Skip to main content

Soil Management for Better Crop Production and Sustainable Agriculture

  • Chapter
  • First Online:
Book cover Agronomic Crops

Abstract

Sustainable agriculture is of prime importance in the present conditions of rapidly increasing human population and decreasing cultivable land resources. Since soil is a natural medium for the growth of plants, a better soil health is considered as an important indicator to produce quality food. Soil quality is greatly affected by the presence of soluble salts, heavy metals and toxic compounds. In addition, soil loss by erosion, compaction, waterlogging, toxicity or deficiency of certain mineral elements and poor tillage practices lessens the area for crop production. Therefore, conservation and management of soil is crucial to augment crop production and ensure world’s food requirement. Efforts have been done to summarize all the soil problems which degrade soil quality and thus suggesting control measures and modern approaches of soil management for sustainable agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhafez AA, Awad YM, Kim MS, Ham KJ, Lim KJ, Joo JH, Yang JE, Ok YS (2009) Environmental monitoring of heavy metals and arsenic in soils adjacent to CCA-treated wood structures in Gangwon Province, South Korea. Korean J Environ Agric 28:340–346

    Article  Google Scholar 

  • Abeledo LG, Savin R, Slafer GA (2008) Wheat productivity in the Mediterranean Ebro Valley: analyzing the gap between attainable and potential yield with a simulation model. Eur J Agron 28(4):541–550

    Article  Google Scholar 

  • Abhilash P, Powell JR, Singh HB, Singh BK (2012) Plant–microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 30:416–420

    Article  CAS  PubMed  Google Scholar 

  • Ahemad M (2012) Implications of bacterial resistance against heavy metals in bioremediation: a review. J Inst Integ Omics Appl Biotechnol 3(3):39–46

    CAS  Google Scholar 

  • Ahemad M (2015) Enhancing phytoremediation of chromium-stressed soils through plant-growth-promoting bacteria. J Genet Eng Biotechnol 13:51–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad NC, Chaudery MR (1997) Review of research on reclamation of salt-affected soils in Pakistan. Publication No. 175, IWASRI, WAPDA, Lahore

    Google Scholar 

  • Aoyama M, Angers DA, N’Dayegamiye A (1999) Particulate and mineral-associated organic matter in water-stable aggregates as affected by mineral fertilizer and manure applications. Can J Soil Sci 79:295–302

    Article  Google Scholar 

  • Bai ZG, Dent DL, Olssom L, Schaepman ME (2008) Proxy global assessment of land degradation. Soil Use Manag 24:2223–2450

    Article  Google Scholar 

  • Baig MB, Zia SM (2006) Rehabilitation of problem soils through environmental friendly technologies –ii: role of sesbania (Sesbania aculata) and gypsum. Agric Trop Subtrop 39:26–33

    Google Scholar 

  • Bauer A, Black AL (1992) Organic carbon effects on available water capacity of three soil textural groups. Soil Sci Soc Am J 56:248–254

    Article  Google Scholar 

  • Bell PF, McLaughlin M, Cozens G, Stevens D, Owens G, South H (2003) Plant uptake of 14C-EDTA, 14C-Citrate, and 14C-Histidine from chelator-buffered and conventional hydroponic solutions. Plant Soil 253:311–319

    Article  CAS  Google Scholar 

  • Bennett EM, Carpenter SR, Caraco NF (2001) Human impact on erodable phosphorus and eutrophication: a global perspective increasing accumulation of phosphorus in soil threatens rivers, lakes, and coastal oceans with eutrophication. BioScience 51:227–234

    Article  Google Scholar 

  • Blanco H, Lal R (2008) Soil and water conservation. In: Principles of soil conservation and management. Springer, Dordrecht

    Google Scholar 

  • Bockman OC, Kaarstad O, Lie OH, Richards I (1990) Agriculture and fertilizers. Agricultural Group, Norsk Hydro, Oslo

    Google Scholar 

  • Borlaug NE, Dowswell CR (2005) Feeding a world of 10 billion people: a 21st century challenge. In: Tuberosa R, Phillips RL, Gale M (eds) In the wake of the double helix: from green revolution to the gene revolution, Proceedings Congress, 27–31, May 2003, Bologna, Italy, pp 3–23

    Google Scholar 

  • Botta G, Pozzolo O, Bomben M, Rosatto H, Rivero D, Ressia M, Tourn M, Soza E, Va’zquez J (2007) Traffic alternatives in harvest of soybean (Glycine max L.): effect on yields and soil under direct sowing system. Soil Tillage Res 96:145–154

    Article  Google Scholar 

  • Brady NC, Weil RR (2002) The nature and properties of soils, 13th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Bronick CJ, Lal L (1995) Soil structure and management: a review. Geoderma 124:3–22

    Article  CAS  Google Scholar 

  • Bronson KF, Zobeck TM, Chua TT, Acosta-Martinez V, Pelt RSV, Booker JD (2004) Carbon and nitrogen pools of southern high plains cropland and grassland soils. Soil Sci Soc Am J 68:1695–1704

    Article  CAS  Google Scholar 

  • Cambardella CA, Elliott ET (1993) Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils. Soil Sci Soc Am J 57:1071–1076

    Article  CAS  Google Scholar 

  • Carter MR, Stewart BA (1996) Structure and organic matter storage in agriculture soils. CRC Press, Boca Raton

    Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJ (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Article  CAS  PubMed  Google Scholar 

  • Dexter AR (2004) Soil physical quality. Effects of soil texture, density, and organic matter, and effects on root growth, Part I. Theory. Geoderma 120:201–214

    Article  Google Scholar 

  • Dinnes DL, Karlen DL, Jaynes DB, Kaspar TC, Hatfield JL, Colvin TS, Cambardella CA (2002) Nitrogen management strategies to reducenitrate leaching in tile-drained midwestern soils. Agron J 94:153–171

    Article  Google Scholar 

  • Donald CM, Prescott JA (1975) Trace elements in Australian crop and pasture production. In: Nicholas DJD, Egan AR (eds) Trace elements in soil–plant–animal system. Academic, Sydney, pp 7–37

    Chapter  Google Scholar 

  • Doran JW (2002) Soil health and global sustainability: translating science into practice. Agric Ecosyst Environ 88:119–127

    Article  Google Scholar 

  • Elbagermi MA, Edwards HGM, Alajtal AI (2013) Monitoring of heavy metals content in soil collected from city centre and industrial areas of Misurata, Libya. Int J Anal Chem 2013:312581. https://doi.org/10.1155/2013/312581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Else MA, Coupland D, Dutton L, Jackson MB (2001) Decreased root hydraulic conductivity reduces leaf water potential, initiates stomatal closure and slows leaf expansion in flooded plants of castor oil (Riccinus communis) despite diminished delivery of ABA from the roots to shoots in the xylemsap. Physiol Plant 111:46–54

    Article  CAS  Google Scholar 

  • EPA (2007) Treatment technologies for site cleanup: annual status report (ASR,)(EPA-542-R-07-012). EPA, Washington, DC

    Google Scholar 

  • Erdei L, MezĂ´si G, MĂ©cs I, Vass I, FĂ´glein F, Bulik L (2005) Phytoremediation as a program for decontamination of heavy-metal polluted environment. Acta Biol Szegediensis 49:75–76

    Google Scholar 

  • Fageria NK (2007) Green manuring in crop production. J Plant Nutr 30:691–719

    Article  CAS  Google Scholar 

  • Fageria NK (2012) Role of soil organic matter in maintaining sustainability of cropping systems. Commun Soil Sci Plant Anal 43:2063–2113

    Article  CAS  Google Scholar 

  • Fageria N, Baligar V, Bailey B (2005) Role of cover crops in improving soil and row crop productivity. Commun Soil Sci Plant Anal 36(19–20):2733–2757

    Article  CAS  Google Scholar 

  • FAO (1999) Integrated soil management for sustainable agriculture and food security in Southern and East Africa. In: Proceedings of the expert consultation, Harare, Zimbabwe, 8–12 December 1999

    Google Scholar 

  • FAO (2016) Soil fertility. www.fao.org. Retrieved 18 June 2016

  • Fischer G, Teixeira E, Tothne-Hizsnyik E, van Velthuizen H (2009) Land use dynamics and sugarcane production. In: Zuurbier P, van de Vooren J (eds) Sugarcane ethanol, contributions to climate change mitigation and the environment. Wageningen Academic Publishers, Wageningen. ISBN: 978-90-8686-090-6. Also available as IIASA RP-09-001, IIASA, Laxenburg, Austria

    Google Scholar 

  • Gambrell RP, Patrick WH (1978) Chemical and microbiological properties of anaerobic soils and sediments. In: Plant life in anaerobic environments. Ann Arbor Science Publishers, Inc., Ann Arbor, pp 375–423

