Skip to main content

Nutrient Exchange at Water and Sediment Interface of the Largest Brackish Water Lagoon (Chilika), South Asia

  • Chapter
  • First Online:
Emerging Issues in the Water Environment during Anthropocene

Abstract

The nutrient flux (NO3, NH4+, PO43− and SiO44−) at water and sediment interface studied for the Asia’s largest brackish water lagoon, Chilika. The benthic chamber (in situ) and diffusive flux techniques were employed for the estimation of nutrient flux. Measured nutrient flux by benthic chamber technique varied in between 3,000 and 14,000 µmol m−2 d−1 for NO3, 2,000 and 20,000 µmol m−2 d−1 for NH4+, 120 and 2,400 µmol m−2 d–1 for PO43−, 3,000 and 20,000 µmol m−2 d−1 for SiO44−. Calculated nutrients flux by diffusive flux technique varied in between 1,200 and 7,500 µmol m−2 d−1 for NO3, 450 and 5,500 µmol m−2 d−1 for NH4+, 15 and 280 µmol m−2 d−1 for PO43−, and 1,500 and 4,800 µmol m−2 d−1 for SiO44−. Sectoral variation for the flux enrichment (in situ flux: diffusive flux) were in between 1 × 8 and 5 × 9 in the central sector, between 2 × 5 and 18 in the outer channel, and between 1 × 5 to 6 × 1 in the northern sector. The higher flux enrichment in outer channel could be due to dominance of macrofaunal activities. In central sector, the benthic fluxes of PO −34 and NH4+ were 50 and 25% of the total nutrient flow of the Bhubaneswar municipal sewage treatment plant through river Daya and Bhargavi respectively. Pre-monsoon season, a noteworthy fractions of nutrients employed by primary producers in the water column, which is supplies by the benthic sediment regeneration in the central sector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhikary SP, Sahu JK (1992) Distribution and seasonal abundance of algal forms in Chilka Lake, East Coast of India. Jpn J Limnol 53(3):197–205

    Article  Google Scholar 

  • Annon (2003) Chilika (Newsletter), Wetlands International, South Asia 4:24–26

    Google Scholar 

  • Ansari ZA, Parulekar AH (1993) Distribution, abundance and ecology of the meiofauna, in a tropical estuary along the west coast of India. Hydrobiologia 262:47–56

    Article  Google Scholar 

  • Ansari KGMT, Patnaik AK, Rastogi G, Bhadury P (2015) An inventory of free-living marine nematodes from Asia’s largest coastal lagoon, Chilika, India. Wetland Ecol Manage 23:881–890

    Article  Google Scholar 

  • Bannerman RT, Armstrong DC, Harris RF, Holdren GC (1975) Phosphorus uptake and release by Lake Ontario sediments. U.S. Environmental Protection Agency. Ecological Research Series 66013375-006. 5 I pp

    Google Scholar 

  • Barik SK, Bramha SN, Mohanty AK, Bastia TK, Behera D, Rath P (2016) Sequential extraction of different forms of phosphorus in the surface sediments of Chilika lake. Arab J Geosci 9:135

    Article  Google Scholar 

  • Bhattacharya NC, Radin JW, Kimball B, Mauney JR, Hendrey GR, Nagy J, Lewin KF, Ponce DC (1994) Leaf water relations of cotton in a freeair CO2-enriched environment. Agric For Meteorol 70:171–182

    Article  Google Scholar 

  • Blackburn TH, Henriksen K (1983) Nitrogen cycling in different types of sediments from Danish waters. Limnol Oceanogr 28:477–493

    Article  Google Scholar 

  • Boudreau BP (1997) Digenetic models and their implementation. Springer, Berlin, p 414

    Book  Google Scholar 

  • Boynton WR, Kemp WM (1985) Nutrient regeneration and oxygen consumption by sediments along an estuarine salinity gradient. Mar Ecol Prog Ser 23:45–55

    Article  Google Scholar 

  • Callender E, Hammond DE (1982) Nutrient exchange across the sediment water interface in the Potomac River Estuary. Estuar Coast Shelf Sci 15:395–430

    Article  Google Scholar 

  • Compton TJ, Holthuijsen S, Koolhaas A, Dekinga A, ten Horn J, Smith J, Ga-lama Y (2013) Distinctly variable mudscapes: distribution gradients of intertidal macrofauna across the Dutch Wadden Sea. J Sea Res 82:103–116. https://doi.org/10.1016/j.seares.2013.02.002

    Article  Google Scholar 

  • Das S (2008) Dolphins better off in Chilika—survey reveals dip in death toll of Irrawaddy school. The Telegraph (Calcutta), pp 12–25

    Google Scholar 

  • De Vittor C, Faganeli J, Emili A, Covelli S, Predonzani S, Acquavita A (2012) Benthic fluxes of oxygen, carbon and nutrients in the Marano and Grado Lagoon (northern Adriatic Sea, Italy). Estuar Coast Shelf Sci 113:57–70. https://doi.org/10.1016/j.ecss.2012.03.031

    Article  Google Scholar 

  • Deka JP, Yamanaka T, Singh S, Choudhry R, Tyang G, Kumar M (2016) Tracing the imprints of climate change through hydrogeochemical studies on the Eastern Himalayan high altitude lakes. J Clim Change 2(1):69–78. https://doi.org/10.3233/JCC-160008

    Article  Google Scholar 

  • Engelsen A, Hulth S, Pihl L, Sundbäck K (2008) Benthic trophic status and nutrient fluxes in shallow-water sediments. Estuar Coast Shelf Sci 78(4):783–795. https://doi.org/10.1016/j.ecss.2008.02.018

    Article  Google Scholar 

  • Fillos J, Swanson WR (1975) The release rate of nutrients from river and lake sediments. J Water Pollut Control Fed 47:1032–1042

    Google Scholar 

  • Gardner WS, Seizinger S, Malczyk JM (1991) The effects of sea-salts on the forms of nitrogen released from estuarine and fresh water sediments: does iron pairing affect ammonium flux? Estuaries 14:157–166

    Article  Google Scholar 

  • Grasshoff K, Ehrdardt M, Kremling K, Anderson LG (1999) Methods of seawater analysis. Wiley

    Google Scholar 

  • Helali MA, Zaaboub N, Oueslati W, Added A, Aleya L (2016) Nutrient exchange and oxygen demand at the sediment–water interface during dry and wet seasons off the Medjerda River Delta (Tunis Gulf, Tunisia). Environ Earth Sci 75(1):1–12. https://doi.org/10.1007/s12665-015-4820-x

    Article  Google Scholar 

  • Holdren, GC Jr, Armstrong DE (1980) Factors affecting phosphorus release from intact lake sediment cores. Environ Sci Technol x4:79–87

    Article  Google Scholar 

  • Hopkinson CS Jr, Giblin AE, Tucker J (2001) Benthic metabolism and nutrient regeneration on the continental shelf of Eastern Massachusetts, USA. Mar Ecol Prog Ser 224:1–19

    Article  Google Scholar 

  • Horrigan SG, Carlucci AF, Williams PM (1981) Light inhibition of nitrification in sea surface films. J Mar Res 39:557–565

    Google Scholar 

  • Jayaraman G, Rao AD, Dube A, Mohanty PK (2007) Numerical simulation of circulation and salinity structure in Chilika lagoon. J Coast Res 23(4):861–877

    Article  Google Scholar 

  • Jørgensen BB (1983) Processes at the sediment–water interface. In: Bolin B, Cook RB (eds) The major biogeochemical cycles and their interactions. SCOPE 21, Stockholm, pp 477–509

    Google Scholar 

  • Kristensen E (1985) Oxygen and inorganic nitrogen exchange in a Nereis virens (Polychaeta) bioturbated sediment–water system. J Coastal Res 1:109–116

    Google Scholar 

  • Kristensen E (2000) Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426:1–24

    Article  Google Scholar 

  • Kristensen E, Jensen MH, Aller RC, Robert C (1991) Direct measurement of dissolved inorganic nitrogen exchange and denitrification in individual polychaete (Nereis virens) burrows. J Mar Res 49:355–377

    Article  Google Scholar 

  • Leote C, Epping EHG (2015) Sediment—water exchange of nutrients in the Marsdiep basin, western Wadden Sea: phosphorus limitation induced by a controlled release? Cont Shelf Res 92:44–58. https://doi.org/10.1016/j.csr.2014.11.007

    Article  Google Scholar 

  • Li YH, Gregory S (1974) Diffusion of ions in seawater. Geochim Cosmochim Acta 38:703–714

    Article  Google Scholar 

  • Lojen S, Ogrinc N, Dolenec T, Vokal B, Szaran J, Mihelčić G, Branica M (2004) Nutrient fluxes and sulfur cycling in the organic-rich sediment of Makirina Bay (Central Dalmatia, Croatia). Sci Total Environ 327(1–3):265–284. https://doi.org/10.1016/j.scitotenv.2004.01.011

    Article  Google Scholar 

  • Ly J, Philippart CJM, Kromkamp JC (2014) Phosphorus limitation during a phytoplankton spring bloom in the western Dutch Wadden Sea. J Sea Res 88:109–120. https://doi.org/10.1016/j.seares.2013.12.010

    Article  Google Scholar 

  • Manheim FT (1976) Interstitial waters of marine sediments. In: Riley JP, Chester R (eds) Chemical oceanography, vol 5. Academic Press, London, pp 115–186

    Chapter  Google Scholar 

  • Marinelli RL, Jahnke RA, Craven DB, Nelson JR, Eckman JE (1998) Sediment nutrient dynamics on the South Atlantic Bight continental shelf. Limnol Oceanogr

    Google Scholar 

  • Michael HA, Mulligan AE, Harvey CF (2005) Seasonal oscillations in water exchange between aquifers and the coastal ocean. Nature 436(7054):1145–1148. https://doi.org/10.1038/nature03935

    Article  Google Scholar 

  • Mohanty SK (1975) Some observations on the physico-chemical features of the outer channel of the Chilika Lake during 1971–73. Bull Dept Mar Sci 7(1):69–89

    Google Scholar 

  • Mohanty PK, Panda US (2009) Circulation and mixing pattern in Chilika lagoon, Indian. Mar Sci 38(2):205–214

    Google Scholar 

  • Naik S, Panigrahy RC, Mohapatra A (2008) Spatio-temporal distribution of zooplankton in chilka lake—a ramsar site on the Indian east coast. Ind J Sci Tech 1(3):1–6

    Google Scholar 

  • Nayak BK, Acharya BC, Panda UC, Nayak BB, Acharya SK (2004) Variation in the water quality in the Chilka lake. Indian J Mar Sci 33:164–169

    Google Scholar 

  • Niencheski LF, Jahnke RA (2002) Benthic respiration and inorganic nutrients in the estuarine region of Patos Lagoon (Brazil). Aquat Geochem 8:135–152

    Article  Google Scholar 

  • Pal SR, Mohanty PK (2002) Use of IRS-1B data for change detection in water quality and vegetation of Chilika Lagoon, East Coast of India. Int J Remote Sens 23(6):1027–1042

    Article  Google Scholar 

  • Panigrahi RC (2000) The Chilka lake—a sensitive coastal ecosystem of Orissa, east coast of India. J Indian Ocean Stud 7(2&3):222–242

    Google Scholar 

  • Panigrahi S (2006) Seasonal variability of phytoplankton productivity and related physicochemical parameters in the Chilika Lake and its adjoining sea, Ph.D. thesis. Berhampur University, India

    Google Scholar 

  • Panigrahi S, Wikner J, Panigrahy RC, Satapathy KK, Acharya BC (2009) Variability of nutrients and phytoplankton biomass in a shallow brackish water ecosystem (Chilika Lagoon, India). Limnology 10(2):73–85

