Skip to main content

Mycorrhiza in Sustainable Crop Production

  • Chapter
  • First Online:
Agronomic Crops

Abstract

Sustainable crop production is a complex issue, and available evidences suggest that mycorrhizal association with crop plants confers yield stability. We present a schematic flow diagram to outline practices that lead unsustainability or sustainability in the crop production. We critically discussed the issue of sustainability and the role of mycorrhiza in crop production. Conventional practices are posing threat to the biological processes and agroecosystem. Arbuscular mycorrhizal fungi form symbiotic associations with wide range of agricultural crops. Management options should address primary constraints to achieve desired success. This chapter reviews the effect of various management options like tillage, soil biodiversity and fertility management, crops and cropping sequences, irrigation and agroforestry systems on the abundance and diversity of the AM fungi and the plant response. Proper understanding of mutualistic association between arbuscular mycorrhizae and plant roots needed to exploit potential benefits. Long-term studies under diverse field conditions were required to know complex interactions that occur in the mycorrhizosphere and to harness potential benefits from mycorrhizal inoculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Al:

Aluminium

AMF:

Arbuscular mycorrhizal fungi

Ca:

Calcium

Cu:

Copper

Fe:

Iron

K:

Potassium

Mg:

Magnesium

Mn:

Manganese

N:

Nitrogen

NO3−:

Nitrate

P:

Phosphorous

PGPR:

Plant growth-promoting rhizobacteria

S:

Sulphur

Zn:

Zinc

References

  • Abbott LK, Robson AD (1991) Field management of VA mycorrhizal fungi. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Norwell, pp 355–362

    Chapter  Google Scholar 

  • Aggarwal A, Kadian N, Tanwar A, Yadav A, Gupta KK (2011) Role of arbuscular mycorrhizal fungi (AMF) in global sustainable development. J Appl Nat Sci 3:340–351

    Article  Google Scholar 

  • Aguilar CA, Barea JM (1997) Applying mycorrhiza biotechnology to horticulture: significance and potentials. Sci Hortic 68:1–24

    Article  Google Scholar 

  • Al–Karaki G, Mcmichael B, Jak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263–269

    Article  PubMed  Google Scholar 

  • Allen EB, Allen MF, Helm DJ, Trappe JM, Molina R, Rincon E (1995) Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil 170:47–62

    Article  CAS  Google Scholar 

  • Alley MM (2002) Integrated input management: research and implementation. In: Yadav JSP, Sharma AR (eds) Extended summaries, Second international agronomy congress, vol 1. New Delhi, India, pp 29–30

    Google Scholar 

  • Alloush GA, Zeto SK, Clark RB (2000) Phosphorus source, organic matter, and arbuscular mycorrhiza effects on growth and mineral acquisition of chickpea grown in acidic soil. J Plant Nutr 23:1351–1369

    Article  CAS  Google Scholar 

  • Alloway BJ (2009) Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health 31:537–548

    Article  CAS  PubMed  Google Scholar 

  • Ananth S, Rickerl DH (1991) Effect of cropping systems on mycorrhizal spore distribution and infection in corn and soybean. Phytopathology 81:1210. (abs)

    Google Scholar 

  • Arab A, Bradaran R, Vahidipour TH (2013) Effect of irrigation and mycorrhizal bio-fertilizers on yield and agronomic traits of millet (Panicum miliaceum L.). Int J Agric Crop Sci 6:103–109

    Google Scholar 

  • Armour JD, Ritchie GS, Robson AD (1990) Extractable zinc in particle–size fractions of soils from Western–Australia and Queensland. Aust J Soil Res 28:387–397

    Article  CAS  Google Scholar 

  • Atala C, Muñoz-Capponi E, Pereira G, Navarrete E, Oses R, Molina-Montenegro M (2012) Impact of mycorrhizae and irrigation in the survival of seedlings of Pinus radiata D. Don subject to drought. Gayana Bot 69:296–304

    Article  Google Scholar 

  • Atul-Nayyar A, Hamel C, Hanson K, Germida J (2009) The arbuscular mycorrhizal symbiosis links N mineralization to plant demand. Mycorrhiza 19:239–246

