars. Histopathology. 1995;26:423–31.

    Article  CAS  PubMed  Google Scholar 

  46. Scott JR, Muangman PR, Tamura RN, et al. Substance P levels and neutral endopeptidase activity in acute burn wounds and hypertrophic scar. Plast Reconstr Surg. 2005;115:1095–102.

    Article  CAS  PubMed  Google Scholar 

  47. Scott JR, Muangman P, Gibran NS. Making sense of hypertrophic scar: a role for nerves. Wound Repair Regen. 2007;15:S27–31.

    Article  PubMed  Google Scholar 

  48. Malenfont A, Forget R, Papillon J, et al. Prevalence and characteristics of chronic sensory problems in burn patients. Pain. 1996;67:493–500.

    Article  Google Scholar 

  49. Carrougher GJ, Martinez EM, McMullen KS, et al. Pruritus in adult burn survivors: postburn prevalence and risk factors associated with increased intensity. J Burn Care Res. 2013;34(1):94–101.

    Article  PubMed  Google Scholar 

  50. Ahuja RB, Gupta R, Gupta G, et al. A comparative analysis of cetirizine, gabapentin and their combination in the relief of post-burn pruritus. Burns. 2011;37:203–7.

    Article  PubMed  Google Scholar 

  51. Brooks JP, Malic CC, Judkins KC. Scratching the surface—managing the itch associated with burns: a review of current knowledge. Burns. 2008;34:751–60.

    Article  CAS  PubMed  Google Scholar 

  52. Shimizu S, Tanaka H, Sakaki S, et al. Burn depth affects dermal interstitial fluid pressure, free radical production, and serum histamine levels in rats. J Trauma. 2003;54:683–7.

    Google Scholar 

  53. Schneider JC, Harris NL, El Shami A, et al. A descriptive review of neuropathic-like pain after Burn injury. J Burn Care Res. 2006;27:524–8.

    Article  PubMed  Google Scholar 

  54. Yagmur C, Guneren E, Kefeli M, et al. The effect of surgical denervation on prevention of excessive dermal scarring: a study on rabbit ear hypertrophic scar model. J Plast Reconstr Aesthet Surg. 2011;64:1359–65.

    Article  PubMed  Google Scholar 

  55. Ogawa R. Mechanobiology of scarring. Wound Repair Regen. 2011;19(Suppl 1):s2–9.

    Article  PubMed  Google Scholar 

  56. Ogawa R, Okai K, Tokumura F, et al. The relationship between skin stretching/contraction and pathologic scarring: the important role of mechanical forces in keloid generation. Wound Repair Regen. 2012;20:149–57.

    Article  PubMed  Google Scholar 

  57. Kim JY, Willard JJ, Supp DM, et al. Burn scar biomechanics following pressure garment therapy. Plast Reconstr Surg. 2015;136:572–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Friedrich EE, Niknam-Bienia S, Xie P, et al. Thermal injury model in the rabbit ear with quantifiable burn progression and hypertrophic scar. Wound Repair Regen. 2017;25:327–37.

    Article  PubMed  Google Scholar 

  59. Silverstein, et al. Hypertrophic scarring etiology and control of disabling complications in burned soldiers. Ann Res Progr Rep (US Army Institute of Surgical Research). 1972;37:1–5.

    Google Scholar 

  60. Zhu KQ, Carrougher GJ, Gibran NS, et al. Review of the female Duroc/Yorkshire pig model of human fibroproliferative scarring. Wound Repair Regen. 2007;15(Suppl 1):S32–9.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sood RF, Muffley LA, Seaton ME, et al. Dermal fibroblasts from the red Duroc pig have an inherently fibrogenic phenotype: an in vitro model of fibroproliferative scarring. Plast Reconstr Surg. 2015;136:990–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Seaton M, Hocking A, Gibran NS. Porcine models of cutaneous wound healing. ILAR J. 2015;56:127–38.

    Article  CAS  PubMed  Google Scholar 

  63. Hollander DA, Erli HJ, Theisen A, et al. Standardized qualitative evaluation of scar tissue properties in an animal wound healing model. Wound Repair Regen. 2003;11:150–7.

    Article  PubMed  Google Scholar 

  64. Engrav LE, Garner WL, Tredget EE. Hypertrophic scar, wound contraction, and hyper-hypopigmentaiton. J Burn Care Res. 2007;28:593–7.

    Article  PubMed  Google Scholar 

  65. Thompson CM, Hocking AM, Honari S, et al. Genetic risk factors for hypertrophic scar development. J Burn Care Res. 2013;34:477–82.

    Article  PubMed  Google Scholar 

  66. Santucci M, Borgogni L, Reali UM, et al. Keloids and Hypertrophic scars of caucasians show distinctive morphologic and immunophenotypic profiles. Virchows Arch. 2001;438:457–63.

    Article  CAS  PubMed  Google Scholar 

  67. Sood RF, Hocking AM, Muffley LA, et al. Genome-wide association study of postburn scarring indentifies a novel protective variant. Ann Surg. 2015;262:563–39.