    Article  Google Scholar 

  • Panigrahy RC (1985) Phytoplankton and primary productivity in Chilka Lake. Ph.D. thesis, Berhampur University, India

    Google Scholar 

  • Patel AK, Das N, Goswami R, Kumar M (2019) Arsenic mobility and potential co-leaching of fluoride from the sediments of three tributaries of the upper Brahmaputra floodplain, Lakhimpur, Assam, India. J Geochem Explor 203:45–58

    Article  Google Scholar 

  • Patnaik S (1978) Distribution and abundance of some algal forms in Chilika Lake. J Inland Fish Soc India 10:56–57

    Google Scholar 

  • Piercey EJ (1981) Phosphate sorption on clay-rich channel sediments of the Potomac tidal river and estuary, Maryland (abstract). Estuaries 4:251

    Google Scholar 

  • Qu W, Morrison RJ, West RJ, Su C (2005) Diageneteic stoichiometry and benthic nutrient fluxes at the sediment–water interface of Lake Illawarra, Australia. Hydrobiologia 537:249–264

    Article  Google Scholar 

  • Raman AV, Satyanarayana C, Adiseshasai K, Prakash KP (1990) Phytoplankton characteristic of Chilika lake, a brackish water lagoon along the east coast of India. Indian J Mar Sci 19:274–277

    Google Scholar 

  • Romankevich EA (1984) Geochemistry of organic matter in the ocean. Springer, Berlin, p 334

    Book  Google Scholar 

  • Rowe GT, Clifford CH, Smith KL Jr (1975) Benthic nutrient regeneration and its coupling to primary productivity in coastal waters. Nature 255:215–217

    Article  Google Scholar 

  • Santschi PH, Hoehener P, Benoit G, Brink MB (1990) Chemical processes at the sediment–water interface. Mar Chem 30:69–315

    Article  Google Scholar 

  • Sarkar SK, Bhattacharya A, Bhattacharya AK, Satpathy KK, Mohanty AK, Panigrahi S (2012) Chilika Lake. Springer, Berlin, pp 148–155

    Google Scholar 

  • Sekhar NU (2004) Fisheries in Chilika Lake: how community access and control impacts their management. J Environ Manag 73(3):257–266

    Article  Google Scholar 

  • Siddiqui SZ, Rao KV (1995) Limnology of Chilika lake. In: Director of zoological survey of India (Calcutta), Fauna of Chilika Lake (Wetland Ecosystem Series I). Zoological Survey of India, Calcutta

    Google Scholar 

  • Steinman AD, Ogdahl ME, Weinert M, Thompson K, Cooper MJ, Uzarski DG (2012) Water level fluctuation and sediment-water nutrient exchange in Great Lakes coastal wetlands. J Great Lakes Res 38(4):766–775. https://doi.org/10.1016/j.jglr.2012.09.020

    Article  Google Scholar 

  • Suess E (1979) Mineral phases formed in anoxic sediments by microbial decomposition of organic matter. Geochim Cosmochim Acta 43:339–352

    Article  Google Scholar 

  • Suess, E, Müller PJ (1980) Productivity, sedimentation rate and sedimentary organic matter in the oceans: II. In: Elemental fractionation, proceedings of the CNRS symposium on the benthic boundary layer, Marseille, France, pp 17–26

    Google Scholar 

  • Sutaria D (2007) Irrawaddy dolphin India. Whale and Dolphin Conservation Society, pp 12–25. http://www.wdcs.org/submissions_bin/consprojectectirr.pdf. Retrieved 2008

  • Walsh JJ (1991) Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen. Nature 350:53–55

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapan Kumar Bastia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barik, S.K., Rath, P., Bastia, T.K., Behera, D. (2020). Nutrient Exchange at Water and Sediment Interface of the Largest Brackish Water Lagoon (Chilika), South Asia. In: Kumar, M., Snow, D., Honda, R. (eds) Emerging Issues in the Water Environment during Anthropocene. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-32-9771-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9771-5_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9770-8

  • Online ISBN: 978-981-32-9771-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics