Skip to main content

Weed Management for Healthy Crop Production

  • Chapter
  • First Online:
Agronomic Crops

Abstract

This chapter deals with the potential, limitation, and impacts of the recent trend of changing agricultural practices induced by predicated climatic changes on weed management in crop production systems. Change in the agricultural practices from conventional to conservation agriculture has to some extent compromised the sustainability and productivity of cropping systems through the evolution of herbicide-resistant (HR) weed species, a shift in weed populations, and human and environmental hazards. The chapter assesses the potential challenges faced by regarding the overreliance of herbicides, with the introduction of herbicide-tolerant (HT) crops and possible recommendation of how healthy crop production can be achieved through sustainable weed management. The first section deals with the potential constraints associated with weed management in cropping system focusing the main driving factors, such as changing agricultural practices and climate change, socio-economic constraints. Possible strategies to improve weed management, focusing on the importance of promoting IWM strategies and best management practices for HT crops, have been discussed in the second section. The third section shares a series of recommendation for future research directions for sustainable and profitable weed management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

ACCase inhibitors

B:

ALS inhibitors

BMP:

Best management practices BMP

C1:

Photosystem II inhibitors

C2:

PSII inhibitor (ureas and amides)

C3:

PSII inhibitors (nitriles)

CO2:

Carbon dioxide

D:

PSI electron diverter

E:

PPO inhibitors

EPTC:

Eptam

F1:

Carotenoid biosynthesis inhibitors

F2:

HPPD inhibitors

F3:

Carotenoid biosynthesis (unknown target)

F4:

DOXP inhibitors

FAO:

Food and Agriculture Organization

G:

EPSP synthase inhibitors

GM:

Genetically modified

GMHT:

Genetically modified herbicide-tolerant crops

GRDC:

Grains Research & Development Corporation

H:

Glutamine synthase inhibitors

HR:

Herbicide-resistant

HT:

Herbicide-tolerant

IWM:

Integrated weed management

K1:

Microtubule inhibitors

K2:

Mitosis inhibitors

K3:

Long-chain fatty acid inhibitors

L:

Cellulose inhibitors

MOAs:

Mode of actions

N:

Lipid inhibitors

non-GM:

Non-genetically modified

NSCT:

Nonselective crop topping

O:

Synthetic auxins

pKa:

Vapour pressure

SOA:

Site of actions

SST:

Selective spray-topping

Z:

Antimicrotubule mitotic disrupter

Z1:

Unknown

Z2:

Cell elongation inhibitors

Z3:

Nucleic acid inhibitors

References

  • Abbas T, Tanveer A, Khaliq A, Safdar ME, Nadeem MA (2014) Allelopathic effects of aquatic weeds on germination and seedling growth of wheat. Herbologia 14:11–25

    Google Scholar 

  • Abbas Z, Akmal M, Khan KS et al (2015) Impacts of long-term application of buctril super (bromoxynil) herbicide on microbial population, enzymes activity, nitrate nitrogen, Olsen-P and total organic carbon in soil. Arch Agron Soil Sci 61:627–644

    Article  CAS  Google Scholar 

  • Abouziena HF, Haggag WM (2016) Weed control in clean agriculture: a review. Planta Daninha 34:377–392

    Article  Google Scholar 

  • Adkins SW (2013) Some present problems and future approaches to weed management in the Asian-Pacific region: supporting food and environment security by 2020. In: Proceedings of the 24th Asia Pacific weed science society conference, Bandung, Indonesia, pp 19–30

    Google Scholar 

  • Adusumilli NR, Malik RK, Yadav A, Ladha JK (2014) Strengthening farmers’ knowledge for better weed management in developing countries. In: Chauhan BS, Mahajan G (eds) Recent advances in weed management. Springer, New York, pp 391–405

    Google Scholar 

  • Alms J, Moechnig M, Vos D, Clay SA (2016) Yield loss and management of volunteer corn in soybean. Weed Technol 30:254–262

    Article  Google Scholar 

  • Anderson RL (2015) Integrating a complex rotation with no-till improves weed management in organic farming. A review. Agron Sustain Dev 35(3):967–974

    Article  Google Scholar 

  • Anwar MP, Juraimi AS, Puteh A, Man A, Rahman MM (2012) Efficacy, phytotoxicity and economics of different herbicides in aerobic rice. Acta Agric Scand Sect B Soil Plant Sci 62:604–615

    CAS  Google Scholar 

  • Armstrong EG, O’Connor G, Gaynor L, Ellis S, Coombes N (2015) Crop-topping and desiccation are valuable tools for weed control in pulses. In: Proceedings of the 17th ASA conference, September 2015, Hobart, Australia, pp 20–24

    Google Scholar 

  • Baboo M, Pasayat M, Samal A, Kujur M, Maharana JK, Patel AK (2013) Effect of four herbicides on soil organic carbon, microbial biomass-C, enzyme activity and microbial populations in agricultural soil. Int J Res Environ Sci Technol 3:100–112

    Google Scholar 

  • Bailey SW (2004) Climate change and decreasing herbicide persistence. Pest Manag Sci 60:158–162

    Article  CAS  PubMed  Google Scholar 

  • Bajwa AA (2014) Sustainable weed management in conservation agriculture. Crop Prot 65:105–113

    Article  Google Scholar 

  • Ball DA (1992) Weed seedbank response to tillage, herbicides, and crop rotation sequence. Weed Sci 40:654–659

    Article  Google Scholar 

  • Banerjee H, Das TK, Ray K, Laha A, Sarkar S, Pal S (2018) Herbicide ready-mixes effects on weed control efficacy, non-target and residual toxicities, productivity and profitability in sugarcane–green gram cropping system. Int J Pest Manage 64:221–229

    Article  CAS  Google Scholar 

  • Baylis AD (2000) Why glyphosate is a global herbicide: strengths, weaknesses and prospects. Pest Manag Sci 56:299–308

    Article  CAS  Google Scholar 

  • Beckie HJ (2006) Herbicide-resistant weeds: management tactics and practices 1. Weed Technol 20:793–814

    Article  CAS  Google Scholar 

  • Beckie HJ, Harker KN (2017) Our top 10 herbicide-resistant weed management practices. Pest Manag Sci 73:1045–1052

    Article  CAS  PubMed  Google Scholar 

  • Benbrook CM (2016) Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur 28:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benvenuti S (2007) Weed seed movement and dispersal strategies in the agricultural environment. Weed Biol Manage 7:141–157

    Article  Google Scholar 

  • Bhadoria PBS (2011) Allelopathy: a natural way towards weed management. Am J Exp Agric 1:7

    Google Scholar 

  • Blackshaw RE, Brandt RN, Janzen HH, Entz T, Grant CA, Derksen DA (2003) Differential response of weed species to added nitrogen. Weed Sci 51:532–539

    Article  CAS  Google Scholar 

  • Bond JA, Walker TW (2009) Control of volunteer glyphosate-resistant soybean in rice. Weed Technol 23:225–230

    Article  CAS  Google Scholar 

  • Bonny S (2016) Genetically modified herbicide-tolerant crops, weeds, and herbicides: overview and impact. Environ Manag 57:31–48

    Article  Google Scholar 

  • Brookes G, Taheripour F, Tyner WE (2017) The contribution of glyphosate to agriculture and potential impact of restrictions on use at the global level. GM Crops Food 8:216–228

    Article  PubMed  PubMed Central  Google Scholar 

  • Buhler DD (2002) 50th anniversary—invited article: challenges and opportunities for integrated weed management. Weed Sci 50:273–280

    Article  CAS  Google Scholar 

  • Bzour MI, Zuki FM, Mispan MS (2018) Introduction of imidazolinone herbicide and Clearfield® rice between weedy rice—Control efficiency and environmental concerns. Environ Rev 26:181–198

    Article  CAS  Google Scholar 

  • Camargo ER, Senseman SA, McCauley GN, Bowe S, Harden J, Guice JB (2012) Interaction between saflufenacil and imazethapyr in red rice (Oryza ssp.) and hemp sesbania (Sesbania exaltata) as affected by light intensity. Pest Manag Sci 68:1010–1018

    Article  CAS  PubMed  Google Scholar 

  • Carpenter JE, Gianessi L (2010) Economic impacts of glyphosate-resistant weeds. In: Nandula VK (ed) Glyphosate resistance in crops and weeds: history, development and management. Wiley, Hoboken, pp 297–312

    Chapter  Google Scholar 

  • Chandrasena N (2009) How will weed management change under climate change? Some perspectives. J Crop Weed 5:95–105

    Google Scholar 

  • Chang FC, Simcik MF, Capel PD (2011) Occurrence and fate of the herbicide glyphosate and its degradate aminomethylphosphonic acid in the atmosphere. Environ Toxicol Chem 30:548–555

    Article  CAS  PubMed  Google Scholar 

  • Chauhan BS, Gill G, Preston C (2006) Influence of tillage systems on vertical distribution, seedling recruitment and persistence of rigid ryegrass (Lolium rigidum) seed bank. Weed Sci 54:669–676

    Article  CAS  Google Scholar 

  • Christensen S (1994) Crop weed competition and herbicide performance in cereal species and varieties. Weed Res 34:29–36

    Article  Google Scholar 

  • Cieslik LF, Kalsing A, Vidal RA (2013) Environmental factors affecting the efficacy of ACCase inhibitor herbicides: review. Planta Daninha 31:483–489

    Article  Google Scholar 

  • Cook T, Brooke G, DPI NSW, Widderick M, Street M (2014) Herbicides and weeds–regional issues trials and developments. GRDC Grains Res Update 2014:79–90

    Google Scholar 

  • Creech CF, Henry RS, Fritz BK, Kruger GR (2015) Influence of herbicide active ingredient, nozzle type, orifice size, spray pressure, and carrier volume rate on spray droplet size characteristics. Weed Technol 29:298–310

    Article  Google Scholar 

  • Culpepper AS, Webster TM, Sosnoskie LM, York AC (2010) Glyphosate-resistant Palmer amaranth in the US. In: Nandula VK (ed) Glyphosate resistance: evolution, mechanisms and management. Wiley, Hoboken, pp 195–212

    Chapter  Google Scholar 

  • Cummins JD (1991) Statistical and financial models of insurance pricing and the insurance firm. J Risk Insur 58: 261–302

    Article  Google Scholar 

  • Curran WS (2016) Persistence of herbicides in soil. Crop Soil 49:16–21

    Article  Google Scholar 

  • de Queiroz AR, Vidal RA, Júnior AM (2013) Factors that allow the dose reduction of ALS inhibitor herbicides: review of the literature. Pesticid Ecotoxicol Environ Mag 2013, 23

    Google Scholar 

  • Dong Y, Yang X, Liu J, Wang B-H, Liu B-L, Wang Y-Z (2014) Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. Nat Commun 5:3352

    Article  PubMed  CAS  Google Scholar 

  • Drzyzga D, Lipok J (2018) Glyphosate dose modulates the uptake of inorganic phosphate by freshwater cyanobacteria. J Appl Phycol 30:299–309

    Article  CAS  PubMed  Google Scholar 

  • Duary B (2014) Weed prevention for quality seed production of crops. SATSA Mukhapatra-Annu Tech Issue 18:48–57

    Google Scholar 

  • Dyer WE (1995) Exploiting weed seed dormancy and germination requirements through agronomic practices. Weed Sci 43:498–503

    Article  CAS  Google Scholar 

  • Ebert T, Downer R (2008) Insecticide application: the dose transfer process. In: Capinera JL (ed) Encyclopedia of entomology. Springer, Dordrecht, pp 1958–1974

    Google Scholar 

  • Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst 41:59–80

    Article  Google Scholar 

  • El-Nahhal Y, Hamdona N (2015) Phytotoxicity of Alachlor, Bromacil and Diuron as single or mixed herbicides applied to wheat, melon, and molokhia. Springer Plus 4:367

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Finger R, Möhring N, Dalhaus T, Böcker T (2017) Revisiting pesticide taxation schemes. Ecol Econ 134:263–266

    Article  Google Scholar 

  • Fleming A, Vanclay F (2010) Farmer responses to climate change and sustainable agriculture. A Rev Agron Sust Dev 30:11–19

    Article  Google Scholar 

  • Foley JA, Ramankutty N, Brauman KA, Cassidy ES, Gerber JS, Johnston M, Mueller ND, O’Connell C, Ray DK, West PC, Balzer C (2011) Solutions for a cultivated planet Solutions for a cultivated planet. Nature 478:337–342

    Article  CAS  PubMed  Google Scholar 

  • Food and Agriculture Organization of the United Nations-FAO (2018a) Putting family farmers first to eradicate hunger. Available at: http://www.fao.org/news/story/en/item/260535/icode/. Accessed 6 Sept 2018

  • Food and Agriculture Organization of the United Nations-FAO (2018b) Crop biodiversity: use it or lose it. Available at: http://www.fao.org/news/story/en/item/46803/icode/. Accessed 6 Sept 2018

  • Gaba S, Gabriel E, Chadœuf J, Bonneu F, Bretagnolle V (2016) Herbicides do not ensure for higher wheat yield, but eliminate rare plant species. Sci Rep 6:30112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerhards R, Dentler J, Gutjahr C, Auburger S, Bahrs E (2016) An approach to investigate the costs of herbicide-resistant Alopecurus myosuroides. Weed Res 56:407–414

    Article  Google Scholar 

  • Gibson KD, Fischer AJ, Foin TC, Hill JE (2002) Implications of delayed Echinochloa spp. germination and duration of competition for integrated weed management in water-seeded rice. Weed Res 42:351–358

    Article  Google Scholar 

  • Gibson KD, Johnson WG, Hillger DE (2005) Farmer perceptions of problematic corn and soybean weeds in Indiana. Weed Technol 19:1065–1070

    Article  Google Scholar 

  • Graef F, Stachow U, Werner A, Schutte G (2007) Agricultural practice changes with cultivating genetically modified herbicide-tolerant oilseed rape. Agric Syst 94:111–118

    Article  Google Scholar 

  • Grains Research and Development Cooperation-GRDC (2018) Section 6: stopping weed seed set. In: GRDC (ed) Integrated Weed Management Hub. Grains Research and Development Cooperation. Available at: https://grdc.com.au/resources-and-publications/resources/iwmhub. Accessed 30 Sept 2018

  • Grube A, Donaldson D, Kiely T, Wu L (2011) Pesticides industry sales and usage. United States Environmental Protection Agency (US EPA), Washington, DC

    Google Scholar 

  • Heap I (2018) The international survey of herbicide resistant weeds. http://www.weedscience.org. Accessed 2 Sept 2018

  • Kleemann SG, Preston C, Gill GS (2016) Influence of management on long-term seedbank dynamics of rigid ryegrass (Lolium rigidum) in cropping systems of southern Australia. Weed Sci 64:303–311

    Article  Google Scholar 

  • Koehler-Cole K, Brandle JR, Francis CA, Shapiro CA, Blankenship EE, Baenziger PS (2017) Clover green manure productivity and weed suppression in an organic grain rotation. Renewable Agric Food Syst 32:474–483

    Article  Google Scholar 

  • Koutros S, Silverman DT, Alavanja MC, Andreotti G, Lerro CC, Heltshe S, Lynch CF, Sandler DP, Blair A, Beane Freeman LE (2015) Occupational exposure to pesticides and bladder cancer risk. Int J Epidemiol 45:792–805

    Article  PubMed  PubMed Central  Google Scholar 

  • Kudsk P (2007) Optimising herbicide dose: a straightforward approach to reduce the risk of side effects of herbicides. Environmentalist 28:49–55

    Article  Google Scholar 

  • Kudsk P (2017) Optimising herbicide performance. In: Hatcher PE, Froud-Williams RJ (eds) Weed research: expanding horizons. Wiley, Chichester, pp 149–179

    Chapter  Google Scholar 

  • Kumar SA, Sharma AK, Rawat SS, Jain DK, Ghosh S (2013) Use of pesticides in agriculture and livestock animals and its impact on environment of India. Asian J Environ Sci 1:51–57

    Google Scholar 

  • Kumari S, Pradhan SS, Chauhan J (2018) Dynamics of weed seed bank and its management for sustainable crop production. Int J Chem Stud 6:643–647

    Google Scholar 

  • Lamichhane JR, Devos Y, Beckie HJ, Owen MD, Tillie P, Messéan A, Kudsk P (2017) Integrated weed management systems with herbicide-tolerant crops in the European Union: lessons learnt from home and abroad. Crit Rev Biotechnol 37:459–475

    Article  CAS  PubMed  Google Scholar 

  • Lemerle D, Luckett DJ, Koetz EA, Potter T, Wu H (2016) Seeding rate and cultivar effects on canola (Brassica napus) competition with volunteer wheat (Triticum aestivum). Crop Pasture Sci 67:857–863

    Article  Google Scholar 

  • Lerro CC, Koutros S, Andreotti G, Hines CJ, Blair A, Lubin J (2015) Use of acetochlor and cancer incidence in the Agricultural Health Study. Int J Cancer 137:1167–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewan E, Kreuger J, Jarvis N (2009) Implications of precipitation patterns and antecedent soil water content for leaching of pesticides from arable land. Agric Water Manage 96:1633–1640

    Article  Google Scholar 

  • Li J, Kremer RJ (2006) Growth response of weed and crop seedlings to deleterious rhizobacteria. Biol Control 39:58–65

    Article  CAS  Google Scholar 

  • Liebman M, Dyck E (1993) Crop rotation and intercropping strategies for weed management. Ecol Appl 3:92–122

    Article  PubMed  Google Scholar 

  • Liebman M, Gibson LR, Sundberg DN, Heggenstaller AH, Westerman PR, Chase CA, Hartzler RG, Menalled FD, Davis AS, Dixon PM (2008) Agronomic and economic performance characteristics of conventional and low-external-input cropping systems in the central Corn Belt. Agron J 100:600–610

    Article  Google Scholar 

  • Liebman M, Baraibar B, Buckley Y, Childs D, Christensen S, Cousens R et al (2016) Ecologically sustainable weed management: how do we get from proof-of-concept to adoption? Ecol Appl 26:1352–1369

    Article  PubMed  Google Scholar 

  • Livingston M, Fernandez-Cornejo J, Unger J, Osteen C, Schimmelpfennig D, Park T, Lambert D (2015) The economics of glyphosate resistance management in corn and soybean production. Economic Research Report No. ERR-184, U.S. Department of Agriculture (USDA-ERS), Washington, DC, p 52

    Google Scholar 

  • Llewellyn RS, Allen DM (2006) Expected mobility of herbicide resistance via weed seeds and pollen in a Western Australian cropping region. Crop Prot 25:520–526

    Article  CAS  Google Scholar 

  • Llewellyn RS, Lindner RK, Pannell DJ, Powles SB (2004) Grain grower perceptions and use of integrated weed management. Aust J Exp Agric 44:993–1001

    Article  Google Scholar 

  • Llewellyn RS, Ronning D, Ouzman J, Walker S, Mayfield A and Clark M (2018) Impact of weeds on Australian grain production: the cost of weeds to Australian grain growers and the adoption of weed management and tillage practices. Report for GRDC: CSIRO, Australia. [Online]. Available: https://grdc.com.au/resources-and-publications/all-publications/publications/2016/03/impactofweeds. [1 September 2018]

  • Lopez-Ovejero RF, Soares DJ, Oliveira NC, Kawaguchi IT, Berger GU, de Carvalho SJP, Christoffoleti PJ (2016) Interference and control of glyphosate-tolerant volunteer corn in soybean crop. Pesq Agrop Brasileira 51:340–347

    Article  Google Scholar 

  • Manalil S, Busi R, Renton M, Powles SB (2011) Rapid evolution of herbicide resistance by low herbicide dosages. Weed Sci 59:210–217

    Article  CAS  Google Scholar 

  • Manea A, Leishman MR, Downey PO (2011) Exotic C4 grasses have increased tolerance to glyphosate under elevated carbon dioxide. Weed Sci 59:28–36

    Article  CAS  Google Scholar 

  • Matzenbacher FD, Vidal RA, Merotto A Jr, Trezzi MM (2014) Environmental and physiological factors that affect the efficacy of herbicides that inhibit the enzyme protoporphyrinogen oxidase: a literature review. Plant Daninha 32:457–463

    Article  Google Scholar 

  • McElroy JS (2014) Vavilovian mimicry: Nikolai Vavilov and his little-known impact on weed science. Weed Sci 62:207–216

    Article  CAS  Google Scholar 

  • Menalled F, Schonbeck M (2010) Manage the weed seed bank—minimize “deposits” and maximize “withdrawals.” Available at https://articles.extension.org/pages/18527/manage-the-weed-seed-bankminimize-deposits-and-maximize-withdrawals. Accessed 30 Sept 2018

  • Mishra JS, Rao SS, Patil JV (2015) Response of grain sorghum (Sorghum bicolor) cultivars to weed competition in semi-arid tropical India. Indian J Agric Sci 85:688–694

    Google Scholar 

  • Monaco TJ, Weller SC, Ashton FM (2002) Principles. In: Monaco TJ, Weller SC, Ashton FM (eds) Weed science principles and practices, 4th edn. Wiley, New York, pp 3–13

    Google Scholar 

  • Mortensen DA, Egan JF, Maxwell BD, Ryan MR, Smith RG (2012) Navigating a critical juncture for sustainable weed management. BioSci 62:75–84

    Article  Google Scholar 

  • Moyo C, Harrington KC, Ghanizadeh H, Kemp PD, Eerens JP (2016) Spectrophotometric technique for measuring herbicide deposition from wiper applicators. N Z J Agric Res 59:412–421

    Article  CAS  Google Scholar 

  • Murphy CE, Lemerle D (2006) Continuous cropping systems and weed selection. Euphytica 148:61–73

    Article  Google Scholar 

  • Myers JP, Antoniou MN, Blumberg B, Carroll L, Colborn T, Everett LG et al (2016) Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environ Health 15:19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nawaz A, Farooq M, Lal R, Rehman A, Hussain T, Nadeem A (2017) Influence of sesbania brown manuring and rice residue mulch on soil health, weeds and system productivity of conservation rice–wheat systems. Land Degrad Dev 28:1078–1090

    Article  Google Scholar 

  • Neve P, Barney JN, Buckley Y, Cousens RD, Graham S, Jordan NR, Lawton-Rauh A, Liebman M, Mesgaran MB, Schut M, Shaw J (2018) Reviewing research priorities in weed ecology, evolution and management: a horizon scan. Weed Res 58:250–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nord EA, Curran WS, Mortensen DA, Mirsky SB, Jones BP (2011) Integrating multiple tactics for managing weeds in high residue no-till soybean. Agron J 103:1542–1551

    Article  Google Scholar 

  • Norris RF (2007) Weed fecundity: current status and future needs. Crop Prot 26:182–188

    Article  Google Scholar 

  • Norsworthy JK, Ward SM, Shaw DR, Llewellyn RS, Nichols RL, Webster TM, Bradley KW, Frisvold G, Powles SB, Burgos NR, Witt WW (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60:31–62

    Article  CAS  Google Scholar 

  • Orloff SB, Putnam DH, Canevari M, Lanini WT (2009) Avoiding weed shifts and weed resistance in roundup ready alfalfa systems. ANR Publications, Division of Agriculture and Natural Resources, University of California, 8362

    Google Scholar 

  • Pacanoski Z (2017) Introductory chapter: actual issues (moments) in herbicide resistance weeds and crops. In: Pacanoski (ed) Herbicide resistance in weeds and crops. InTechOpen Limited, London, pp 1–6

    Chapter  Google Scholar 

  • Pannell DJ, Marshall GR, Barr N, Curtis A, Vanclay F, Wilkinson R (2006) Understanding and promoting adoption of conservation practices by rural landholders. Aust J Exp Agric 46:1407–1424

    Article  Google Scholar 

  • Peerzada AM, Ali HH, Chauhan BS (2017) Weed management in sorghum [Sorghum bicolor (L.) Moench] using crop competition: a review. Crop Prot 95:74–80

    Article  Google Scholar 

  • Peter ML (2018) Left uncontrolled, weeds would cost billions in economic losses every year. K-State Research and Extension News. Manhattan. Available at: https://www.ksre.k-state.edu/news/stories/2016/05/uncontrolled-weeds051216.html. Accessed 7 Sept 2018

  • Peters K, Breitsameter L, Gerowitt B (2014) Impact of climate change on weeds in agriculture: a review. Agron Sust Dev 34:707–721

    Article  Google Scholar 

  • Peterson MA, Collavo A, Ovejero R, Shivrain V, Walsh MJ (2018) The challenge of herbicide resistance around the world: a current summary. Pest Manag Sci 74:2246–2259

    Article  CAS  PubMed  Google Scholar 

  • Ramesh K, Matloob A, Aslam F, Florentine SK, Chauhan BS (2017) Weeds in a changing climate: vulnerabilities, consequences, and implications for future weed management. Front Plant Sci 8:95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodenburg J, Meinke H, Johnson DE (2011) Challenges for weed management in African rice systems in a changing climate. J Agric Sci 149:427–435

    Article  Google Scholar 

  • Rogers A (2003) New technology, old defenses: internet sting operations and attempt liability. U Rich L Rev 38:477