    Article  PubMed  Google Scholar 

  68. Goverman J, Mathews K, Goldstein R, et al. Adult contractures in burn injury: a burn model system national database study. J Burn Care Res. 2017;38:e328–36.

    Article  PubMed  Google Scholar 

  69. Goverman J, Mathews K, Goldstein R, et al. Pediatric contractures in burn injury: a burn model system national database study. J Burn Care Res. 2017;38:e192–9.

    Article  PubMed  Google Scholar 

  70. Levi B, Jayakumar P, Giladi A, et al. Risk factors for the development of heterotopic ossification in seriously burned adults: a national institute on disability, independent living and rehabilitation research burn model system database analysis. J Trauma Acute Care Surg. 2015;79:870–6.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Orchard GR, Paratz JD, Blot S, et al. Risk factors in hospitalized patients with burn injuries for developing heterotopic ossification—a retrospective analysis. J Burn Care Res. 2015;36:465–70.

    Article  PubMed  Google Scholar 

  72. Schneider JC, Simko LC, Goldstein R, et al. Predicting heterotopic ossficaition early after burn injuries. A risk scoring system. Ann Surg. 2017;266:179–84.

    Article  PubMed  Google Scholar 

  73. Peterson JR, Eboda ON, Brownley RC, et al. Effects of aging on osteogenic response and heterotopic ossification following burn injury in mice. Stem Cells Dev. 2015;24:205–13.

    Article  CAS  PubMed  Google Scholar 

  74. Ranganathan K, Peterson J, Agarwal S, et al. Role of gender in burn-induced heterotopic ossification and mesenchymal cell osteogenic differentiation. Plast Reconstr Surg. 2015;135:1631–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Holavanahali RK, Helm PA, Kowalske KG. Long-term outcomes in patients surviving large burns: the skin. J Burn Care Res. 2010;31:631–9.

    Article  Google Scholar 

  76. Chadwick SL, Yip C, Ferguson MW, et al. Repigmentation of cutaneous scars depends on original wound type. J Anat. 2013;223(1):74–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Park HY, Kosmadaki M, Yaar M, et al. Cellular mechanisms regulating human melanogenesis. Cell Mol Life Sci. 2009;66:1493–506.

    Article  CAS  PubMed  Google Scholar 

  78. Sirimahachaiyakul P, Sood RF, Muffley LA, et al. Race does not predict melanocyte heterogenous responses to dermal fibroblast-derived mediators. PLoS One. 2015;10:e0139135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Greenhalgh DG. A primer on pigmentation. J Burn Care Res. 2015;36:247–57.

    Article  PubMed  Google Scholar 

  80. Shen R, Zhang J, Zhang F, et al. Clinical characteristics and therapeutic analysis of 51 patients with Marjolin’s ulcers. Exp Ther Med. 2015;10:1364–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bozkurt M, Kapi E, Kuvat SV, et al. Current concepts in the management of Marjolin’s ulcers: outcomes from a standardized treatment protocol in 16 cases. J Burn Care Res. 2010;31:776–80.

    Article  PubMed  Google Scholar 

  82. Fleming MD, Hunt JL, Purdue GF, et al. Marjolin’s ulcer: a review and reevaluation of a difficult problem. J Burn Care Rehabil. 1990;11:460–9.

    Article  CAS  PubMed  Google Scholar 

  83. Yanofsky VR, Mercer SE, Phelps RG. Histopathological variants of cutaneous squamous cell carcinoma: a review. J Skin Cancer. 2011;2011:210813.

    Article  PubMed  Google Scholar 

  84. Lawrence JW, Rosenberg LE, Fauerbach JA. Comparing the body esteem of pediatric survivors of burn injury with the body esteem of an age-matched comparison group without burns. Rehabil Psychol. 2007;52:370–9.

    Article  Google Scholar 

  85. Pope SJ, Solomons WR, Done DJ, et al. Body image, mood and quality of life in young burn survivors. Burns. 2007;33:747–55.

    Article  CAS  PubMed  Google Scholar 

  86. Lawrence JW, Rosenberg L, Mason S, et al. Comparing parent and child perceptions of stigmatizing behavior experience by children with burn scars. Body Image. 2011;8:70–3.

    Article  PubMed  Google Scholar 

  87. Hunter TA, Medved MI, Hiebert-Murphy D, et al. Put on your face to face the world: women’s narratives of burn injury. Burns. 2013;39:1588–98.

    Article  PubMed  Google Scholar 

  88. Lawrence JW, Mason ST, Schomer K, et al. Epidemiology and impact of scarring after burn injury: a systematic review of the literature. J Burn Care Res. 2012;33:136–46.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haig A. Yenikomshian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yenikomshian, H.A., Gibran, N.S. (2020). Burn Wound Healing and Scarring Pathophysiology. In: Ogawa, R. (eds) Total Scar Management. Springer, Singapore. https://doi.org/10.1007/978-981-32-9791-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9791-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9790-6

  • Online ISBN: 978-981-32-9791-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics