Skip to main content

Nanotechnology and Its Role in Agronomic Crops

  • Chapter
  • First Online:
Agronomic Crops

Abstract

With the rapid advancement in the field of nanotechnology, the application of nanoparticles, with a particle size less than 100 nm, designed for sustainable crop production, reduces nutrient losses, suppresses disease, and enhances the yields. Nanoparticles influence on the key life events of plants that include seed germination, seedling vigor, growth, and photosynthesis to flowering. Furthermore, suitable strategies adopted by plants in the presence of nanoparticles under stressed environments are also being presented. This review systematically summarizes the role of nanotechnology in agronomy of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Al2O3:

Aluminum oxide

cc:

Cubic centimeter

CeO2:

Cerium oxide

cm:

Centimeter

CO2:

Carbon dioxide

dia:

Diameter

DNA:

Deoxyribonucleic acid

Fe2O3:

Ferric oxide

H2O2:

Hydrogen peroxide

IAA:

Indole-3-acetic acid

mm:

Millimeter

mM:

Millimolar

NiO:

Nickel oxide

nm:

Nanometer

ppm:

Parts per million

SiO2:

Silicon dioxide

TiO2:

Titanium dioxide

UV:

Ultraviolet

ZnO:

Zinc oxide

μg/ml-:

microgram/milliliter

References

  • Adams J, Wright M, Wagner H, Valiente J, Britt D, Anderson A (2017) Cu from dissolution of CuO nanoparticles signals changes in root morphology. Plant Physiol Biochem 110:108–117

    Article  CAS  PubMed  Google Scholar 

  • Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Subba Rao A (2015) Characterization of zinc oxide nano particles and their effect on growth of maize (Zea mays L.) plant. J Plant Nutr 38(10):1505–1515

    Article  CAS  Google Scholar 

  • Adhikari T, Sarkar D, Mashayekhi H, Xing B (2016) Growth and enzymatic activity of maize (Zea mays L.) plant: solution culture test for copper dioxide nano particles. J Plant Nutr 39:99–115

    Article  CAS  Google Scholar 

  • Afshar RM, Hadi H, Pirzad A (2013) Effect of nano-iron on the yield and yield component of cowpea (Vigna unguiculata) under end season water deficit. Int J Agric 3:27–34

    Google Scholar 

  • Alidoust D, Isoda A (2013) Effect of Fe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): foliar spray versus soil amendment. Acta Physiol Plant 35:3365–3375

    Article  CAS  Google Scholar 

  • Amasivayam SKR, Aruna A, Gokila B (2014) Evaluation of silver nanoparticles-chitosan encapsulated synthetic herbicide paraquat (AgNp-CS-PQ) preparation for the controlled release and improved herbicidal activity against Eichhornia crassipes. Res J Biotechnol 9:19–27

    Google Scholar 

  • Arbab AS, Bashaw LA, Miller BR, Jordan EK, Lewis BK, Kalish H, Frank JA (2003) Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic Iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 229:838–846

    Article  PubMed  Google Scholar 

  • Armin M, Akbari S, Mashhadi S (2014) Effect of time and concentration of nano-Fe foliar application on yield and yield components of wheat. Int J Biosci 4:69–75

    Google Scholar 

  • Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–310

    Article  CAS  Google Scholar 

  • Arumugam G, Velayutham V, Shanmugavel S, Sundaram J (2016) Efficacy of nanostructured silica as a stored pulse protector against the infestation of Bruchid Beetle, Callosobruchus maculatus (Coleoptera: Bruchidae). Appl Nanosci 6:445–450

    Article  CAS  Google Scholar 

  • Asadzade N, Moosavi SG, Seghatoleslami MJ (2015) Effect of low irrigation and Zn and SiO2 nano-fertilizers and conventional fertilizers on morphophysiological traits and seed yield of sunflower. An Int J 7:357–364

    CAS  Google Scholar 

  • Ashkavand P, Tabari M, Zarafshar M, Tomaskova I, Struve D (2015) Effect of SiO2 nanoparticles on drought resistance in hawthorn seedlings. Leśne Prace Badawcze 76:350–359

    Google Scholar 

  • Azimi R, Feizi H, Hosseini MK (2013) Can bulk and nanosized titanium dioxide particles improve seed germination features of wheatgrass (Agropyron desertorum). Not Sci Biol 5:325–331

    Article  CAS  Google Scholar 

  • Bakhtiari M, Moaveni P, Sani B (2015) The effect of iron nanoparticles spraying time and concentration on wheat. Int J Biol Forum 7:679–683

    Google Scholar 

  • Boonyanitipong P, Kositsup B, Kumar P, Baruah S, Dutta J (2011a) Toxicity of ZnO and TiO2nanoparticles on germinating rice seed (Oryza sativa L.). Int J Biosci Biochem Bioinf 1(4):282–285

    Google Scholar 

  • Boonyanitipong P, Kumar P, Kositsup B, Baruah S, Dutta J (2011b) Effects of zinc oxide nanoparticles on roots of Rice (Oryza sativa L.). Int Conf Environ BioSci 21:172–176

    Google Scholar 

  • Brock DA, Douglas TE, Queller DC, Strassmann JE (2011) Primitive agriculture in a social amoeba. Nature 469:393–396

    Article  CAS  PubMed  Google Scholar 

  • Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and Antioxidant system of chickpea seedlings. Toxicol Environ Chem 95:605–612

    Article  CAS  Google Scholar 

  • Castro ML, Ojeda C, Cirelli A (2014) Advances in surfactants for agrochemicals. Environ Chem Lett 12:85–95

    Article  CAS  Google Scholar 

  • Chandrashekharaiah M, Kandakoor SB, Gowda GB, Kammar V, Chakravarthy AK (2015) Nanomaterials: a review of their action and application in pest management and evaluation of DNA-tagged particles. In: Chakravarthy AK (ed) New horizons in insect science: towards sustainable pest management. Springer, India, ISBN-13: 978-81-322-2089-3, pp 113–126

    Google Scholar 

  • Chao SHL, Choi HS (2005) Method for providing enhanced photosynthesis. Korea Research Institute of Chemical Technology, Jeonju, South Korea. Bulletin 10 pp

    Google Scholar 

  • Chinnamuthu C, Boopathi PM (2009) Nanotechnology and agro ecosystem. Agric J 96:17–31

    Google Scholar 

  • Clement L, Hurel C, Marmier N (2012) Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants – effects of size and crystalline structure. Chemosphere (in press)

    Google Scholar 

  • Clemente Z, Grillo R, Jonsson M, Santos NZP, Feitosa LO, Lima R et al (2014) Ecotoxicological evaluation of poly(ϵ-caprolactone) nanocapsules containing triazine herbicides. J Nanosci Nanotechnol 14:4911–4917

    Article  CAS  PubMed  Google Scholar 

  • Debnath N, Das S, Seth D, Chandra R, Bhattacharya S, Goswami A (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci 84:99–105

    Article  Google Scholar 

  • Delfani M, Firouzabadi MB, Farrokhi N, Makarian H (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45:11

    Article  CAS  Google Scholar 

  • Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nano Technol Dev 3(1):1

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14(9):1125

    Google Scholar 

  • Dimkpa CO, Hansen T, Stewart J, McLean JE, Britt DW, Anderson AJ (2015) ZnO nanoparticles and root colonization by a beneficial pseudomonad influence essential metal responses in bean (Phaseolus vulgaris). Nanotoxicology 9:271–278

    Article  CAS  PubMed  Google Scholar 

  • Fakruddin M, Hossain Z, Afroz H (2012) Prospects and applications of nanobiotechnology: a medical perspective. J Nano Biotechnol 10(1):1–8

    Google Scholar 

  • Fathia A, Zahedia M, Torabiana S, Khoshgoftar A (2017) Response of wheat genotypes to foliar spray of ZnO and Fe2O3 nanoparticles under salt stress. J Plant Nutri 40:1376–1385

    Article  CAS  Google Scholar 

  • Feichtmeier NS, Walther P, Leopold K (2015) Uptake, effects, and regeneration of barley plants exposed to gold nanoparticles. Environ Sci Pollut Res 22:8549–8558

    Article  CAS  Google Scholar 

  • Feizi H, Moghaddam PR, Shahtahmassebi N, Fotovat A (2012) Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol Trace Elem 146:101–106

    Article  CAS  Google Scholar 

  • Fernandez V, Ebert G (2005) Foliar iron fertilization: a critical review. J Plant Nutr 28:2113–2124

    Article  CAS  Google Scholar 

  • Frazer L (2001) Titanium dioxide: environmental white knight. Environ Health Perpect 109(4):174–177

    Article  Google Scholar 

  • Ganguly S, Das S, Dastidar SG (2014) Effect of zinc sulphide nanoparticles on germination of seeds of vigna radiata and their subsequent acceleration of growth in presence of the nanoparticles. Eur J Biomed Pharm Sci 1:273–280

    CAS  Google Scholar 

  • Galbraith DW (2007) Silica breaks through in plants. Nat Nanotechnol 2(5):272–273

    Article  CAS  PubMed  Google Scholar 

  • Ghafari H, Razmjoo J (2013) Effect of foliar application of nano-iron oxidase, Iron chelate and Iron sulphate rates on yield and quality of Wheat. J Agron Plant Prod 4:2997–3003

    Google Scholar 

  • Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–10652

    CAS  PubMed  Google Scholar 

  • Ghooshchi F (2017) Influence of titanium and bio-fertilizers on some agronomic and physiological attributes of triticale exposed to cadmium stress. Global NEST J 19:458–463

    Article  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikara KM (2011) Perspectives for nano biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  CAS  PubMed  Google Scholar 

  • Giannousi K, Avramidis I, Dendrinou-Samara C (2013) Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Adv 3:21743–21752

    Article  CAS  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM, McNicholas TP, Iverson NM, Boghossian AA, Strano MS (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez JOW, Gutierrez MM, Ferrero AA, Band BF (2014) Essential oils nano formulation for stored-product pest control-characterization and biological properties. Chemosphere 100:130–138

    Article  CAS  Google Scholar 

  • Graham RD, Ascher JS, Hynes SC (1992) Selecting zinc-efficient cereal genotypes for soils of low zinc status. Plant Soil 146:241–250

    Article  CAS  Google Scholar 

  • Grillo R, Dos Santos NZP, Maruyama CR, Rosa AH, De Lima R, Fraceto LF (2012) Poly(epsilon-caprolactone) nanocapsules as carrier systems for herbicides: physico-chemical characterization and genotoxicity evaluation. J Hazard Mater 231:1–9

    Article  PubMed  CAS  Google Scholar 

  • Gunjan B, Zaidi MGH, Sandeep A (2014) Impact of gold nanoparticles on physiological and biochemical characteristics of Brassica juncea. J Plant Biochem Physiol 2:1–6

    Google Scholar 

  • Haghighi M, Afifipour Z, Mozafarian M (2012) The effect of N–Si on tomato seed germination under salinity levels. Int J Environ Sci 6:87–90

    Google Scholar 

  • Hameed AM, Al-Samarrai (2012) Nanoparticles as alternative to pesticides in management plant diseases. Int J Sci Res Publ 2:1–4

    Google Scholar 

  • Harsini MG, Habibi H, Talaei GH (2014) Study the effects of iron nano chelated fertilizers foliar application on yield and yield components of new line of wheat cold region of Kermanshah province. Agric Adv 3:95–102

    Google Scholar 

  • Hassegawa RH, Fonseca H, Fancelli AL, Dasilva VN, Schammass EA, Reis TA, Correa B (2008) Influence of macro and micro nutrient fertilization on fungal contamination and fumonisin production in corn grains. Food Control 19:36–43

    Article  CAS  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Viezcas JA, Castillo-Michel H, Servin AD, Peralta-Videa JR, Gardea-Torresdey JL (2011) Spectroscopic verification of zinc absorption and distributionin the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnOnanoparticles. Chem Eng J 170:346–352

    Article  CAS  PubMed  Google Scholar 

  • Hong F, Yang F, Liu C, Gao Q, Wan Z, Gu F, Wu C, Ma Z, Zhou J, Yang P (2004) Influence of nano-TiO2 on the chloroplast of Spinach under light. Biol Trace Elem Res 104:249–260

    Article  Google Scholar 

  • Hou H, Schaper AK, Weller F, Greiner A (2002) Carbon nanotubes and spheres produced by modified ferrocene pyrolysis. Chem Mater 14:3990–3994

    Article  CAS  Google Scholar 

  • Hussien MM, El-Ashry SM, Wafaa MH, Dalia MM (2015) Response of mineral status to nano-fertilizer and moisture stress during different growth stages of cotton plants. Int J Chem Technol Res 8:643–650

    CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  CAS  Google Scholar 

  • Jaberzadeh A, Moaveni P, Moghadam HRT, Zahedi H (2013) Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not Bot Horti Agrobo 41:201–207

    Article  CAS  Google Scholar 

  • Janmohammadi M, Sabaghnia N (2015) Effect of pre-sowing seed treatments with silicon nanoparticles on germinability of sunflower (Helianthus annuus). Bot Lith 21:13–21

    Article  Google Scholar 

  • Janmohammadi M, Amanzadeh T, Sabaghnia N, Ion V (2016) Effect of nano-silicon foliar application on safflower growth under organic and inorganic fertilizer regimes. Bot Lith 22:53–64

    Article  Google Scholar 

  • Jo YK, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Joyner JR, Kumar DV (2015) Nanosensors and their applications in food analysis: a review. Int J Sci Technol 3:80–90

    Google Scholar 

  • Kala A, Soosairaj S, Mathiyazhagan S, Raja P (2016) Green synthesis of copper bionanoparticles to control the bacterial leaf blight disease of rice. J Curr Sci 110:2011–2014

    Article  CAS  Google Scholar 

  • Kalteh M, Alipour ZT, Ashraf S, Aliabadi MM, Nosratabadi AF (2014) Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J Chem Health Risks 4:49–55

    CAS  Google Scholar 

  • Kamran S, Forogh M, Mahtab E, Mohammad A (2011) In vitro antibacterial activity of nano materials for using in tobacco plants tissue culture. World Acad Sci Eng Technol 79:372–373

    Google Scholar 

  • Karimi J, Mohsenzadeh S (2016) Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings. Russ J Plant Physiol 63:119–123

    Article  CAS  Google Scholar 

  • Karimia Z, Pourakbarb L, Feizie H (2014) Comparison effect of nano-iron enzymes activity of mungbean (Vigna radiata L.). Adv Environ Biol 8:68–81

    Google Scholar 

  • Karuppanapandian T, Wang HW, Prabakaran N, Jeyalakshmi K, Kwon M, Manoharan K, Kim W (2011) 2, 4-dichlorophenoxyacetic acid-induced leaf senescence in mungbean (Vigna radiata L. Wilczek) and senescence inhibition by co-treatment with silver nanoparticles. Plant Physiol Biochem 49:168–177

    Article  CAS  PubMed  Google Scholar 

  • Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13:214–231

    Article  CAS  Google Scholar 

  • Khan MN, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH (2017) Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem 110:194–209

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Yang XU, Zhongrui LI, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Khoshbakht K, Hammer K (2008) How many plant species are cultivated? Genet Resour Crop Evol 55:925–928

    Article  Google Scholar 

  • Khot LR, Sankaran S, Mari Maja J, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Koo Y, Wang J, Zhang Q, Zhu H, Chehab EW, Colvin VL et al (2015) Fluorescence reports intact quantum dot uptake into roots and translocation to leaves of Arabidopsis thaliana and subsequent ingestion by insect herbivores. Environ Sci Technol 49:626–632

    Article  CAS  PubMed  Google Scholar 

  • Lahiani MH, Chen J, Irin F, Puretzky AA, Green MJ, Khodakovskaya MV (2015) Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon N Y 81:607–619

    Article  CAS  Google Scholar 

  • Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Application of silver nanoparticles for the control of Colletotrichumspecies In vitro and pepper anthracnose disease in field. Mycobiology 39:194–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauterwasser C (2005) Small sizes that matter: Opportunities and risks of Nanotechnologies. Report in cooperation with the OECD International Futures Programme. http://www.oecd.org/dataoecd/32/1/44108334.pdf

  • Liang T, Yin Q, Zhang Y, Wang B, Guo W, Wang J, Xie L (2013) Effects of carbon nanoparticles application on the growth, physiological characteristics and nutrient accumulation in tobacco plants. J Food Agric Environ 11:954–958

    Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150(2):243–250

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:6

    Google Scholar 

  • Liu XM, Zhang FD, Zhang SQ, He XS, Fang R, Feng Z, Wang Y (2005) Effects of nano-ferric oxide on the growth and nutrients absorption of peanut. Plant Nutr Fertil Sci 11:14–18

    Google Scholar 

  • Liu X, Feng Z, Zhang S, Zhang J, Xiao Q, Wang Y (2006) Preparation and testing of cementing nano-subnano composites of slow- or controlled release of fertilizers. Sci Agric Sin 39:1598–1604

    CAS  Google Scholar 

  • Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research on the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21:68–172

    Google Scholar 

  • Lv J, Zhang S, Luo L, Zhang J, Yang K, Christie P (2015) Accumulation, speciation and uptake pathway of ZnO nanoparticles in maize. Environ Sci Nano 2:68–77

    CAS  Google Scholar 

  • Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18

    Article  CAS  Google Scholar 

  • Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J Nanotecnol 1:1–7

    Google Scholar 

  • Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Orna Hortic Plant 3:25–32

    Google Scholar 

  • Manimaran M (2015) A review on nanotechnology and its implications in agriculture and food industry. Asian J Plant Sci Res 5(7):13–15

    CAS  Google Scholar 

  • Mazaherinia S, Astaraei A, Fotovvat A, Monshi A (2010) The comparison of iron absorption and accumulation in wheat by the application of common iron oxides and nano-oxides along with compost and granulated sulfur. Iran J Agron 92:103–111

    Google Scholar 

  • Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54

    Article  CAS  PubMed  Google Scholar 

  • Moaveni P, Talebi A, Farahani HA, Maroufi K (2011) Study of nano particles TiO2 spraying on some yield components in barley (Hordem Vulgare L.). Int Conf Environ Agric Eng 15:115–119

    Google Scholar 

  • Mondal K, Mani C (2012) Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann Microbiol 62:889–893

    Article  CAS  Google Scholar 

  • Mondal A, Basu R, Das S, Nandy P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13:4519–4528

    Article  CAS  Google Scholar 

  • Morteza E, Moaveni P, Farahani HA, Kiyani M (2013) Study of photosynthetic pigments changes of maize (Zea mays L.) under nano TiO2 spraying at various growth stages. Springer Plus 2:247

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1:414–419

    Google Scholar 

  • Mukherjee A, Sun Y, Morelius E, Tamez C, Bandyopadhyay S, Niu G et al (2015) Differential toxicity of bare and hybrid ZnO nanoparticles in green pea (Pisum sativum L.): a life cycle study. Front Plant Sci 6:1242

    PubMed  Google Scholar 

  • Mustafa G, Sakata K, Komatsu S (2016) Proteomic analysis of Soybean root exposed to varying sizes of silver nanoparticles under flooding stress. J Proteomic 148:113–125

    Article  CAS  Google Scholar 

  • Nadi E, Aynehband A, Mojaddam M (2013) Effect of nano-iron chelate fertilizer on grain yield, protein percent and chlorophyll content of Faba bean (Vicia faba L.). Int J Biosci 3:267–272

    Google Scholar 

  • Nair PMG, Chung IM (2014) Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere 112:105–113

    Article  CAS  PubMed  Google Scholar 

  • Nair PMG, Chung IM (2015) Physiological and molecular level studies on the toxicity of silver nanoparticles in germinating seedlings of mung bean (Vigna radiata L.). Acta Physiol Plant 37:1–11

    Article  CAS  Google Scholar 

  • Najafi Disfani M, Mikhak A, Kassaee MZ, Maghari A (2017) Effects of nano Fe/SiO2 fertilizers on germination and growth of barley and maize. Arch Agron Soil Sci 63:817–826

    Article  CAS  Google Scholar 

  • Narendhran S, Rajiv P, Rajeshwari S (2016) Influence of zinc oxide nanoparticles on growth of Sesamum indicum L. in zinc deficient soil. Int J Pharm Pharm Sci 8:365–371

    CAS  Google Scholar 

  • Nekrasova GF, Ushakova OS, Ermakov AE, Uimin MA, Byzov IV (2011) Effects of copper(II) ions and copper oxide nanoparticles on Elodea densa Planch. Russ J Ecol 42:458–463

    Article  CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Article  CAS  PubMed  Google Scholar 

  • Oliveira HC, Moreira RS, Martinez BR, Grillo R et al (2015) Nanoencapsulation enhances the post emergence herbicidal activity of atrazine against mustard plants. PLoS One 10:e0132971

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Owolade O, Ogunleti D (2008) Effects of titanium dioxide on the diseases, development and yield of edible cowpea. J Plant Prot Res 48:329–336

    Article  Google Scholar 

  • Pandey AC, Sharda SS, Yadav RS (2010) Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. J Exp Nanosci 5:488–497

    Article  CAS  Google Scholar 

  • Park H-J, Kim SH, Kim HJ, Choi S-H (2006) A new composition of nanosized silica-silver for control of various plant diseases. J Plant Pathol 22:295–302

    Article  Google Scholar 

  • Parveen A, Mazhari BBZ, Rao S (2016) Impact of bio-nanogold on seed germination and seedling growth in Pennisetum glaucum. Enzym Microb Technol 95:107–111

    Article  CAS  Google Scholar 

  • Patra P, Choudhury SR, Mandal S, Basu A, Goswami A, Gogoi R, Srivastava C, Kumar R, Gopal M (2013) Effect sulfur and ZnO nanoparticles on stress physiology and plant (Vigna radiata) nutrition. Adv Nanomat Nanotechnol:301–309

    Google Scholar 

  • Perez JM (2007) Iron oxide nanoparticles: hidden talent. Nat Nanotechnol 2:535–536

    Article  CAS  PubMed  Google Scholar 

  • Perez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545

    Article  CAS  PubMed  Google Scholar 

  • Perreault F, Popovic R, Dewez D (2014) Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba. Environ Pollut 185:219–227

    Article  CAS  PubMed  Google Scholar 

  • Pimentel D (1995) Amounts of pesticides reaching target pests: environmental impacts and ethics. J Agric Environ Ethics 8:17–29

    Article  Google Scholar 

  • Pinto RJ, Almeida A, Fernandes SC, Freire CS, Silves TAJ, Neto CP, Trindade T (2013) Antifungal activity of transparent nanocomposite thin films of pullulan and silver against Aspergillus niger. Colloids Surf B: Biointerfaces 103:143–148

    Article  CAS  PubMed  Google Scholar 

  • Pourjafar L, Zahedi H, Sharghi Y (2016) Effect of foliar application of nano iron and manganese chelated on yield and yield component of canola (Brassica napus L.) under water deficit stress at different plant growth stages. Agric Sci Dig 36:172–178

    Google Scholar 

  • Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Akbar S, Palit P, Goswami A (2013) Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environ Sci Technol 47:13122–13131

    Article  CAS  PubMed  Google Scholar 

  • Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TSP, Sajanlal R, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad Kumar S (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Acad J 13:705–713

    CAS  Google Scholar 

  • Rafi MM, Epstein E, Falk RH (1997) Silicon deprivation causes abnormalities in wheat (Triticum aestivum L.). J Plant Physiol 151:497–501

    Article  CAS  Google Scholar 

  • Rajeshwari A, Suresh S, Chandrasekaran N, Mukherjee A (2016) Toxicity evaluation of gold nanoparticles using an Allium cepa bioassay. RSC Adv 6:24000–24009

    Article  CAS  Google Scholar 

  • Raliya R, Biswas P, Tarafdar JC (2015) TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol Rep 5:22–26

    Article  Google Scholar 

  • Ramesh M, Palanisamy K, Babu K, Sharma NK (2014) Effects of bulk & nano-titanium dioxide and zinc oxide on physio-morphological changes in Triticum aestivum Linn. J Glob Biosci 3(2):415–422

    Google Scholar 

  • Rengel Z, Graham RD (1995) Importance of seed zinc content for wheat growth on zinc- deficient soil. Plant Soil 173:259–266

    Article  CAS  Google Scholar 

  • Rico CM, Hong J, Morales MI, Zhao L, Barrios AC, Zhang JY (2013) Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47:5635–5642

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Barrios AC, Tan W, Rubenecia R, Lee SC, Varela-Ramirez A (2015) Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environ Sci Pollut Res 22:10551–10558

    Article  CAS  PubMed  Google Scholar 

  • Roco MC (2003) Broader Societal Issues of Nanotechnology. J Nanopart Res 5:181–189

    Article  Google Scholar 

  • Rosa GDL, Lopez-Moreno ML, Haro DD, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2013) Effects of ZnO nanoparticles in alfalfa, tomato, and cucumber at the germination stage: Root development and X-ray absorption spectroscopy studies. Pure Appl Chem 85:2161–2174

    Article  Google Scholar 

  • Rossi L, Zhang W, Lombardini L, Ma X (2016) The impact of cerium oxide nanoparticles on the salt stress responses of Brassica napus L. Environ Pollut 219:28–36

    Article  CAS  PubMed  Google Scholar 

  • Saigusa M (2000) Broadcast application versus band application of polyolefin coated fertilizer on green peppers grown on andisol. J Plant Nutr 23:1485–1493

    Article  Google Scholar 

  • Salama HMH (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int Res J Biotechnol 3:190–197

    Google Scholar 

  • Salarpour O, Parsa S, Sayyari MS, Alahmadi MJ (2013) Effect of nano iron chelates on growth, peroxidase enzyme activity and oil essence of cress (Lepidium sativum L.). Int J Agron Plant Prod 4:3583–3589

    CAS  Google Scholar 

  • Satapanajaru T, Anurakpongsatorn P, Pengthamkeerati P, Boparai H (2008) Remediation of atrazine-contaminated soil and water by nano zerovalent iron. Water Air Soil Pollut 192:349–359

    Article  CAS  Google Scholar 

  • Saxena M, Maity S, Sarkar S (2014) Carbon nanoparticles in ‘biochar’ boost wheat (Triticum aestivum) plant growth. RSC Adv 4:39948

    Article  CAS  Google Scholar 

  • Scott N, Chen H (2003) Nanoscale science and engineering for agriculture and food systems. A report submitted to cooperative state research, education and extension service, USDA, National Planning Workshop, Washington

    Google Scholar 

  • Sedghi M, Hadi M, Toluie SG (2013) Effect of nano zinc oxide on the germination of soybean seeds under drought stress. Ann West Uni Timis Oara Ser Biol XVI 2:73–78

    Google Scholar 

  • Shabnam N, Pardha-Saradhi P, Sharmila P (2014) Phenolics impart Au3+ stress tolerance to cowpea by generating nanoparticles. PLoS One 9:e85242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut 197:143–148

    Article  CAS  Google Scholar 

  • Sharma P, Bhatt D, Zaidi MGH, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233

    Article  CAS  PubMed  Google Scholar 

  • Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93:906–915

    Article  CAS  PubMed  Google Scholar 

  • Sheykhbaglou R, Sedghi M, Tajbakhsh Shishevan M, Seyed Rauf S (2010) Effects of nano-iron oxide particles on agronomic traits of soybean. Not Sci Biol 2:112–113

    Article  Google Scholar 

  • Shi WJ, Shi WW, Gao SY, Lu YT, Cao YS, Zhou P (2010) Effects of nanopesticide chlorfenapyr on mice. Toxicol Environ Chem 92:1901–1907

    Article  CAS  Google Scholar 

  • Shi J, Peng C, Yang Y, Yang J, Zhang H, Yuan X (2014) Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Elsholtzia splendens. Nanotoxicology 8:179–188

    Article  CAS  PubMed  Google Scholar 

  • Shivanna BK, Naik BG, Nagaraja R, Gayathridevi S, Naik RK, Shruthi H (2012) Evaluation of new molecules against scarlet mite, Raoiella indica Hirst in arecanut. J Entomo Nemato 4(1):4–6

    Article  CAS  Google Scholar 

  • Shoaib A, Elabasya A, Waqas M, Lulu L, Xinlai C (2018) Entomotoxic effect of silicon dioxide nanoparticles on Plutella xylostella (L.) (Lepidoptera: Plutellidae) under laboratory conditions. Toxicol Environ Chem 100:80–91

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2016) Engineered gold nanoparticles and plant adaptation potential. Nanoscale Res Lett 11(400):1–10

    Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33:2429–2437

    Article  CAS  PubMed  Google Scholar 

  • Silva MD, Cocenza DS, Grillo R, de Melo NFS, Tonello PS, de Oliveira LC (2011) Paraquat- loaded alginate/chitosan nanoparticles: preparation, characterization and soil sorption studies. J Hazard Mater 190:366–374

    Article  CAS  Google Scholar 

  • Singh J, Lee BK (2016) Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): a possible mechanism for the removal of Cd from the contaminated soil. J Environ Manag 170:88–96

    Article  CAS  Google Scholar 

  • Singh S, Singh M, Agrawal VV, Kumar A (2010) An attempt to develop surface plasmon resonance based immunosensor for Karnal bunt (Tilletia indica) diagnosis based on the experience of nano-gold based lateral flow immunodipstick test. Thin Solid Films 519:1156–1159

    Article  CAS  Google Scholar 

  • Singh MD, Jayadeva HM, Chirag Gautam Mohan MH (2017) Effects of nano zinc oxide particles on seedling growth of maize (Zea mays L.) in germinating paper test. Int J Microbiol Res 9:897–898

    CAS  Google Scholar 

  • Soenen SJ, Manshian B, Montenegro JM, Amin F, Meermann TT, Cornelissen M (2012) Cytotoxic effects of gold nanoparticles: a multiparametric study. ACS Nano 6:5767–5783

    Article  CAS  PubMed  Google Scholar 

  • Sousa GFM, Gomes DG, Campos EVR, Oliveira JL, Fraceto FL, Stolf-Moreira R, Oliveira HC (2018) Post-emergence herbicidal activity of nanoatrazine against susceptible weeds. Front Environ Sci 6:1–6

    Google Scholar 

  • Srinivasan C, Saraswathi R (2010) Nano-Agriculture-Carbon nanotubes enhance tomato seed germination and plant growth. Curr Sci 99:274–275

    CAS  Google Scholar 

  • Srivastava A, Rao DP (2014) Enhancement of seed germination and plant growth of wheat, maize, peanut and garlic using multi-walled carbon nanotubes. Eur Chem Bull 3:502–504

    CAS  Google Scholar 

  • Stadler T, Buteler M, Weaver DK (2010) Novel use of nanostructured alumina as an insecticide. Pest Manag Sci 66:577–579

    CAS  PubMed  Google Scholar 

  • Stanley J (2007) Chemical and behavioral approaches for pest management in cardamom. PhD thesis, Tamil Nadu Agricultural University, Coimbatore, India, p 210

    Google Scholar 

  • Suman PR, Jain VK, Varma A (2010) Role of nanomaterials in symbiotic fungus growth enhancement. Curr Sci 99:1189–1191

    Google Scholar 

  • Sunita SGS (2013) Toxicity of ZnO engineered nanoparticles and evaluation of their effect on growth, Q1 3 metabolism and tissue specific accumulation in Brassica juncea. J Environ Chem Eng 223:1–9

    Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2012a) Silica nanoparticles for increased silica availability in maize (Zea mays L) seeds under hydroponic conditions. Curr Nanosci 8:902–908

    Article  CAS  Google Scholar 

  • Suriyaprabha R, Karunakaran G, Yuvakkumar R, Prabu P, Rajendran V, Kannan N (2012b) Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J Nanopart Res 14:1–14

    Article  CAS  Google Scholar 

  • Susha VS, Chinnamuthu CR, Pandian K (2008) Remediation of herbicide Atrazine through metal nano particle. Paper presented in the International conference on magnetic materials and their applications in the 21st century, October 21–23

    Google Scholar 

  • Tan XM, Lin C, Fugetsu BM (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487

    Article  CAS  Google Scholar 

  • Taran NY, Gonchar OM, Lopatko KG, Batsmanova LM, Patyka MV, Volkogon MV (2014) The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res Lett 9:276–289

    Article  CAS  Google Scholar 

  • Tassi E, Giorgetti L, Morelli E, Peralta-Videa J, Gardea-Torresdey J, Barbafieri M (2017) Physiological and biochemical responses of sunflower (Helianthus annuus L.) exposed to nano-CeO2 and excess boron: modulation of boron phytotoxicity. Plant Physiol Biochem 110:50–58

    Article  CAS  PubMed  Google Scholar 

  • Tersoff J, Ruoff RS (1994) Structural Properties of a Carbon-Nanotube Crystal. Phys Rev Lett 73:676

    Article  CAS  PubMed  Google Scholar 

  • Thuesombat P, Hannongbua S, Akasit S, Chadchawan S (2014) Effect of silver nanoparticles on rice (Oryza sativa L. cv. KDML 105) seed germination and seedling growth. Ecotoxicol Environ Saf 104:302–309

    Article  CAS  PubMed  Google Scholar 

  • Torabian S, Zahedi M, Khoshgoftar AH (2016) Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J Plant Nutr 39:172–180

    Article  CAS  Google Scholar 

  • Torabian S, Zahedi M, Khoshgoftar AH (2017) Effects of foliar spray of nano-particles of FeSO4 on the growth and ion content of sunflower under saline condition. J Plant Nutr 40:615–623

    Article  CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2(5):295

    Article  CAS  PubMed  Google Scholar 

  • Trankel ME (1997) Controlled release and stabilized fertilizers in agriculture. International Fertilizer Industry Association, Paris

    Google Scholar 

  • Tripathi S, Sarkar S (2015) Influence of water soluble carbon dots on the growth of wheat plant. Appl Nanosci 5:609–616

    Article  CAS  Google Scholar 

  • Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3:1176–1181

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S et al (2017a) Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177

    Article  CAS  PubMed  Google Scholar 

  • Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2017b) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81

    Article  CAS  PubMed  Google Scholar 

  • Valadkhan M, Mohammadi K, Nezhad MTK (2015) Effect of priming and foliar application of nanoparticles on agronomic traits of chickpea. Bio Forum–An Int J 7:599–602

    CAS  Google Scholar 

  • Van Nhan L, Ma C, Shang J, Rui Y, Liu S, Xing B (2016) Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144:661–670

    Article  CAS  Google Scholar 

  • Venkatachalam P, Priyanka N, Manikandan K, Ganeshbabu I, Indiraarulselvi P, Geetha N, Muralikrishna K, Bhattacharya RC, Tiwari M, Sharma N, Sahi SV (2017) Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 110:118–127

    Article  CAS  PubMed  Google Scholar 

  • Vitosh ML, Warncke DD Lucas RE (1994) Secondary and micronutrients for vegetable and field crops, Michigan State University Extension Bulletin E-486

    Google Scholar 

  • Wainwright M (1997) The neglected microbiology of silicon – from the origin of life to an explanation for what Henry Charlton Bastian saw. Soc Gen Microbiol Q 24:83–85

    Google Scholar 

  • Wang Z, Wei F, Liu SY, Xu Q, Huang J-Y, Dong XY, Yua JH, Yang Q, Zhao YD, Chen H (2010) Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticles-modified gold electrode and its detection in oilseed rape infected with fungal pathogen Sclerotinia sclerotiorum. Talanta 80:1277–1281

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Han H, Liu X, Gu X, Chen K, Lu D (2012) Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res 14:841

    Article  CAS  Google Scholar 

  • Wang S, Wang F, Gao S (2015) Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environ Sci Pollut Res 22:2837–2845

    Article  CAS  Google Scholar 

  • Wiedenhoeft AC (2006) Plant Nutrition. In: Hopkins WG (ed) The green world. Chelsea House Publishers, New York, pp 16–43

    Google Scholar 

  • Wright M, Adams J, Yang K, McManus P, Jacobson A, Gade A (2016) A root-colonizing Pseudomonas lessens stress responses in wheat imposed by CuO nanoparticles. PLoS One 11:e0164635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie Y, Li B, Zhang Q, Zhang C (2012) Effects of nano-silicon dioxide on photosynthetic fluorescence characteristics of Indocalamus barbatus McClure. J Nanjing Forest Univ (Natural Science Edition) 2:59–63

    Google Scholar 

  • Yan S, Zhao L, Li H, Zhang Q, Tan J, Huang M, He S, Li L (2013) Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J Hazard Mater 246-247:110–118

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Hong F, You W, Liu C, Gao F, Wu C, Yang P (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110:179–190

    Article  CAS  PubMed  Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57:10156–10162

    Article  CAS  PubMed  Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu J, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79:513–516

    Article  CAS  Google Scholar 

  • Yasur J, Rani PU (2015) Lepidopteran insect susceptibility to silver nanoparticles and measurement of changes in their growth, development and physiology. Chemosphere 124:92–102

    Article  CAS  PubMed  Google Scholar 

  • Yoon S-J, Kwak JI, Lee WM, Holden PA, An YJ (2014) Zinc oxide nanoparticles delay soybean development: a standard soil microcosm study. Ecotoxicol Environ Saf 100:131–137

    Article  CAS  PubMed  Google Scholar 

  • Yuvakkumar R, Elango V, Rajendran V, Kannan NS, Prabu P (2011) Influence of nanosilica powder on the growth of maize crop (Zea Mays L.). Int J Green Nanotechnol 3(3):180–190

    Article  CAS  Google Scholar 

  • Yuvaraj M, Subramanian KS (2015) Controlled-release fertilizer of zinc encapsulated by a manganese hollow core shell. Soil Sci Plant Nutr 61:319–326

    Article  CAS  Google Scholar 

  • Zahir AA, Bagavan A, Kamaraj C, Elango G, Rahuman AA (2012) Efficacy of plant-mediated synthesized silver nanoparticles against Sitophilus oryzae. J Biopest 5:95–102

    Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–91

    Article  CAS  PubMed  Google Scholar 

  • Zhu ZJ, Wang H, Yan B, Zheng H, Jiang Y, Miranda OR et al (2012) Effect of surface charge on the uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol 46:12391–12398

    Article  CAS  PubMed  Google Scholar 

  • Zuverza-Mena N, Martínez-Fernández D, Du W, Hernandez-Viezcas JA (2017) Exposure of engineered nanomaterials to plants: insights into the physiological and biochemical responses-A review. Plant Physiol Biochem 110:236–264

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahto, R., Chatterjee, N., Priya, T., Singh, R.K. (2019). Nanotechnology and Its Role in Agronomic Crops. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-32-9783-8_27

Download citation

Publish with us

Policies and ethics