    Article  CAS  PubMed  Google Scholar 

  • Avio L, Castaldini M, Fabiani A, Bedini S, Sbrana C, Turrini A, Giovannetti M (2013) Impact of nitrogen fertilization and soil tillage on arbuscular mycorrhizal fungal communities in a Mediterranean agroecosystem. Soil Biol Biochem 67:285–294

    Article  CAS  Google Scholar 

  • Baar J (2008) From production to application of arbuscular mycorrhizal fungi in agricultural systems: requirements and needs. In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics. Springer, Berlin/Heidelberg, pp 361–373

    Chapter  Google Scholar 

  • Bagayoko M, Buerkert A, Lung G, Bationo A, Römheld V (2000) Cereal/legume rotation effects on cereal growth in Sudano-Sahelian West Africa: soil mineral nitrogen, mycorrhizae and nematodes. Plant Soil 218:103–116

    Article  CAS  Google Scholar 

  • Bainard LD, Klironomos JN, Gordon AM (2011) Arbuscular mycorrhizal fungi in tree-based intercropping systems: a review of their abundance and diversity. Pedobiologia 54:57–61

    Article  Google Scholar 

  • Balemi T, Negisho K (2012) Management of soil phosphorus and plant adaptation mechanisms to phosphorus stress for sustainable crop production: a review. J Soil Sci Plant Nutr 12:547–561

    Article  Google Scholar 

  • Banerjee K, Gadani MH, Srivastava KK, Verma N, Jasrai YT, Jain NK (2013) Screening of efficient arbuscular mycorrhizal fungi for Azadirachta indica under nursery condition: a step towards afforestation of semi-arid region of western India. Braz J Microbiol 44:587–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bargali SS, Singh SP, Pandya KS (2004) Effects of Acacia nilotica on gram crop in a traditional agroforestry system of Chhattisgarh plains. Int J Ecol Environ Sci 30:363–368

    Google Scholar 

  • Bargali SS, Singh SP, Shrivastava SK, Kolhe SS (2008) Forestry plantations on rice bunds: farmer’s perceptions and technology adoption. Int Rice Res Notes 32:40–41

    Google Scholar 

  • Baslam M, Garmendias I, Goicoechea N (2011) Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse–grown lettuce. J Agric Food Chem 59:5504–5515

    Article  CAS  PubMed  Google Scholar 

  • Bhadalung NN, Suwanarit A, Dell B, Nopamornbodi O, Thamchaipenet A, Rungchuang J (2005) Effects of long-term NP-fertilization on abundance and diversity of arbuscular mycorrhizal fungi under a maize cropping system. Plant Soil 270:371–382

    Article  CAS  Google Scholar 

  • Bolandnazar SA, Neyshabouri MR, Aliasgharzad N, Chaparzadeh N (2007) Effects of mycorrhizal colonization on growth parameters of onion under different irrigation and soil conditions. Pak J Biol Sci 10:1491–1495

    Article  CAS  PubMed  Google Scholar 

  • Brito I, Goss MJ, De Carvalho M (2012) Effect of tillage and crop on arbuscular mycorrhiza colonization of winter wheat and triticale under Mediterranean conditions. Soil Use Manag 28:202–208

    Article  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  PubMed  Google Scholar 

  • Brussaard L, Peter C, Uiter PC, Brown GG (2007) Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ 121:233–244

    Article  Google Scholar 

  • Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84

    Article  Google Scholar 

  • Castillo C, Rubio R, Borie F, Sieverding E (2010) Diversity of arbuscular mycorrhizal fungi in horticultural production systems of southern Chile. J Soil Sci Plant Nutr 10:407–413

    Article  Google Scholar 

  • Cavagnaro TR (2008) The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review. Plant Soil 304:315–325

    Article  CAS  Google Scholar 

  • Chagnon PL, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 9:484–491

    Article  CAS  Google Scholar 

  • Chalk PM, Souza RDF, Urquiaga S, Alves BJR, Boddey RM (2006) The role of arbuscular mycorrhiza in legume symbiotic performance. Soil Biol Biochem 38:2944–2951

    Article  CAS  Google Scholar 

  • Delian E, Chira A, Chira L, Savulescu E (2011) Arbuscular mycorrhizae: an overview. Southwest J Hortic Biol Environ 2:167–192

    Google Scholar 

  • Dobo B, Asefa F, Asfaw Z (2016) Diversity and abundance of arbuscular mycorrhizal fungi under different plant and soil properties in Sidama, Southern Ethiopia. Adv Biosci Bioeng 4:16–24

    Google Scholar 

  • Dodd JC, Thomson BD (1994) The screening and selection of inoculants arbuscular-mycorrhizal fungi. Plant Soil 159:149–158

    Article  Google Scholar 

  • Douds DD, Galvez L, Janke RR, Wagoner P (1995) Effect of tillage and farming system upon populations and distribution of vesicular-arbuscular mycorrhizal fungi. Agric Ecosyst Environ 52:111–118

    Article  Google Scholar 

  • Dutta SK, Patel VB, Vishwanathan C, Singh SK, Singh AK (2015) Physiological and biochemical adaptation of arbuscular mycorrhizal fungi (AMF) inoculated Citrus jambhiri (Jatti Khatti) seedlings under water deficit stress conditions. Progress Hortic 47:229–236

    Article  Google Scholar 

  • Galvez L, Douds DD Jr, Drinkwater LE, Wagoner P (2001) Effect of tillage and farming system on VAM fungus populations and mycorrhizas and nutrient uptake of maize. Plant Soil 228:299–308

    Article  CAS  Google Scholar 

  • Gavito ME, Miller MH (1998) Changes in mycorrhiza development in maize induced by crop management practices. Plant Soil 198:185–192

    Article  CAS  Google Scholar 

  • Gilbert N (2009) The disappearing nutrient. Nature 461:716–718

    Article  CAS  PubMed  Google Scholar 

  • Goss MJ, Watson CA (2003) The importance of root dynamics in cropping systems research. J Crop Prod 8:127–155

    Article  Google Scholar 

  • Guissou T (2009) Contribution of arbuscular mycorrhizal fungi to growth and nutrient uptake by jujube and tamarind seedlings in a phosphate (P)-deficient soil. Afr J Microbiol Res 3:297–304

    CAS  Google Scholar 

  • Gupta R, Mukerji KG (2001) Microbial technology. APH Publishing Corporation, New Delhi

    Google Scholar 

  • Hagh ED, Mirshekari B, Ardakani MR, Farahvash F, Rejali F (2016) Optimizing phosphorus use in sustainable maize cropping via mycorrhizal inoculation. J Plant Nutr 39:1348–1356

    Article  CAS  Google Scholar 

  • Harikumar VS (2015) Arbuscular mycorrhizal associations in sesame under low-input cropping systems. Arch Agron Soil Sci 61:347–359

    Article  Google Scholar 

  • Harinikumar KM, Bagyaraj DJ (1989) Effect of cropping sequence, fertilizers and farmyard manure on vesicular arbuscular mycorrhizal fungi in different crops over three consecutive seasons. Biol Fertil Soils 7:173–175

    Article  Google Scholar 

  • Hazzoumi Z, Moustakine Y, Elharchli EH, Joutei KA (2015) Effect of arbuscular mycorrhizal fungi (AMF) and water stress on growth, phenolic compounds, glandular hairs, and yield of essential oil in basil (Ocimum gratissimum L.). Chem Biol Technol Agric 2:10. https://doi.org/10.1186/S40538–015–0035–3

    Article  Google Scholar 

  • Higo M, Isobe K, Kang DJ, Ujiie K, Drijber R, Ishii R (2010) Inoculation with arbuscular mycorrhizal fungi or crop rotation with mycorrhizal plants improves the growth of maize in limed acid sulfate soil. Plant Prod Sci 13:74–79

    Article  Google Scholar 

  • Hodge A, Campbell CD, Fitter AH (2001) An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature 413:297–299

    Article  CAS  PubMed  Google Scholar 

  • Isobe K, Higo M, Kondo T, Sato N, Takeyama S, Torigoe Y (2014) Effect of winter crop species on arbuscular mycorrhizal fungal colonization and subsequent soybean yields. Plant Prod Sci 17:260–267

    Article  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 2. Hyphal transport of 32P over defined distances. New Phytol 120:509–516

    Article  CAS  Google Scholar 

  • Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard E (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. J Appl Ecol 13:1164–1176

    Article  Google Scholar 

  • Jayne B, Quigley M (2014) Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta-analysis. Mycorrhiza 24:109–119

    Article  PubMed  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Jhonson NC, Pfleger FL (1992) Vesicular- arbuscular mycorrhizae and cultural stresses. In: Bethlenfalvay GJ, Linderman RG (eds) VA Mycorrhizae in sustainable agriculture. ASA/SSSA special publication no 54 American Society of Agronomy, Medison, USA

    Google Scholar 

  • Johansson JF, Paul LR, Finlay RD (2004) Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48:1–13

    Article  CAS  PubMed  Google Scholar 

  • Johnson N, Rowland DL, Corkidi L, Egerton-Warburton LM, Allen EB (2003) Nitrogen enrichment alters mycorrhizal allocation at five mesic to semiarid grasslands. Ecology 84:1895–1908

    Article  Google Scholar 

  • Kabir Z (2005) Tillage or no-tillage: impact on mycorrhizae. Can J Plant Sci 85:23–29

    Article  Google Scholar 

  • Kapoor R, Evelin H, Mathur P, Giri B (2013) Arbuscular mycorrhiza: approaches forabiotic stress tolerance in crop plants for sustainable agriculture. In: Tuteja N, Gill SS (eds) Plant acclimation to environmental stress. Springer, New York, pp 359–401

    Chapter  Google Scholar 

  • Laxminarayana K, John KS, Mukherjee A, Ravindran CS (2015) Long-term effect of lime, mycorrhiza, and inorganic and organic sources on soil fertility, yield, and proximate composition of sweet potato in alfisols of eastern India. Commun Soil Sci Plant Anal 46:605–618

    Article  CAS  Google Scholar 

  • Lehmann A, Veressoglou SD, Leifheit EF, Rillig MC (2014) Arbuscular mycorrhizal influence on zinc nutrition in crop plants –a meta-analysis. Soil Biol Biochem 69:123–131

    Article  CAS  Google Scholar 

  • Lekberg Y, Koide RT, Twomlow SJ (2008) Effect of agricultural management practices on arbuscular mycorrhizal fungal abundance in low-input cropping systems of Southern Africa: a case study from Zimbabwe. Biol Fertil Soils 44:917–923

    Article  Google Scholar 

  • Liu A, Plenchette C, Hamel C (2007) Soil nutrient and water providers: how arbuscular mycorrhizal mycelia support plant performance in a resource limited world. In: Hamel C, Plenchette C (eds) Mycorrhizae in crop production. Haworth Press, Binghampton, pp 37–66

    Google Scholar 

  • Mäder P, Edenhofer S, Boller T, Wiemken A, Niggli U (2000) Arbuscular mycorrhizae in a long-term field trial comparing low-input (organic, biological) and high-input (conventional) farming systems in a crop rotation. Biol Fertil Soils 31:150–156

    Article  Google Scholar 

  • Mader P, Fliebbach A, Dubois D, Gunst L, Fried P, Niggli U (2002) Soil fertility and biodiversity in organic farming. Science 296:1694–1697

    Article  CAS  PubMed  Google Scholar 

  • MÃ¥rtensson AM, Carlgren K (1994) Impact of phosphorus fertilization on VAM diaspores in two Swedish long-term field experiment. Agric Ecosyst Environ 47:327–334

    Article  Google Scholar 

  • Mathimaran N, Ruh R, Jama B, Verchot L, Frossard E, Jansa J (2007) Impact of agricultural management on arbuscular mycorrhizal fungal communities in Kenyan ferralsol. Agric Ecosyst Environ 119:22–32

    Article  Google Scholar 

  • McGonigle TP, Miller MH (1993) Mycorrhizal development and phosphorus absorption in maize under conventional and reduced tillage. Soil Sci Soc Am J 57:1002–1006

    Article  CAS  Google Scholar 

  • McGonigle TP, Miller MH (1996) Mycorrhizae, phosphorus absorption, and yield of maize in response to tillage. Soil Sci Soc Am J 60:1856–1861

    Article  CAS  Google Scholar 

  • McGonigle TP, Evans DG, Miller MH (1990) Effect of degree of soil disturbance on mycorrhizal colonization and phosphorus absorption by maize in growth chamber and field experiments. New Phytol 116:629–636

    Article  CAS  Google Scholar 

  • McGonigle TP, Miller MH, Young D (1999) Mycorrhizae, crop growth and crop phosphorus nutrition in maize-soybean rotations given various tillage treatments. Plant Soil 210:33–42

    Article  CAS  Google Scholar 

  • McGonigle TP, Hutton M, Greenley A, Karamanos R (2011) Role of Mycorrhiza in a wheat–flax versus canola–flax rotation: a case study. Commun Soil Sci Plant Anal 42:2134–2142

    Article  CAS  Google Scholar 

  • Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2015) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod:1–3

    Google Scholar 

  • Mehravaran H, Mozafar A, Frossard E (2000) Uptake and partitioning of P-32 and Zn-65 by white clover as affected by eleven isolates of mycorrhizal fungi. J Plant Nutr 23:1385–1395

    Article  CAS  Google Scholar 

  • Miller MH, McGonigle TP, Addy HD (1995) Functional ecology of vesicular arbuscular mycorrhizas as influenced by phosphate fertilization and tillage in an agricultural ecosystem. Crit Rev Biotechnol 15:241–255

    Article  Google Scholar 

  • Munkvold L, Kjoller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364

    Article  PubMed  Google Scholar 

  • Nair PKR (1984) Soil productivity aspect of agroforestry. ICRAF, Nairobi

    Google Scholar 

  • National Research Council (1989) Alternative agriculture. National Academy Press, Washington DC

    Google Scholar 

  • Nayyar A, Hamel C, Lafond G, Gossen BD, Hanson K, Germida J (2009) Soil microbial quality associated with yield reduction in continuous-pea. Appl Soil Ecol 43:115–121

    Article  Google Scholar 

  • Nelson AG, Spaner D (2010) Cropping systems management, soil microbial communities, and soil biological fertility. In: Lichtfouse E (ed) Genetic engineering, biofertilisation, soil quality and organic farming, sustainable agriculture reviews 4. Springer, pp 217–242

    Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411

    Article  CAS  PubMed  Google Scholar 

  • Njeru E, Avio L, Bocci G, Sbrana C, Turrini A, Bàrberi P, Giovannetti M, Oehl F (2015) Contrasting effects of cover crops on ‘hot spot’ arbuscular mycorrhizal fungal communities in organic tomato. Biol Fertil Soils 51:151–166

    Article  Google Scholar 

  • Oliveira RS, Rocha I, Ma Y, Vosátka M, Freitas H (2016) Seed coating with arbuscular mycorrhizal fungi as an ecotechnological approach for sustainable agricultural production of common wheat (Triticum aestivum L.). J Toxicol Environ Health A 79:329–337

    Article  CAS  PubMed  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Pellegrino E, Öpik M, Bonari E, Ercolia L (2015) Responses of wheat to arbuscular mycorrhizal fungi: a meta-analysis of field studies from 1975 to 2013. Soil Biol Biochem 84:210–217

    Article  CAS  Google Scholar 

  • Perrings C, Jackson L, Bawa K, Brussaard L, Brush S, Gavin T, Papa R, Pascua U, de Ruiter P (2006) Biodiversity in agricultural landscapes: saving natural capital without losing interest. Conserv Biol 20:263–264

    Article  PubMed  Google Scholar 

  • Plenchette C, Clermont-Dauphin C, Meynard JM, Fortin JA (2005) Managing arbuscular mycorrhizal fungi in cropping systems. Can J Plant Sci 85:31–40

    Article  Google Scholar 

  • Pretty J (2008) Agricultural sustainability: concepts, principles and evidence. Philos Trans R Soc Lond Ser B Biol Sci 363:447–465

    Article  Google Scholar 

  • Ryan MH, McInerney JK, Record IR, Angus JF (2008) Zinc bioavailability in wheat grain in relation to phosphorus fertiliser, crop sequence and mycorrhizal fungi. J Sci Food Agric 88:1208–1216

    Article  CAS  Google Scholar 

  • Salami AO (2007) Assessment of AM biotechnology in improving agricultural productivity of nutrient-deficient soil in the tropics. Arch Phytopathol Plant Protect 40:338–344

    Article  Google Scholar 

  • Säle V, Aguilera P, Laczko E, Mader P, Berner A, Zihlmann U, Van Der Heijden MGA, Oehl F (2015) Impact of conservation tillage and organic farming on the diversity of arbuscular mycorrhizal fungi. Soil Biol Biochem 84:38–52

    Article  CAS  Google Scholar 

  • Sanginga N, Carsky RJ, Dashiell K (1999) Arbuscular mycorrhizal fungi respond to rhizobial inoculation and cropping systems in farmer’s fields in the Guinea savanna. Biol Fertil Soils 30:179–186

    Article  Google Scholar 

  • Schwab S, Reeves FB (1981) The role of endomycorrhizae in revegetation practices in the semi-arid west. III. Verticle distribution of vesicular-arbuscular (VA) mycorrhizal inoculum potential. Am J Bot 68:1293–1297

    Article  Google Scholar 

  • Sharma RC, Banik P (2014) Arbuscular mycorrhiza, azospirillum and chemical fertilizer application to baby corn (Zea mays L.): effects on productivity, nutrient use efficiency, economic feasibility and soil fertility. J Plant Nutr 37:209–223

    Article  CAS  Google Scholar 

  • Sharma AK, Singh C, Akhauri P (2000) Mass culture of arbuscular mycorrhizal fungi and their role in biotechnology. Proc Natl Acad Sci India B 66:223–238

    Google Scholar 

  • Sheng M, Lalande R, Hamel C, Ziadi N (2013) Effect of long-term tillage and mineral phosphorus fertilization on arbuscular mycorrhizal fungi in a humid continental zone of Eastern Canada. Plant Soil 369:599–613

    Article  CAS  Google Scholar 

  • Shirmohammadi E, Khaje M, Shidali M, Talaei GH, Shahgholi H (2014) Microorganism’s application strategy for bio-phytoremediation of heavy metal: a review. J Biodivers Environ Sci 5:289–298

    Google Scholar 

  • Singh MK, Prasad SK (2014) Agronomic aspects of zinc biofortification in rice (Oryza sativa L.). Proc Natl Acad Sci India B 84:613–623

    CAS  Google Scholar 

  • Singh NV, Singh SK, Singh AK (2011) Standardization of embryo rescue technique and bio-hardening of grape hybrids (Vitis vinifera L.) using arbuscular mycorrhizal fungi (AMF) under sub-tropical conditions. Vitis 50:115–118

    Google Scholar 

  • Singh SK, Patel VB, Singh AK, Verma MK (2015) Mycorrhizal fungi in sustainable horticultural production under changing climate situations. In: Choudhary ML, Patel VB, Siddique MW, Verma RB (eds) Climate dynamics in horticultural science: impact, adaptation, and mitigation, vol 2. Apple Academic Press, Oakville, pp 239–252

    Chapter  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Subramanian KS, Balakrishnan N, Senthil N (2013) Mycorrhizal symbiosis to increase the grain micronutrient content in maize. Aust J Crop Sci 7:900–910

    CAS  Google Scholar 

  • Takanishi I, Ohtomo R, Hayatsu M, Saito M (2009) Short-chain polyphosphate in arbuscular mycorrhizal roots colonized by Glomus spp.: a possible phosphate pool for host plants. Soil Biol Biochem 41:1571–1573

    Article  CAS  Google Scholar 

  • Tawaraya K (2003) Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Sci Plant Nutr 49:655–668

    Article  Google Scholar 

  • Thilakarathna MS, McElroy MS, Chapagain T, Papadopoulos YA, Raizada MN (2016) Belowground nitrogen transfer from legumes to non-legumes under managed herbaceous cropping systems. A review. Agron Sustain Dev 36:58. https://doi.org/10.1007/s13593-016-0396-4

    Article  CAS  Google Scholar 

  • Thompson JP (1987) Decline of vesicular arbuscular mycorrhizae in long-fallow disorder of field crops and its expression in phosphorus deficiency of sunflower. Aust J Agric Res 38:847–867

    Article  CAS  Google Scholar 

  • Thompson JP (1991) Improving the mycorrhizal conditions of the soil through cultural practices and effects on growth and phosphorus uptake of plants. In: Johansen C, Lee KK, Sahrawat KL (eds) Phosphorus nutrition of grain legumes in the semi-arid tropics. ICRISAT (International Crops Research Institute for the Semi-Arid Tropics), Hyderabad, pp 117–137

    Google Scholar 

  • Thompson JP (1994) What is the potential for management of mycorrhizas in agriculture? In: Robson AD, Abbott LK, Malajczuk N (eds) Management of mycorrhizas in agriculture, horticulture and forestry. Kluwer Academic Publishers, Dordrecht, pp 191–200

    Google Scholar 

  • Thompson JP, Clewett TG, Fiske M (2013) Field inoculation with arbuscular-mycorrhizal fungi overcomes phosphorus and zinc deficiencies of linseed (Linum usitatissimum) in a vertisol subject to long-fallow disorder. Plant Soil 371:117–137

    Article  CAS  Google Scholar 

  • Toljander JF, Santos-Gonzalez JC, Tehler A, Finlay RD (2008) Community analysis of arbuscular mycorrhizal fungi and bacteria in the maize mycorrhizosphere in a long-term fertilization trial. FEMS Microbiol Ecol 65:323–338

    Article  CAS  PubMed  Google Scholar 

  • Treseder KK, Allen MF (2002) Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol 155:507–515

    Article  PubMed  Google Scholar 

  • Vestberg M, Kahiluoto H, Wallius E (2011) Arbuscular mycorrhizal fungal diversity and species dominance in a temperate soil with long-term conventional and low-input cropping systems. Mycorrhiza 21:351–361

    Article  PubMed  Google Scholar 

  • Wangiyana W, Cornish PS, Morris EC (2006) Arbuscular mycorrhizal fungi dynamics in contrasting cropping systems on vertisols and regosol soils of Lombok, Indonesia. Exp Agric 42:427–439

    Article  CAS  Google Scholar 

  • Whiteside MD, Treseder KK, Atsatt PR (2009) The brighter side of soils: quantum dots track organic nitrogen through fungi and plants. Ecology 90:100–108

    Article  PubMed  Google Scholar 

  • Wu QS, Xia RX, Zou YN (2008) Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. Eur J Soil Biol 44:122–128

    Article  Google Scholar 

  • Wu F, Dong M, Liu Y, Ma X, An L, Young JPW, Feng H (2011) Effects of long-term fertilization on AM fungal community structure and glomalin-related soil protein in the Loess Plateau of China. Plant Soil 342:233–247

    Article  CAS  Google Scholar 

  • Yamawaki K, Matsumura A, Hattori R, Tarui A, Hossain MA, Ohashi Y, Daimon H (2013) Effect of inoculation with arbuscular mycorrhizal fungi on growth, nutrient uptake and curcumin production of turmeric (Curcuma longa L.). Agric Sci 4:66–71

    Google Scholar 

  • Yang C, Ellouze W, Navarro-Borrell A, Esmaeili Taheri A, Klabi R, Dai M, Kabir Z, Hamel C (2014) Management of the arbuscular mycorrhizal symbiosis in sustainable crop production. In: Solaiman Z, Abbott LK, Varma A (eds) Mycorrhizal fungi: use in sustainable agriculture and land restoration, soil biology 41. Springer, Berlin/Heidelberg, pp 89–118

    Chapter  Google Scholar 

  • Zajicek JM, Hetrick BAD, Owensby CE (1986) The influence of soil depth on mycorrhizal colonization of forbs in the tallgrass prairie. Mycologia 78:316–320

    Article  Google Scholar 

  • Zinck J, Berroteran JL, Farshad A, Moameni A, Wokabi S, Ranst EV (2002) Approaches to assess sustainable agriculture. Cienc Suelo 20:55–68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S.P., Singh, M.K. (2019). Mycorrhiza in Sustainable Crop Production. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-32-9783-8_22

Download citation

Publish with us

Policies and ethics