    Google Scholar 

  • Scott BJ, Martin P, Riethmuller GP (2013). Graham centre monograph no. 3: row spacing of winter crops in broad scale agriculture in Southern Australia. NSW Department of Primary Industries, Orange

    Google Scholar 

  • Sengxua P, Jackson T, Simali P, Vial LK, Douangboupha K, Clarke E et al (2018) Integrated nutrient–weed management under mechanised dry direct seeding (DDS) is essential for sustained smallholder adoption in rainfed lowland rice (Oryza sativa L.). Exp Agric 2018:1–17

    Google Scholar 

  • Shaner DL, Leonard P (2001) Regulatory aspects of resistance management for herbicides and other crop protection products. In: Powles SB, Shaner DL (eds) Herbicide resistance and world grains. CRC Press, Boca Raton, pp 279–294

    Chapter  Google Scholar 

  • Steadman KJ, Eaton DM, Plummer JA, Ferris DG, Powles SB (2006) Late-season non-selective herbicide application reduces Lolium rigidum seed numbers, seed viability, and seedling fitness. Aust J Agric Res 57:133–141

    Article  CAS  Google Scholar 

  • Swanton CJ, Mahoney KJ, Chandler K, Gulden RH (2008) Integrated weed management: knowledge-based weed management systems. Weed Sci 56:168–172

    Article  CAS  Google Scholar 

  • Travlos IS, Chachalis D (2010) Glyphosate-resistant hairy fleabane (Conyza bonariensis) is reported in Greece. Weed Technol 24:569–573

    Article  CAS  Google Scholar 

  • Varanasi A, Prasad PV, Jugulam M (2016) Impact of climate change factors on weeds and herbicide efficacy. Adv Agron 135:107–146

    Article  Google Scholar 

  • Vencill WK, Nichols RL, Webster TM, Soteres JK, Mallory-Smith C, Burgos NR, Johnson WG, McClelland MR (2012) Herbicide resistance: toward an understanding of resistance development and the impact of herbicide-resistant crops. Weed Sci 60:2–30

    Article  CAS  Google Scholar 

  • Waggoner BS, Mueller TC, Bond JA, Steckel LE (2011) Control of glyphosate-resistant horseweed (Conyza canadensis) with saflufenacil tank mixtures in no-till cotton. Weed Technol 25:310–315

    Article  CAS  Google Scholar 

  • Walsh M, Newman P, Powles S (2013) Targeting weed seeds in-crop: a new weed control paradigm for global agriculture. Weed Technol 27:431–436

    Article  Google Scholar 

  • Warwick SI, Beckie HJ, Hall LM (2009) Gene flow, invasiveness, and ecological impact of genetically modified crops. Ann N Y Acad Sci 1168:72–99

    Article  PubMed  Google Scholar 

  • Wilson C, Tisdell C (2001) Why farmers continue to use pesticides despite environmental, health and sustainability costs. Ecol Econ 39:449–462

    Article  Google Scholar 

  • Wilson RS, Tucker MA, Hooker NH, LeJeune JT, Doohan D (2008) Perceptions and beliefs about weed management: perspectives of Ohio grain and produce farmers. Weed Technol 22:339–350

    Article  Google Scholar 

  • Wolf T (2009) Best management practices for herbicide application technology. Prairie Soil Crop J 2:24–30

    Google Scholar 

  • Yaduraju NT, Rao AN (2013) Implications of weeds and weed management on food security and safety in the Asia-Pacific Region. In: Baki HB, Denny K, Soekisman T (eds) Proceedings of the 24th Asian-Pacific weed science society conference, October 22–25, 2013, Bandung, Indonesia, pp 13–30

    Google Scholar 

  • Zhou X, Larson JA, Lambert DM, Roberts RK, English BC, Bryant KJ et al (2015) Farmer experience with weed resistance to herbicides in cotton production. AgBioforum 18:114–125

    Google Scholar 

  • Ziska LH (2016) The role of climate change and increasing atmospheric carbon dioxide on weed management: herbicide efficacy. Agric Ecosyst Environ 231:304–309

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank Cheryl Brugman, Manager at Student Services, University of Queensland Gatton Campus, for improving the language of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arslan Masood Peerzada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Peerzada, A.M., Bukhari, S.A.H., Dawood, M., Nawaz, A., Ahmad, S., Adkins, S. (2019). Weed Management for Healthy Crop Production. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-32-9783-8_13

Download citation

Publish with us

Policies and ethics