    Google Scholar 

  • Ghafoor A, Qadir M, Murtaza G (2004) Salt-affected soils. Principles of management, 1st edn. Allied Book Centre, Lahore

    Google Scholar 

  • Goh KH, Lim TT (2005) Arsenic fractionation in a fine soil fraction and influence of various anions on its mobility in the subsurface environment. Appl Geochem 20:229–239

    Article  CAS  Google Scholar 

  • Hashim M, Mukhopadhyay S, Sahu JN, Sengupta B (2011) Remediation technologies for heavy metal contaminated groundwater. J Environ Manag 92:2355–2388

    Article  CAS  Google Scholar 

  • Hasina G, Said A, Saeed B, Mohammad F, Ahmad I (2011) Effect of foliar application of nitrogen, potassium and zinc on wheat growth. ARPN J Agric Biol Sci 6:56–58

    Google Scholar 

  • Huang S-H, Bing P, Yang Z-H, Chai L-Y, Zhou L-C (2009) Chromium accumulation, microorganism population and enzyme activities in soils around chromium-containing slag heap of steal alloy factory. Trans Nonferrous Metals Soc China 19(1:241–248

    Article  CAS  Google Scholar 

  • Hue NV (2013) Arsenic chemistry and remediation in Hawaiian soils. Int J Phytoremed 15:105–116

    Article  CAS  Google Scholar 

  • Hussain T (1996) Manures and organic wastes organic matter. In: Rashid A, Memon QS (eds) Soil science. National Book Foundation, Islamabad, pp 483–404

    Google Scholar 

  • Ingham ER (2006) Understanding the soil foodweb – first of twelve sub points. http://www.soilfoodweb.com.au/index.php?pageid=274

  • IPCC (2007) Summary for policy makers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis: contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jacobs A, Rauber R, Ludwig B (2009) Impact of reduced tillage on carbon and nitrogen storage of two Haplic Luvisols after 40 years. Soil Tillage Res 102:158–164

    Article  Google Scholar 

  • Kasel K, Bennett LT (2007) Land-use history, forest conversion, and soil organic carbon in pine plantations and native forests of south eastern Australia. Geoderma 137:401–413

    Article  CAS  Google Scholar 

  • Khan S, Hesham AE-L, Qiao M, Rehman S, He J-Z (2010) Effects of Cd and Pb on soil microbial community structure and activities. Environ Sci Pollut Res 17:288–296

    Article  CAS  Google Scholar 

  • Kilders L (2015) http://conservationdistrict.org/2015/the-power-of-araindrop.html. Accessed 7 May 2016

  • Kumar S, Kadono A, Lal R, Dick W (2012b) Long–term no–till impacts on organic carbon and properties of two contrasting soils and corn yields in Ohio. Soil Sci Soc Am J 76:1798–1809

    Article  CAS  Google Scholar 

  • Kumar S, Kadono A, Lal R, Dick W (2012c) Long–term tillage and crop rotations for 47–49 years influences hydrological properties of two soils in Ohio. Soil Sci Soc Am J 76:2195–2207

    Article  CAS  Google Scholar 

  • Lal R (1995) Tillage systems in the tropics, management options and sustainability implications. FAO, Rome

    Google Scholar 

  • Lal R (1997) Long-term tillage and maize monoculture effects on a tropical Alfisol in western Nigeria. I. Crop yield and soil physical properties. Soil Tillage Res 42(3):145–160

    Article  Google Scholar 

  • Lal R (2001) Soil degradation by erosion. Land Degrad Dev 12:519–539

    Article  Google Scholar 

  • Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304(5677):1623–1627

    Article  CAS  PubMed  Google Scholar 

  • Lal R, Safriel U, Boer B (2012) Zero net land degradation. Rio+20 convention, UNCCD, Bonn, Germany

    Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelly ED (2001) A fern that hyperaccumulate arsenic. Nature 409:579

    Article  CAS  PubMed  Google Scholar 

  • Macek T, Kotrba P, Svatos A, Novakova M, Demnerova K, Mackova M (2008) Novel roles for genetically modified plants in environmental protection. Trends Biotechnol 26:146–152

    Article  CAS  PubMed  Google Scholar 

  • Materechera SA (2009) Tillage and tractor traffic effects on soil compaction in horticultural fields used for periurban agriculture in a semi-arid environment of the North West Province, South. Soil Tillage Res 103(1):11–15

    Article  Google Scholar 

  • Miao Y, Stewart B, Zhang F (2011) Long-term experiments for sustainable nutrient in China. A review. Agron Sustain Dev 31:397–414

    Article  Google Scholar 

  • Mikha MM, Rice CW (2004) Tillage and manure effects on soil and aggregate associated carbon and nitrogen. Soil Sci Soc Am J 68:809–816

    Article  CAS  Google Scholar 

  • Mohanty HK, Khush GS (1985) Diallel analysis of submergence tolerance in rice, Oryza sativa L. Theor Appl Genet 70:467–473

    Article  CAS  PubMed  Google Scholar 

  • Moheyuddin K, Salahuddin J, Mari H, Panhwar RN (2013) Effect of zinc and boron fertilizers application on some physicochemical attributes of five rice varieties grown in agro ecosystem of Sindh, Pakistan. Am Eurasian J Agric Environ Sci 13:433–439

    Google Scholar 

  • Mortvedt JJ, Cox FR, Shuman LM, Welch RM (1991) In: Mortvedt JJ, Cox FR, Shuman LM, Welch RM (eds) Micronutrients in agriculture, 2nd edn. Soil Science Society of America, Madison

    Google Scholar 

  • Mueller L, Schindler Mirschel U (2010) Assessing the productivity function of soils. A review. Agron Sustain Dev 30:601–614

    Article  Google Scholar 

  • Muhammad S (1996) Soil salinity, sodicity and water logging. In: Rashid A, Memon KS (eds) Soil Sci. National Book Foundation, Islamabad, pp 472–506

    Google Scholar 

  • Niaz A, Hannan A, Waqas M (2007) Boron status of soils as affected by different soil characteristics–pH, CaCO3, organic matter and clay contents. Pak J Agric Sci 44:428–435

    Google Scholar 

  • Nriagu J, Bhattacharya P, Mukherjee A, Bundschuh J, Zevenhoven R, Loeppert R (2007) Arsenic in soil and groundwater: an overview. Trace Met Contam Environ 9:3–60

    Article  CAS  Google Scholar 

  • Oldeman LR, Hakkeling RTA, Sombroek WG (1991) Second revised edition. In: World map of the status of human-induced soil degradation. An explanatory note. International Soil Reference and Information Center, Wageningen, p 35

    Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126

    Article  CAS  Google Scholar 

  • Prabhavathi P, Rajendran R, Karthiksundaram S, Pattabi S, Kumar SD, Santhanam P (2014) Enhanced bioremediation efficiency of denim industrial effluent using bacterial biofilm onto polyurethane matrix (review). Appl Biochem Microbiol 50:554–562

    Article  CAS  Google Scholar 

  • Raghavan GSV, Alvo P, McKyes E (1992) Soil compaction in agriculture: a view towards managing the problem. Adv Soil Sci 11:1–35

    Google Scholar 

  • Robson MC, Fowler SM, Lampkin NH, Leifert C, Leitch M, Robinson D, Watson CA, Litterick AM (2002) The agronomic and economic potential of break crops for ley/arable. Rotations in temperate organic agriculture. Adv Agron 77:369–427

    Article  Google Scholar 

  • Rockström J, Falkenmark M (2000) Semiarid crop production from a hydrological perspective: gap between potential and actual yields. Plant Sci 19(4):319–346

    Article  Google Scholar 

  • Rowell DL (1994) The preparation of saturation extracts and the analysis of soil salinity and sodicity. In: Rowell DL (ed) Soil science methods and applications. Longman Group, Harlow

    Google Scholar 

  • Salido AL, Hasty KL, Lim JM, Butcher DJ (2003) Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Int J Phytoremediation 5:89–103

    Article  CAS  PubMed  Google Scholar 

  • Samdani Z (1995) Salinization threatens irrigation. In: Economic and business review. Daily Dawn, Karachi. III (3-9/06/1995)

    Google Scholar 

  • Sarma PK, Hazarika M, Sarma D, Saikia P, Neog P, Rajbongshi R, Kakati N, Bhattacharjee M, Rao CS (2015) Effect of foliar application of potassium on yield, drought tolerance and rain water use efficiency of toria under rainfed upland situation of Assam. Indian J Dryland Agric Res Dev 30:55–59

    Article  Google Scholar 

  • Sheoran V, Sheoran A, Poonia P (2010) Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Environ Sci Technol 41:168–214

    Article  Google Scholar 

  • Singh Y, Singh B, Ladha JK, Khind CS, Gupta RK, Meelu OP, Pasuquin E (2004) Long–term effects of organic inputs on yield and soil fertility in the rice–wheat rotation. Soil Sci Soc Am J 68:845–853

    Google Scholar 

  • Singh A (2014) Soil salinization and waterlogging: a threat to environment and agriculture sustainability. Ecol Indic 57:128–130

    Article  Google Scholar 

  • Sinha RK, Herat S, Tandon P (2007) Phytoremediation: role of plants in contaminated site management. In: Environmental Bioremediation Technologies. Springer, Berlin, pp 315–330

    Chapter  Google Scholar 

  • Smith CW, Johnston MA, Lorentz S (1997) Assessing the compaction susceptibility of South African forestry soils. I. The effect of soil type, water content and applied pressure on uni-axial compaction. Soil Tillage Res 41:53–73

    Article  Google Scholar 

  • Soil Science Society of America (2006) Internet glossary of soil science terms. Available at http://www.soils.org/sssagloss/. Accessed 21 Oct 2006.

  • Sönmez Ä°, Kaplan M, Sönmez S (2008) Kimyasal gĂĽbrelerin çevre kirliliÄźi ĂĽzerine etkileri ve çözĂĽm önerileri. Batı Akdeniz Tarımsal AraĹźtırma EnstitĂĽsĂĽ Derim Derg 25(2):24–34

    Google Scholar 

  • Spargo JT, Alley MM, Follett RF, Wallace JV (2008) Soil nitrogen conservation with continuous no-till management. Nutr Cycl Agroecosyst 82:283–297

    Article  Google Scholar 

  • Stevenson FJ (1991) Organic matter–micronutrient reactions in soil. In: Mortvedt RR (ed) Micronutrients in agriculture, 2nd edn. SSSA, Madison, pp 145–186

    Google Scholar 

  • Stitcher P (2010). http://restoringutopia.blogspot.com/2010/07/like–hollow–pointbullets–USDA

  • Tangahu BV, Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:1–31

    Article  Google Scholar 

  • Tanji KK (1990) Nature and extent of agricultural salinity. In: Tanji KK (ed) Agricultural salinity assessment and management, Manuals and reports on engineering practices no. 71. American Society of Civil Engineers, New York, pp 1–17

    Google Scholar 

  • Tu C, Ma LQ (2003) Effects of arsenate and phosphate on their accumulation by anarsenic-hyperaccumulator Pteris vittata L. Plant Soil 249:373–382

    Article  CAS  Google Scholar 

  • US Salinity Laboratory Staff (1954) Diagnosis and improvement of saline and alkali soils, USDA Handbook No. 60. U.S. Government Printing Office, Washington DC

    Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Nehnevajova E (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    Article  CAS  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (2008) Human domination of Earth’s ecosystems. In: Urban ecology: an international perspective on the interaction between humans and nature. Springer, Boston, pp 3–13

    Chapter  Google Scholar 

  • Wang J, Wu FQ, Meng QQ (2004) Benefits of tillage measures for soil and water conservation [J]. Bull Soiland Water Conserv 5:009

    Google Scholar 

  • Wilhelm WW, Johnson JMF, Hatfield JL, Voorhees WB, Linden DR (2004) Crop and soil productivity response to corn residue removal: a literature review. Agron J 96:1–17

    Article  Google Scholar 

  • Wolkowski L, Lowery B (2008) Soil compaction: causes, concerns and cures. University of Winscosin, Madison. Available at www.uwex.edu/ces/cty. Accessed 15 July 2014

  • Wu L, Luo Y, Xing X, Christie P (2004) EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agric Ecosyst Environ 102:307–318

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:1–20

    Article  Google Scholar 

  • Zhuang P, Yang Q, Wang H, Shu W (2007) Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Pollut 184:235–242

    Article  CAS  Google Scholar 

  • Zia-ur-rehman M, Murtaza G, Qayyum F, Saqib M, Akhtar J (2017) Salt-affected soils: sources, genesis and management. In: Sabir M, Akhtar J, Hakeem KR (eds) Soil science concepts and applications. University of Agriculture Faisalabad, Faisalabad, pp 191–216

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shakeel Ahmad or Muhammad Arif Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmed, N. et al. (2019). Soil Management for Better Crop Production and Sustainable Agriculture. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-32-9783-8_4

Download citation

Publish with us

Policies and ethics