Skip to main content

Pest Management for Agronomic Crops

  • Chapter
  • First Online:

Abstract

Agriculture is the main stay for many countries having agrarian economies in the world. Today there are major challenges to feed burgeoning population of the world. Among other causes of low productivity of agronomic crops, insect pests attack is also a major concern. However, under climate uncertainty, this issue has been much aggravated. This chapter focused that integrated pest management (IPM) proved to the best option to control insect pests of agronomic crops for increasing production and ultimately ensuring food security under climate change scenarios.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adhab MA, Schoelz JE (2015) Report of the turnip aphid, Lipaphis erysimi (Kaltenbach, 1843) from Missouri. USA J Plant Prot Res 55:327–328

    Article  CAS  Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision. ESA Working paper FAO, Rome

    Google Scholar 

  • Ali A, Ahmad S, Ali H (2014) Effect of temperature on immature stages of small black ladybird beetle Stethorus punctum, Leconte (Coleoptera: Coccinillidae) and percent mortality. Entomologia Generalis 35:129–136

    Article  Google Scholar 

  • Ali A, Desneux N, Lu Y, Wu K (2018) Key aphid natural enemies showing positive effects on wheat yield through biocontrol services in northern China. Agric Ecosyst Environ 266:1–9

    Article  Google Scholar 

  • Amer M, Aslam M, Razaq M, Afzal M (2009) Lack of plant resistance against aphids, as indicated by their seasonal abundance in canola, Brassica napus (L.) in Southern Punjab, Pakistan. Pak J Bot 41:1043–1051

    Google Scholar 

  • Apple JL, Smith RF (1976) Integrated pest management. Springer, New York

    Book  Google Scholar 

  • Aslam M, Razaq M (2007) Arthropod fauna of Brassica napus and Brassica juncea from Southern Punjab (Pakistan). J Agric Urban Ent 24:49–50

    Article  Google Scholar 

  • Auld D, O’Keeffe L, Murray G, Smith J (1980) Diallel analyses of resistance to the adult pea leaf weevil in peas. Crop Sci 20:760–766

    Article  Google Scholar 

  • Aziz MA, Ahmad M, Nasir MF, Naeem M (2013) Efficacy of different neem (Azadirachta indica) products in comparison with imidacloprid against English grain aphid (Sitobion avenae) on wheat. Int J Agric Biol 15:279–284

    Google Scholar 

  • Baker GH, Tann CR, Fitt GP (2008) Production of Helicoverpa spp. (Lepidoptera, Noctuidae) from different refuge crops to accompany transgenic cotton plantings in eastern Australia. Aust J Agric Res 59:723–732

    Article  Google Scholar 

  • Bardner R, Fletcher K (1974) Insect infestations and their effects on the growth and yield of field crops: a review. Bull Entomol Res 64:141–160

    Article  Google Scholar 

  • Bardner R, Fletcher K, Griffiths D (1983) Chemical control of the pea and bean weevil, Sitona lineatus L., and subsequent effects on the yield of field beans Vicia faba L. J Agric Sci 101:71–80

    Article  CAS  Google Scholar 

  • Bottrell D, Schoenly K (2018) Integrated pest management for resource-limited farmers: challenges for achieving ecological, social and economic sustainability. J Agric Sci 156:408–426

    Article  Google Scholar 

  • Brookes G, Barfoot P (2017) Environmental impacts of genetically modified (GM) crop use 1996–2015: impacts on pesticide use and carbon emissions. GM Crops Food 8:117–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown A, Pal K (1971) The nature and characterization of resistance. In: Brown AWA, Pal K (eds) Insecticide resistance in arthropods. Monograph series, vol 38. World Health Organization, Geneva, pp 9–44

    Google Scholar 

  • Cárcamo H, Vankosky M (2011) Managing the pea leaf weevil in field peas. Prairie Soils Crops 4:77–85

    Google Scholar 

  • Cárcamo H, Vankosky M (2013) Sitona spp. Germar, broad nose d Weevils (Coleoptera: Curculionidae) biological control programmes in Canada 2001–2012. In: Mason PG, Gillespie DR (eds) Biological control programmes in Canada 2001–2012. CABI, Croydon, pp 277–284

    Chapter  Google Scholar 

  • CáRcamo H, Herle C, Hervet V, Ottea J (2012) Greenhouse studies of thiamethoxam effects on pea leaf weevil, Sitona lineatus. J Insect Sci 12:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Cárcamo HA, Herle CE, Lupwayi NZ (2015) Sitona lineatus (Coleoptera: Curculionidae) larval feeding on Pisum sativum L. affects soil and plant nitrogen. J Insect Sci 15:1–5

    Article  CAS  Google Scholar 

  • Cárcamo HA, Vankosky MA, Wijerathna A, Olfert OO, Meers SB, Evenden ML (2018) Progress toward integrated pest management of pea leaf weevil: a review. Ann Entomol Soc Am 111:144–153

    Article  Google Scholar 

  • Carpenter JE (2010) Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat Biotechnol 28:319–321

    Article  CAS  PubMed  Google Scholar 

  • Carrière Y et al (2004) Sources, sinks, and the zone of influence of refuges for managing insect resistance to Bt crops. Ecol Appl 14:1615–1623

    Article  Google Scholar 

  • Carrière Y, Ellers-Kirk C, Biggs RW, Nyboer ME, Unnithan GC, Dennehy TJ, Tabashnik BE (2006) Cadherin-based resistance to Bacillus thuringiensis cotton in hybrid strains of pink bollworm: fitness costs and incomplete resistance. J Econ Entomol 99:1925–1935

    Article  PubMed  Google Scholar 

  • Carrière Y, Crickmore N, Tabashnik BE (2015) Optimizing pyramided transgenic Bt crops for sustainable pest management. Nat Biotechnol 33:161–168

    Article  PubMed  CAS  Google Scholar 

  • Castle SJ, Prabhaker N, Henneberry T (1999) Insecticide resistance and its management in cotton insects. Technical Inforamtion Section of the International Cotton Advisory Committee

    Google Scholar 

  • Catarino R, Ceddia G, Areal FJ, Park J (2015) The impact of secondary pests on Bacillus thuringiensis (Bt) crops. Plant Biotechnol J 13:601–612

    Article  CAS  PubMed  Google Scholar 

  • Censier F, Chavalle S, San Martin y Gomez G, De Proft M, Bodson B (2016) Targeted control of the saddle gall midge, Haplodiplosis marginata (von Roser)(Diptera: Cecidomyiidae), and the benefits of good control of this pest to winter wheat yield. Pest Manag Sci 72:731–737

    Article  CAS  PubMed  Google Scholar 

  • Chang GC, Rutledge CE, Biggam RC, Eigenbrode SD (2004) Arthropod diversity in peas with normal or reduced waxy bloom. J Insect Sci 4:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Charleston DS, Kfir R, Dicke M, Vet LE (2006) Impact of botanical extracts derived from Melia azedarach and Azadirachta indica on populations of Plutella xylostella and its natural enemies: a field test of laboratory findings. Biol Control 39:105–114

    Article  Google Scholar 

  • Chavalle S, Censier F, San Martin y Gomez G, De Proft M (2015) Protection of winter wheat against orange wheat blossom midge, Sitodiplosis mosellana (Géhin)(Diptera: Cecidomyiidae): efficacy of insecticides and cultivar resistance. Pest Manag Sci 71:783–790

    Article  CAS  PubMed  Google Scholar 

  • Chiu Y et al (2015) Fruit and vegetable intake and their pesticide residues in relation to semen quality among men from a fertility clinic. Hum Reprod 30:1342–1351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu Y-H et al (2018) Association between pesticide residue intake from consumption of fruits and vegetables and pregnancy outcomes among women undergoing infertility treatment with assisted reproductive technology. JAMA Intern Med 178:17–26

    Article  PubMed  Google Scholar 

  • Coll M, Wajnberg E (2017) Environmental pest management: challenges for agronomists, ecologists, economists and policymakers. Wiley, Hoboken, p 448

    Book  Google Scholar 

  • Cook SM, Khan ZR, Pickett JA (2007) The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52:375–400

    Article  CAS  PubMed  Google Scholar 

  • Douglas AE (2018) Strategies for enhanced crop resistance to insect pests. Annu Rev Plant Biol 69:637–660

    Article  CAS  PubMed  Google Scholar 

  • Dysart R (1990) The introduction and recovery in the United States of Anaphes diana (Hymenoptera: Mymaridae), an egg parasite of Sitona weevils (Coleoptera: Curculionidae). Entomophaga 35:307–313

    Article  Google Scholar 

  • Eisenring M, Romeis J, Naranjo SE, Meissle M (2017) Multitrophic Cry-protein flow in a dual-gene Bt-cotton field. Agric Ecosyst Environ 247:283–289

    Article  CAS  Google Scholar 

  • El Bouhssini M, Street K, Joubi A, Ibrahim Z, Rihawi F (2009) Sources of wheat resistance to Sunn pest, Eurygaster integriceps Puton, in Syria. Genet Resour Crop Evol 56:1065–1069

    Article  Google Scholar 

  • Ellsworth PC, Martinez-Carrillo JL (2001) IPM for Bemisia tabaci: a case study from North America. Crop Prot 20:853–869

    Article  Google Scholar 

  • Fabrick JA et al (2015) Multi-toxin resistance enables pink bollworm survival on pyramided Bt cotton. Sci Rep 5:16554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitt GP (2000) An Australian approach to IPM in cotton: integrating new technologies to minimise insecticide dependence. Crop Prot 19:793–800

    Article  Google Scholar 

  • Fitt G, Wilson L (2012) Integrated pest management for sustainable agriculture. In: Abrol DP, Shankar U (eds) Integrated pest management principles and practice. CABI, Cambridge, MA, pp 27–40

    Chapter  Google Scholar 

  • Forrester NW, Cahill M, Bird LJ, Layland JK (1993) Management of pyrethroid and endosulfan resistance in Helicoverpa armigera (Lepidoptera: Noctuidae) in Australia. Pyrethroid resistance: field resistance mechanisms. Bull Entomol Res 1:1–132

    Article  Google Scholar 

  • Frisbie RE, Reynolds HT, Adkisson PL, Smith RF (1994) Cotton insect pest management introduction to insect pest management. Wiley, New York, pp 421–468

    Google Scholar 

  • Gassmann AJ, Carrière Y, Tabashnik BE (2009) Fitness costs of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 54:147–163

    Article  CAS  PubMed  Google Scholar 

  • Georghiou GP, Mellon RB (1983) Pesticide resistance in time and space. In: Pest resistance to pesticides. Springer, Boston, pp 1–46

    Chapter  Google Scholar 

  • Gray S, Bergstrom G, Vaughan R, Smith D, Kalb D (1996) Insecticidal control of cereal aphids and its impact on the epidemiology of the barley yellow dwarf luteoviruses. Crop Prot 15:687–697

    Article  Google Scholar 

  • Gu H, Fitt GP, Baker GH (2007) Invertebrate pests of canola and their management in Australia: a review. Aust J Entomol 46:231–243

    Article  Google Scholar 

  • Hashmi A, Hussain M, Ulfat M (1983) Insects pest complex of wheat crop. Pak J Zool 15:169–176

    Google Scholar 

  • Huang F, Andow DA, Buschman LL (2011) Success of the high-dose/refuge resistance management strategy after 15 years of Bt crop use in North America. Entomol Exp Appl 140:1–16

    Article  Google Scholar 

  • Hussain A, Razaq M, Zaka SM, Shahzad W, Mahmood K (2015) Effect of aphid infestation on photosynthesis, growth and yield of Brassica carinata A. Braun. Pak J Zool 47:1335–1340

    CAS  Google Scholar 

  • Inayatullah C, Ehsan-Ul-Haq MN, Chaudhry M (1993) Incidence of greenbug, Schizaphis graminum (Rondani)(Homoptera: Aphididae) in Pakistan and resistance in wheat against it. Int J Trop Insect Sci 14:247–254

    Article  Google Scholar 

  • Jackson DJ, Macdougall KS (1920) Bionomics of weevils of the genus Sitones injurious to leguminous crops in Britain. Ann Appl Biol 7:269–298

    Article  Google Scholar 

  • James C (2015) Global status of commercialized biotech/GM crops: 2014 ISAAA brief 49

    Google Scholar 

  • Janick J, Schery RW, Woods FW, Ruttan VW (1969) Plant science, an introduction to world crops. Freeman and Company, San Francisco

    Google Scholar 

  • Jaronski ST (2018) Opportunities for microbial control of pulse crop pests. Ann Entomol Soc Am 111:228–237

    Article  Google Scholar 

  • Johnson DR (1982) Suppression of Heliothis spp. on cotton by using Bacillus thuringiensis, Baculovirus heliothis, and two feeding adjuvants. J Econ Entomol 75:207–210

    Article  Google Scholar 

  • Kannan H (1999) Population dynamics of the wheat aphid, Schizaphis graminum, (Rondani)(Homoptera, Aphididae) and its natural enemies in the field Sudan. J Agric Res 2:65–68

    Google Scholar 

  • Kennedy GG (2008) Integration of insect-resistant genetically modified crops within IPM programs. In: Integration of insect-resistant genetically modified crops within IPM programs. Springer, Dordrecht, pp 1–26

    Google Scholar 

  • Kieckhefer R, Gellner J (1992) Yield losses in winter wheat caused by low-density cereal aphid populations. Agron J 84:180–183

    Article  Google Scholar 

  • Kindler S, Elliott N, Giles K, Royer T, Fuentes-Granados R, Tao F (2002) Effect of greenbugs (Homoptera: Aphididae) on yield loss of winter wheat. J Econ Entomol 95:89–95

    Article  CAS  PubMed  Google Scholar 

  • King J (1981) Experiments for the control of pea and bean weevil (Sitona lineatus) in peas, using granular and liquid insecticides. In: 1981 British crop protection conference: pests and diseases (11th British insecticide and fungicide conference): proceedings, held at Hotel Metropole, Brighton, England, November 16–19, 1981. BCPC Publications, Croydon, pp 327–331

    Google Scholar 

  • Knodel JJ, Shrestha G (2018) Pulse crops: pest management of wireworms and cutworms in the Northern Great Plains of United States and Canada. Ann Entomol Soc Am 111:195–204

    Article  Google Scholar 

  • Kochhar SL (2016) Economic botany. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kogan M (1998) Integrated pest management: historical perspectives and contemporary developments. Annu Rev Entomol 43:243–270

    Article  CAS  PubMed  Google Scholar 

  • Landis DA et al (2016) Demonstration of an integrated pest management program for wheat in Tajikistan. J Integr Pest Manag 7:1–9

    Article  Google Scholar 

  • Landona F, Levieux J, Huignard J, Rougon D, Taupin P (1995) Feeding activity of Sitona lineatus L.(Col., Curculionidae) on Pisum sativum L.(Leguminosae) during its imaginal life. J Appl Entomol 119:515–522

    Article  Google Scholar 

  • Leonard WH, Martin JH (1963) Cereal crops. The Macmillan Company, New York

    Google Scholar 

  • Loan C (1975) A review of haliday species of Microctonus [Hym.: Braconidae, Euphorinae]. Entomophaga 20:31–41

    Article  Google Scholar 

  • Lu Y et al (2010) Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 328:1151–1154

    Article  CAS  PubMed  Google Scholar 

  • McEwen J et al (1981) The effects of irrigation, nitrogen fertilizer and the control of pests and pathogens on spring-sown field beans (Vicia faba L.) and residual effects on two following winter wheat crops. J Agric Sci 96:129–150

    Article  CAS  Google Scholar 

  • Michelbacher A, Bacon O (1952) Walnut insect and spider-mite control in northern California. J Econ Entomol 45:1020–1027

    Article  Google Scholar 

  • Mirande L, Desneux N, Haramboure M, Schneider MI (2015) Intraguild predation between an exotic and a native coccinellid in Argentina: the role of prey density. J Pest Sci 88:155–162

    Article  Google Scholar 

  • Mohan KS, Ravi KC, Suresh PJ, Sumerford D, Head GP (2016) Field resistance to the Bacillus thuringiensis protein Cry1Ac expressed in Bollgard® hybrid cotton in pink bollworm, Pectinophora gossypiella (Saunders), populations in India. Pest Manag Sci 72:738–746

    Article  CAS  PubMed  Google Scholar 

  • Naranjo SE (2010) Impacts of Bt transgenic cotton on integrated pest management. J Agric Food Chem 59:5842–5851

    Article  PubMed  CAS  Google Scholar 

  • Naranjo SE, Ellsworth PC (2009) Fifty years of the integrated control concept: moving the model and implementation forward in Arizona. Pest Manag Sci 65:1267–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen B, Jensen T (1993) Spring dispersal of Sitona lineatus: the use of aggregation pheromone traps for monitoring. Entomol Exp Appl 66:21–30

    Article  Google Scholar 

  • Ordish G (1976) The constant pest. A short history of pests and their control

    Google Scholar 

  • Osteen CD, Szmedra PI (1989) Agricultural pesticide use trends and policy issues. US Department of Agriculture, Economic Research Service

    Google Scholar 

  • Pellegrino E, Bedini S, Nuti M, Ercoli L (2018) Impact of genetically engineered maize on agronomic, environmental and toxicological traits: a meta-analysis of 21 years of field data. Sci Rep 8:3113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Perkins J (1982) Insects, experts and the insecticide crisis: the quest for new pest management strategies. Plenum, New York

    Book  Google Scholar 

  • Razaq M (2006) Toxicological responses of Helicoverpa armigera, Bemisia tabaci and Amrasca devastans from Pakistan to PBO and selected insecticides. Ph. D. thesis, Department of Entomology, University of Agriculture, Faisalabad, Pakistan

    Google Scholar 

  • Razaq M, Abbas G, Farooq M, Aslam M, Athar H-u-R (2014) Effect of iInsecticidal application on aphid population, photosynthetic parameters and yield components of late sown varieties of canola, Brassica napus L. Pak J Zool 46:661–668

    CAS  Google Scholar 

  • Roshan L, Rohilla H (2007) Insect pests of pulses and their management. Nat J Plant Improv 9:67–81

    Google Scholar 

  • Rossing W, Daamen R, Jansen M (1994) Uncertainty analysis applied to supervised control of aphids and brown rust in winter wheat. Part 2. Relative importance of different components of uncertainty. Agric Syst 44:449–460

    Article  Google Scholar 

  • Royer T et al (2005) Economic evaluation of the effects of planting date and application rate of imidacloprid for management of cereal aphids and barley yellow dwarf in winter wheat. J Econ Entomol 98:95–102

    Article  CAS  PubMed  Google Scholar 

  • Saeed R, Razaq M (2015) Effect of prey resource on the fitness of the predator Chrysoperla carnea (Neuroptera: Chrysopidae). Pak J Zool 47:103–109

    Google Scholar 

  • Saeed R, Razaq M, Hardy IC (2015) The importance of alternative host plants as reservoirs of the cotton leaf hopper, Amrasca devastans, and its natural enemies. J Pest Sci 88:517–531

    Article  Google Scholar 

  • Shah FM, Razaq M, Ali A, Han P, Chen J (2017) Comparative role of neem seed extract, moringa leaf extract and imidacloprid in the management of wheat aphids in relation to yield losses in Pakistan. PLoS One 12:e0184639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shahzad MW, Razaq M, Hussain A, Yaseen M, Afzal M, Mehmood MK (2013) Yield and yield components of wheat (Triticum aestivum L.) affected by aphid feeding and sowing time at Multan, Pakistan. Pak J Bot 45:2005–2011

    Google Scholar 

  • Shakeel M et al (2017) Environment polluting conventional chemical control compared to an environmentally friendly IPM approach for control of diamondback moth, Plutella xylostella (L.), in China: a review. Environ Sci Pollut Res 24:14537–14550

    Article  CAS  Google Scholar 

  • Shennan C, Pisani Gareau T, Sirrine J (2004) Agroecological approaches to pest management in the US. In: Pretty J (ed) The pesticide detox, solutions for safe agriculture. Earthscan Publications, London, pp 193–211

    Google Scholar 

  • Singh S, Emden HV (1979) Insect pests of grain legumes. Annu Rev Entomol 24:255–278

    Article  Google Scholar 

  • Smith RL, Flint HM (1977) A bibliography of the cotton leafperforator, Bucculatrix thurberiella, and a related species, Bucculatrix gossypiella, that also feeds on cotton (Lepidoptera: Lyonetiidae). Bull ESA 23:195–198

    Google Scholar 

  • Stern V, Smith R, Van den Bosch R, Hagen K (1959) The integration of chemical and biological control of the spotted alfalfa aphid: the integrated control concept. Hilgardia 29:81–101

    Article  CAS  Google Scholar 

  • Straub L et al (2016) Neonicotinoid insecticides can serve as inadvertent insect contraceptives. Proc R Soc B 283:20160506

    Article  PubMed  PubMed Central  Google Scholar 

  • Tabashnik BE, Van Rensburg J, Carrière Y (2009) Field-evolved insect resistance to Bt crops: definition, theory, and data. J Econ Entomol 102:2011–2025

    Article  CAS  PubMed  Google Scholar 

  • Tabashnik BE et al (2012) Sustained susceptibility of pink bollworm to Bt cotton in the United States. GM Crops Food 3:194–200

    Article  PubMed  Google Scholar 

  • Tangtrakulwanich K, Reddy GV, Wu S, Miller JH, Ophus VL, Prewett J (2014) Developing nominal threshold levels for Phyllotreta cruciferae (Coleoptera: Chrysomelidae) damage on canola in Montana. USA Crop Prot 66:8–13

    Article  Google Scholar 

  • Thomas MB (1999) Ecological approaches and the development of “truly integrated” pest management. Proc Natl Acad Sci 96:5944–5951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapero C, Wilson IW, Stiller WN, Wilson LJ (2016) Enhancing integrated pest management in GM cotton systems using host plant resistance. Front Plant Sci 7:500

    Article  PubMed  PubMed Central  Google Scholar 

  • Tulisalo U, Markkula M (1970) Resistance of pea to the pea weevil Sitona lineatus (L.)(Col., Curculionidae). Ann Agric Fenn 9:139–141

    Google Scholar 

  • Van De Steene F, Vulsteke G, De Proft M, Callewaert D (1999) Seed coating to control the pea leaf weevil, Sitona lineatus (L.) in pea crops. J Plant Dis Prot 106:633–637

    Google Scholar 

  • Vankosky M, Dosdall L, Cárcamo H (2009) Distribution, biology and integrated management of the pea leaf weevil, Sitona lineatus L.(Coleoptera: Curculionidae), with an analysis of research needs. CAB Rev: Perspect Agric Vet Sci, Nutr Nat Res 4:1–18

    Article  Google Scholar 

  • Vankosky MA, Cárcamo HA, McKenzie RH, Dosdall LM (2011) Integrated management of Sitona lineatus with nitrogen fertilizer, rhizobium, and thiamethoxam insecticide. Agron J 103:565–572

    Article  CAS  Google Scholar 

  • Wang S, Qi Y, Desneux N, Shi X, Biondi A, Gao X (2017) Sublethal and transgenerational effects of short-term and chronic exposures to the neonicotinoid nitenpyram on the cotton aphid Aphis gossypii. J Pest Sci 90:389–396

    Article  Google Scholar 

  • Weiss EA (1983) Oilseed crops. Longman Group Ltd., London

    Google Scholar 

  • Weiss MJ, Morrill WL (1992) Wheat stem sawfly (Hymenoptera: Cephidae) revisited. Am Entomol 38:241–245

    Article  Google Scholar 

  • White C, Eigenbrode S (2000) Effects of surface wax variation in Pisum sativum on herbivorous and entomophagous insects in the field. Environ Entomol 29:773–780

    Article  Google Scholar 

  • Whitehouse M et al (2014) Target and nontarget effects of novel “triple-stacked” Bt-transgenic cotton 1: canopy arthropod communities. Environ Entomol 43:218–241

    Article  CAS  PubMed  Google Scholar 

  • Williams L, Schotzko D, O’Keeffe L (1995) Pea leaf weevil herbivory on pea seedlings: effects on growth response and yield. Entomol Exp Appl 76:255–269

    Article  Google Scholar 

  • Wilson L, Mensah R, Fitt G (2004) Implementing integrated pest management in Australian cotton. In: Insect pest management. Springer, Berlin, pp 97–118

    Chapter  Google Scholar 

  • Wilson L, Downes S, Khan M, Whitehouse M, Baker G, Grundy P, Maas S (2013) IPM in the transgenic era: a review of the challenges from emerging pests in Australian cotton systems. Crop Pasture Sci 64:737–749

    Article  Google Scholar 

  • Wolf V, Dehoust J, Banse M (2018) World markets for cereal crops. In: Biokerosene. Springer, Heidelberg, pp 123–145

    Chapter  Google Scholar 

  • Yu Y et al (2018) Successive monitoring surveys of selected banned and restricted pesticide residues in vegetables from the northwest region of China from 2011 to 2013. BMC Public Health 18:91

    Article  CAS  Google Scholar 

  • Zvereva EL, Kozlov MV (2012) Sources of variation in plant responses to belowground insect herbivory: a meta-analysis. Oecologia 169:441–452

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakeel Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Razaq, M., Shah, F.M., Ahmad, S., Afzal, M. (2019). Pest Management for Agronomic Crops. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-32-9783-8_18

Download citation

Publish with us

Policies and ethics