Skip to main content

Water Quality Under the Changing Climatic Condition: A Review of the Indian Scenario

  • Chapter
  • First Online:
Emerging Issues in the Water Environment during Anthropocene

Abstract

The current work reviews the state of Indian water quality under the climate change regime. Rising temperatures will lead to higher concentration of pollutants like nutrients (nitrates, phosphates etc.), persistent organic pollutants and pesticides. Probable negative consequences include increase in harmful algal blooms, toxicity hazards in people etc. Rising temperatures could lead to release of higher amounts of fluoride and uranium due to prevalence of drier oxic conditions, and also arsenic due to release from iron (hydr)oxides. Implications on emerging contaminants, a new class of pollutants without any regulatory status, is not clearly understood. Prevalence of microbes in water is also predicted to increase. Coastal aquifers appear to be at risk from salt water intrusion. Conflicts on the international and national platform is predicted to rise due to issues with sharing of water. Lastly, we also discuss the sustainability options for water in India under a changing climatic regime, under three broad subcategories signifying the roles of (1) science, (2) policies and legal framework and the (3) people perspective, while also highlighting the existing lacunae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abhilash PC, Singh N (2009) Pesticide use and application: an Indian scenario. J Hazard Mater 165(1–3):1–12

    Article  Google Scholar 

  • Acharyya T, Sarma VVSS, Sridevi B, Venkataramana V, Bharathi MD, Naidu SA, Kumar BSK, Prasad VR, Bandyopadhyay D, Reddy NPC, Kumar MD (2012) Reduced river discharge intensifies phytoplankton bloom in Godavari estuary, India. Mar Chem 132–133:15–22

    Article  Google Scholar 

  • Agoramoorthy G (2008) Can India meet the increasing food demand by 2020? Futures 40(5):503–506

    Article  Google Scholar 

  • Agusa T, Kunito T, Fujihara J, Kubota R, Minh TB, Kim Trang PT, Iwata H, Subramanian A, Viet PH, Tanabe S (2006) Contamination by arsenic and other trace elements in tube-well water and its risk assessment to humans in Hanoi, Vietnam. Environ Pollut 139(1):95–106

    Article  Google Scholar 

  • Anand PB (2007) Capability, sustainability, and collective action: an examination of a river water dispute. J Hum Dev 8(1):109–132

    Article  MathSciNet  Google Scholar 

  • Arveti N, Sarma MRS, Aitkenhead-Peterson JA, Sunil K (2011) Fluoride incidence in groundwater: a case study from Talupula, Andhra Pradesh, India. Environ Monit Assess 172(1–4):427–443

    Article  Google Scholar 

  • ATSDR (2013) Toxicological profile for uranium. ATSDR, Atlanta, Georgia

    Google Scholar 

  • Ayerza A (1918) Arsenicismo regional endémico. Bol Acad Nac Med 1:11–24

    Google Scholar 

  • Ayotte JD, Nielsen MG, Robinson G, Moore R, Moore R (1999) Relation of arsenic, iron, and manganese in ground water to aquifer type, bedrock lithogeochemistry, and land use in the New England Coastal Basins. Water-resources investigations report U.S. geological survey, national water quality assessment program. Pembroke, NH

    Google Scholar 

  • Bahar MM, Reza MS (2010) Hydrochemical characteristics and quality assessment of shallow groundwater in a coastal area of southwest Bangladesh. Environ Earth Sci 61(5):1065–1073

    Article  Google Scholar 

  • Barati AH, Maleki A, Alasvand M (2010) Multi-trace elements level in drinking water and the prevalence of multi-chronic arsenical poisoning in residents in the west area of Iran. Sci Total Environ 408:1523–1529

    Article  Google Scholar 

  • Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438(7066):303–309

    Article  Google Scholar 

  • Baten MA, Titumir RAM (2016) Environmental challenges of trans-boundary water resources management: the case of Bangladesh. Sustain Water Resour Manag 2(1):13–27

    Article  Google Scholar 

  • Bates B, Kundzewicz ZW, Wu S (2008) Climate change and water. Intergovernmental Panel on Climate Change, Geneva, Switzerland

    Google Scholar 

  • Battu RS, Singh B, Kang BK (2004a) Contamination of liquid milk and butter with pesticide residues in the Ludhiana district of Punjab state, India. Ecotoxicol Environ Saf 59(3):324–331

    Article  Google Scholar 

  • Battu RS, Singh B, Kang BK, Joia BS (2004b) Risk assessment through dietary intake of total diet contaminated with pesticide residues in Punjab, India, 1999–2002. Ecotoxicol Environ Saf 62(132–139):132–139

    Google Scholar 

  • Beyer A, Wania F, Gouin T, Mackay D, Matthies M (2003) Temperature dependence of the characteristic travel distance. Environ Sci Technol 37(4):766–771

    Article  Google Scholar 

  • Bhattacharjee S, Chakravarty S, Maity S, Dureja V, Gupta KK (2005) Metal contents in the groundwater of Sahebgunj district, Jharkhand, India, with special reference to arsenic. Chemosphere 58(9):1203–1217

    Article  Google Scholar 

  • Bobba AG (2002) Numerical modelling of salt-water intrusion due to human activities and sea-level change in the Godavari Delta, India. Hydrol Sci J 47:S67–S80

    Article  Google Scholar 

  • Bouman-Dentener A, Devos B (2015) Civil society: key contributors to water and sustainable development. In: UN-water annual international Zaragoza conference, 17

    Google Scholar 

  • Brindha K, Rajesh R, Murugan R, Elango L (2011) Fluoride contamination in groundwater in parts of Nalgonda District, Andhra Pradesh, India. Environ Monit Assess 172(1):481–492

    Article  Google Scholar 

  • British Geological Survey (2001) Phase 2 groundwater studies of arsenic contamination in Bangladesh. Nottingham

    Google Scholar 

  • British Geological Survey (2002) Groundwater quality: Mali. London, UK

    Google Scholar 

  • Brubaker WW, Hites RA (1998) OH reaction kinetics of polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and dibenzofurans. J Phys Chem A 102(97):915–921

    Article  Google Scholar 

  • Brunt R, Vasak L, Griffioen J (2004) Fluoride in groundwater: probability of occurrence of excessive concentration on global scale. International Groundwater Resources Assessment Centre, UNESCO, Report nr. (April), 20 p

    Google Scholar 

  • Buamah R (2009) Adsorptive removal of manganese, arsenic and iron from groundwater. Wageningen University, Delft, The Netherlands

    Google Scholar 

  • Buragohain M, Bhuyan B, Sarma HP (2010) Seasonal variations of lead, arsenic, cadmium and aluminium contamination of groundwater in Dhemaji district, Assam, India. Environ Monit Assess 170(1–4):345–351

    Article  Google Scholar 

  • Buschmann J, Berg M, Stengel C, Winkel L, Sampson ML, Trang PTK, Viet PH (2008) Contamination of drinking water resources in the Mekong delta floodplains: arsenic and other trace metals pose serious health risks to population. Environ Int 34(6):756–764

    Article  Google Scholar 

  • Carmichael WW (2001) Health effects of toxin-producing cyanobacteria: ‘the CyanoHABs’. Hum Ecol Risk Assess 7(5):1393–1407

    Article  Google Scholar 

  • Central Pollution Control Board (2003) Status of sewage treatment plants in Ganga basin. Central Pollution Control Board, Delhi, India

    Google Scholar 

  • Chakraborti D, Rahman MM, Paul K, Chowdhury UK, Sengupta MK, Lodh D, Chanda CR, Saha KC, Mukherjee SC (2002) Arsenic calamity in the Indian subcontinent: what lessons have been learned? Talanta 58(1):3–22

    Article  Google Scholar 

  • Chakraborti D, Mukherjee SC, Pati S, Sengupta MK, Rahman MM, Chowdhury UK, Lodh D, Chanda CR, Chakraborti AK, Basu GK (2003) Arsenic groundwater contamination in Middle Ganga Plain, Bihar, India: a future danger? Environ Health Perspect 111(9):1194–1201

    Article  Google Scholar 

  • Chugh TD (2008) Emerging and re-emerging bacterial diseases in India. J Biosci 33(4):549–555

    Article  Google Scholar 

  • Colman J (2011) Arsenic and uranium in water from private wells completed in bedrock of east-central Massachusetts—concentrations, correlations with bedrock units, and estimated probability maps. U.S. geological survey scientific investigations report. Northborough, MA

    Google Scholar 

  • Colwell RR (1996) Global climate and infectious disease: the cholera paradigm. Science 274(5295):2025–2031

    Article  Google Scholar 

  • Concha G, Broberg K, Grandér M, Cardozo A, Palm B, Vahter M (2010) High-level exposure to lithium, boron, cesium, and arsenic via drinking water in the Andes of northern Argentina. Environ Sci Technol 44:6875–6880

    Article  Google Scholar 

  • Cox PA, Banack SA, Murch SJ (2003) Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam. Proc Natl Acad Sci 100(23):13380–13383

    Article  Google Scholar 

  • Damkjaer S (2015) The Paris Agreement lacks focus on water. UCL Institute for Sustainable Resources Blog. https://blogs.ucl.ac.uk/sustainable-resources/2015/12/15/the-paris-agreement-lacks-focus-on-water/

  • Das N, Patel AK, Deka G, Das A, Sarma KP, Kumar M (2015) Geochemical controls and future perspective of arsenic mobilization for sustainable groundwater management: a study from Northeast India. Groundw Sustain Dev 1(1–2):92–104

    Article  Google Scholar 

  • Das N, Sarma KP, Patel AK, Deka JP, Das A, Kumar A, Shea PJ, Kumar M (2017) Seasonal disparity in the co-occurrence of arsenic and fluoride in the aquifers of the Brahmaputra flood plains, Northeast India. Environ Earth Sci

    Google Scholar 

  • Deka JP, Singh S, Jha PK, Singh UK, Kumar M (2016) Imprints of long-range-transported pollution on high-altitude Eastern Himalayan lake water chemistry. Environ Earth Sci 75(4):1–13

    Article  Google Scholar 

  • Delcour I, Spanoghe P, Uyttendaele M (2015) Literature review: impact of climate change on pesticide use. Food Res Int 68:7–15

    Article  Google Scholar 

  • Dillon PJ, Molot LA, Futter M (1997) The effect of El Nino-related drought on the recovery of acidified lakes. Environ Monit Assess 46(1):105–111

    Google Scholar 

  • Environment B. C. M. of the (2010) British Columbia Ministry of the Environment, Surrey, BC, Canada

    Google Scholar 

  • Epstein PR, Ford TE, Colwell RR (1993) Marine ecosystems. Lancet 342:1216–1219

    Article  Google Scholar 

  • Evans CD, Reynolds B, Hinton C, Hughes S, Norris D, Grant S, Williams B (2008) Effects of decreasing acid deposition and climate change on acid extremes in an upland stream. Hydrol Earth Syst Sci 12:337–351

    Article  Google Scholar 

  • Fantong WY, Satake H, Ayonghe SN, Suh EC, Adelana SMA, Fantong EBS, Banseka HS, Gwanfogbe CD, Woincham LN, Uehara Y, Zhang J (2010) Geochemical provenance and spatial distribution of fluoride in groundwater of Mayo Tsanaga River Basin, Far North Region, Cameroon: implications for incidence of fluorosis and optimal consumption dose. Environ Geochem Health 32(2):147–163

    Article  Google Scholar 

  • Feldman PR, Rosenboom J-W, Saray M, Samnang C, Navuth P, Iddings S (2007) Assessment of the chemical quality of drinking water in Cambodia. J Water Health 5:101–116

    Article  Google Scholar 

  • Fordyce FM, Vrana K, Zhovinsky E, Povoroznuk V, Toth G, Hope BC, Iljinsky U, Baker J (2007) A health risk assessment for fluoride in Central Europe. Environ Geochem Health 29(2):83–102

    Article  Google Scholar 

  • Frisbie SH, Ortega R, Maynard DM, Sarkar B (2002) The concentrations of arsenic and other toxic elements in Bangladesh’s drinking water. Environ Health Perspect 110:1147–1153

    Article  Google Scholar 

  • Frisbie SH, Mitchell EJ, Mastera LJ, Maynard DM, Yusuf AZ, Siddiq MY, Ortega R, Dunn RK, Westerman DS, Bacquart T, Sarkar B (2009) Public health strategies for western Bangladesh that address arsenic, manganese, uranium, and other toxic elements in drinking water. Environ Health Perspect 117:410–416

    Article  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418

    Article  Google Scholar 

  • Gani KM, Kazmi AA (2017) Contamination of emerging contaminants in Indian aquatic sources: first overview of the situation. J Hazard Toxic Radioact Waste 21(3):4016026

    Article  Google Scholar 

  • Golosov S, Terzhevik A, Zverev I, Kirillin G, Engelhardt C (2012) Climate change impact on thermal and oxygen regime of shallow lakes. Tellus A 64:1–12

    Article  Google Scholar 

  • Goyal RK (2004) Sensitivity of evapotranspiration to global warming: a case study of arid zone of Rajasthan (India). Agric Water Manag 69(1):1–11

    Article  MathSciNet  Google Scholar 

  • Gupta R, Sarangi AK (2011) Asian nuclear prospects 2010 overview of Indian uranium production scenario in coming decades. Energy Procedia 7:146–152

    Article  Google Scholar 

  • Gupta SK, Deshpande RD, Agarwal M, Raval BR (2005) Origin of high fluoride in groundwater in the North Gujarat-Cambay region, India. Hydrogeol J 13(4):596–605

    Article  Google Scholar 

  • Harvey CF, Swartz CH, Badruzzaman ABM, Keon-Blute N, Yu W, Ali MA, Jay J, Beckie R, Niedan V, Brabander D, Oates PM, Ashfaque KN, Islam S, Hemond HF, Ahmed MF (2005) Groundwater arsenic contamination on the Ganges Delta: biogeochemistry, hydrology, human perturbations, and human suffering on a large scale. C R Geosci 337(1–2):285–296

    Article  Google Scholar 

  • Hatva T (1989) Iron and manganese in groundwater in Finland: occurrence in glacifluvial aquifers and removal by biofiltration. Helsinki, Finland

    Google Scholar 

  • Hirsch A (1883) Geographical and historical pathology. In: Acute infective diseases, vol 1. New Sydenham Society, London

    Google Scholar 

  • Hudak PF (2004) Boron and selenium contamination in south Texas groundwater. J Environ Sci Health A Tox Hazard Subst Environ Eng 39:2827–2834

    Article  Google Scholar 

  • Huisman J, Matthijs HC, Visser PM (2013) Harmful cyanobacteria. J Chem Inf Model

    Google Scholar 

  • Jain CK, Bandyopadhyay A, Bhadra A (2010) Assessment of ground water quality for drinking purpose, District Nainital, Uttarakhand, India. Environ Monit Assess 166(1–4):663–676

    Article  Google Scholar 

  • Jurgens BC, Fram MS, Belitz K, Burow KR, Landon MK (2010) Effects of groundwater development on uranium: Central Valley, California, USA. Ground Water 48(6):913–928

    Article  Google Scholar 

  • Kääb A, Berthier E, Nuth C, Gardelle J, Arnaud Y (2012) Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 488(7412):495–498

    Article  Google Scholar 

  • Kahn B (2017) We just breached the 410 ppm threshold for CO2. Sci Am. https://www.scientificamerican.com/article/we-just-breached-the-410-ppm-threshold-for-co2/

  • Kato M, Onuma S, Kato Y, Thang ND, Yajima I, Hoque MZ, Shekhar HU (2010) Toxic elements in well water from Malaysia. Toxicol Environ Chem 92(9):1609–1612

    Article  Google Scholar 

  • Katsoyiannis IA, Hug SJ, Ammann A, Zikoudi A, Hatziliontos C (2007) Arsenic speciation and uranium concentrations in drinking water supply wells in Northern Greece: correlations with redox indicative parameters and implications for groundwater treatment. Sci Total Environ 383:128–140

    Article  Google Scholar 

  • Kaul R, Umamaheswar K, Chandrasekaran S, Deshmukh RD, Swarnkar BM (1993) Uranium mineralization in the Siwaliks of North Western Himalayan, India. Geol Soc India 41(3):243–258

    Google Scholar 

  • Kelepertsis A, Alexakis D, Skordas K (2006) Arsenic, antimony and other toxic elements in the drinking water of Eastern Thessaly in Greece and its possible effects on human health. Environ Geol 50:76–84

    Article  Google Scholar 

  • Kennish M (1992) Ecology of estuaries: anthropogenic effects. Institute of Marine and Coastal Sciences Fishers and Aquaculture TEX Center, London

    Google Scholar 

  • Khanikar L, Gogoi RR, Das N, Deka JP, Das A, Kumar M, Sarma KP (2017) Groundwater appraisal of Dhekiajuli, Assam, India: an insight of agricultural suitability and arsenic enrichment. Environ Earth Sci 76(15):530

    Article  Google Scholar 

  • Kresse T, Fazio J (2003) Occurrence of arsenic in ground waters of Arkansas and implications for source and release mechanisms. Little Rock, AR

    Google Scholar 

  • Krishna Kumar K, Patwardhan SK, Kulkarni A, Kamala K, Koteswara Rao K, Jones R (2011) Simulated projections for summer monsoon climate over India by a high-resolution regional climate model (PRECIS). Curr Sci 101(3):312–326

    Google Scholar 

  • Kumar M, Kumar P, Ramanathan AL, Bhattacharya P, Thunvik R, Singh UK, Tsujimura M, Sracek O (2010) Arsenic enrichment in groundwater in the middle Gangetic Plain of Ghazipur District in Uttar Pradesh, India. J Geochem Explor 105(3):83–94

    Article  Google Scholar 

  • Kumar M, Patel AK, Das A, Kumar P, Goswami R, Deka P, Das N (2017) Hydrogeochemical controls on mobilization of arsenic and associated health risk in Nagaon district of the central Brahmaputra Plain, India. Environ Geochem Health 39(1):161–178

    Article  Google Scholar 

  • Kumar KR, Sahai AK, Kumar KK, Patwardhan SK, Mishra PK, Revadekar JV, Kamala K, Pant GB (2006) Climate change scenarios for 21st century India. Curr Sci

    Google Scholar 

  • Kumar M, Das N, Goswami R, Sarma KP, Bhattacharya P, Ramanathan AL (2016) Coupling fractionation and batch desorption to understand arsenic and fluoride co-contamination in the aquifer system. Chemosphere 164:657–667

    Article  Google Scholar 

  • Kumpel E, Nelson KL (2016) Intermittent water supply: prevalence, practice, and microbial water quality. Environ Sci Technol 50(2):542–553

    Article  Google Scholar 

  • Kundu N, Panigrahi MK, Tripathy S, Munshi S, Powell MA (2001) Geochemical appraisal of fluoride contamination of groundwater in the Nayagarh District of Orissa, India. Environ Geol 451–460

    Google Scholar 

  • Kundzewicz ZW, Mata LJ, Arnell NW, Döll P, Kabat P, Jiménez B, Miller KA, Oki T, Sen Z, Shiklomanov IA (2007) Freshwater resources and their management. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Cambridge University Press, Cambridge, UK, pp 175–210

    Google Scholar 

  • Laghari JR (2013) Melting glaciers bring energy uncertainty. Nature 502:617–618

    Article  Google Scholar 

  • Lahermo PW, Alfthan G, Wang D (1998) Selenium and arsenic in the environment in Finland. J Environ Pathol Toxicol Oncol 17:205–216

    Google Scholar 

  • Laudon H, Bishop KH (2002) The rapid and extensive recovery from episodic acidification in northern Sweden due to declines in SO42− deposition. Geophys Res Lett 29(12)

    Google Scholar 

  • Lin YB, Lin YP, Liu CW, Tan YC (2006) Mapping of spatial multi-scale sources of arsenic variation in groundwater on ChiaNan floodplain of Taiwan. Sci Total Environ 370(1):168–181

    Article  Google Scholar 

  • Luu TTG, Sthiannopkao S, Kim KW (2009) Arsenic and other trace elements contamination in groundwater and a risk assessment study for the residents in the Kandal Province of Cambodia. Environ Int 35(3):455–460

    Article  Google Scholar 

  • Ma J, Hung H, Blanchard P (2004) How do climate fluctuations affect persistent organic pollutant distribution in North America? Evidence from a decade of air monitoring. Environ Sci Technol 38(9):2538–2543

    Article  Google Scholar 

  • Macdonald R, Mackay D, Hickie B (2002) Contaminant amplification in the environment. Environ Sci Technol 36(23):456A–462A

    Article  Google Scholar 

  • Macdonald RW, Mackay D, Li Y-F, Hickie B (2003) How will global climate change affect risks from long-range transport of persistent organic pollutants? Hum Ecol Risk Assess 9(3):643–660

    Article  Google Scholar 

  • Macdonald RW, Harner T, Fyfe J (2005) Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data. Sci Total Environ 342(1–3):5–86

    Article  Google Scholar 

  • Mamatha P, Rao SM (2010) Geochemistry of fluoride rich groundwater in Kolar and Tumkur Districts of Karnataka. Environ Earth Sci 61(1):131–142

    Article  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58(1):201–235

    Article  Google Scholar 

  • Maslin M, Austin P (2012) Uncertainty: climate models at their limit? Nature 486(7402):183–184

    Article  Google Scholar 

  • Mellor J, Kumpel E, Ercumen A, Zimmerman J (2016) Systems approach to climate, water, and diarrhea in Hubli-Dharwad, India. Environ Sci Technol 50:13042–13051

    Article  Google Scholar 

  • Melton P (2011) Occupant engagement: where design meets performance. https://www.buildinggreen.com/feature/occupant-engagement-where-design-meets-performance

  • Meyer T, Wania F (2008) Organic contaminant amplification during snowmelt. Water Res 42(8–9):1847–1865

    Article  Google Scholar 

  • Misra AK, Mishra A (2007) Study of quaternary aquifers in Ganga Plain, India: focus on groundwater salinity, fluoride and fluorosis. J Hazard Mater 144(1–2):438–448

    Article  Google Scholar 

  • Mitchell E, Frisbie S, Sarkar B (2011) Exposure to multiple metals from groundwater—a global crisis: geology, climate change, health effects, testing, and mitigation. Metallomics 3(9):874–908

    Article  Google Scholar 

  • Mondal A, Mujumdar PP (2015) Regional hydrological impacts of climate change: implications for water management in India. Proc Int Assoc Hydrol Sci 366(May):34–43

    Google Scholar 

  • Mondal NC, Prasad RK, Saxena VK, Singh Y, Singh VS (2009) Appraisal of highly fluoride zones in groundwater of Kurmapalli watershed, Nalgonda district, Andhra Pradesh (India). Environ Earth Sci 59(1):63–73

    Article  Google Scholar 

  • Muikku M, Puhakainen M, Heikkinen T, Ilus T (2009) The mean concentration of uranium in drinking water, urine, and hair of the occupationally unexposed Finnish working population. Health Phys 96:646–654

    Article  Google Scholar 

  • Mujumdar PP (2008) Implications of climate change for sustainable water resources management in India. Phys Chem Earth 33(5):354–358

    Article  Google Scholar 

  • Nadal M, Marquès M, Mari M, Domingo JL (2015) Climate change and environmental concentrations of POPs: a review. Environ Res 143:177–185

    Article  Google Scholar 

  • Narula KK, Gosain AK (2013) Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin. Sci Total Environ 468–469

    Google Scholar 

  • Nasr-Azadani F, Khan R, Rahimikollu J, Unnikrishnan A, Akanda A, Alam M, Huq A, Jutla A, Colwell R (2016) Hydroclimatic sustainability assessment of changing climate on cholera in the Ganges-Brahmaputra basin. Adv Water Resour 1–13

    Google Scholar 

  • Nath B, Jean JS, Lee MK, Yang HJ, Liu CC (2008) Geochemistry of high arsenic groundwater in Chia-Nan plain, Southwestern Taiwan: possible sources and reactive transport of arsenic. J Contam Hydrol 99(1–4):85–96

    Article  Google Scholar 

  • Neumann RB, St. Vincent AP, Roberts LC, Badruzzaman ABM, Ali MA, Harvey CF (2011) Rice field geochemistry and hydrology: an explanation for why groundwater irrigated fields in Bangladesh are net sinks of arsenic from groundwater. Environ Sci Technol 45(6):2072–2078

    Article  Google Scholar 

  • Nguyen VA, Bang S, Viet PH, Kim KW (2009) Contamination of groundwater and risk assessment for arsenic exposure in Ha Nam province, Vietnam. Environ Int 35(3):466–472

    Article  Google Scholar 

  • Nicolli HB, Suriano JM, Gomez Peral, Miguel A, Ferpozzi LH, Baleani OA (1989) Groundwater contamination with arsenic and other trace elements in an area of the Pampa, Province of Cordoba, Argentina. Environ Geol Water Sci 14(1):3–16

    Article  Google Scholar 

  • Noyes PD, McElwee MK, Miller HD, Clark BW, Van Tiem LA, Walcott KC, Erwin KN, Levin ED (2009) The toxicology of climate change: environmental contaminants in a warming world. Environ Int 35(6):971–986

    Article  Google Scholar 

  • Padmakumar KB, Menon NR, Sanjeevan VN (2012) Is occurrence of harmful algal blooms in the exclusive economic zone of India on the rise? Int J Oceanogr 1–7

    Article  Google Scholar 

  • Paerl HW, Huisman J (2009) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1(1):27–37

    Article  Google Scholar 

  • Pal T, Mukherjee PK, Sengupta S, Bhattacharyya AK, Shome S (2002) Arsenic pollution in groundwater of West Bengal, India—an insight into the problem by subsurface sediment analysis. Gondwana Res 5(2):501–512

    Article  Google Scholar 

  • Pal A, Chowdhury UK, Mondal D, Das B, Nayak B, Ghosh A, Maity S, Chakraborti D (2009) Arsenic burden from cooked rice in the populations of arsenic affected and nonaffected areas and Kolkata City in West-Bengal, India. Environ Sci Technol 43(9):3349–3355

    Article  Google Scholar 

  • Pascual M, Bouma MJ, Dobson AP (2002) Cholera and climate: revisiting the quantitative evidence. Microbes Infect 4:237–245

    Article  Google Scholar 

  • Patel AK, Das N, Goswami R, Kumar M (2019a) Arsenic mobility and potential co-leaching of fluoride from the sediments of three tributaries of the upper Brahmaputra floodplain, Lakhimpur, Assam, India. J Geochem Explor 203:45–58

    Article  Google Scholar 

  • Patel AK, Das N, Kumar M (2019b) Multilayer arsenic mobilization and multimetal co-enrichment in the alluvium (Brahmaputra) plains of India: a tale of redox domination along the depth. Chemosphere 224:140–150

    Article  Google Scholar 

  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438(7066):310–317

    Article  Google Scholar 

  • Paya P, Bhatt SA (2010) Fluoride contamination in groundwater of Patan district, Gujarat, India. Int J Eng Stud 2(2):171–177

    Google Scholar 

  • Peters K, Breitsameter L, Gerowitt B (2014) Impact of climate change on weeds in agriculture: a review. Agron Sustain Dev 34(4):707–721

    Article  Google Scholar 

  • Pillai KS, Stanley VA (2002) Implications of fluoride—an endless uncertainty. J Environ Biol 23(1):81–87

    Google Scholar 

  • Posch M, Hettelingh JP, Alcamo J, Krol M (1996) Integrated scenarios of acidification and climate change in Asia and Europe. Glob Environ Change 6(4):375–394

    Article  Google Scholar 

  • Prat O, Vercouter T, Ansoborlo E, Fichet P, Perret P, Kurttio P, Salonen L (2009) Uranium speciation in drinking water from drilled wells in southern Finland and its potential links to health effects. Environ Sci Technol 43:3941–3946

    Article  Google Scholar 

  • Rahman M, Qumrul M, Mohammad H, Islam S (2000) Environmental impact assessment on water quality deterioration caused by the decreased Ganges outflow and saline water intrusion in south-western Bangladesh. Environ Geol 40

    Article  Google Scholar 

  • Rahman MM, Sengupta MK, Ahamed S, Chowdhury UK, Hossain MA, Das B, Lodh D, Saha KC, Pati S, Kaies I, Barua AK, Chakraborti D (2005) The magnitude of arsenic contamination in groundwater and its health effects to the inhabitants of the Jalangi—one of the 85 arsenic affected blocks in West Bengal, India. Sci Total Environ 338(3):189–200

    Article  Google Scholar 

  • Rajmohan N, Elango L (2005) Distribution of iron, manganese, zinc and atrazine in groundwater in parts of Palar and Cheyyar river basins, South India. Environ Monit Assess 107(1–3):115–131

    Article  Google Scholar 

  • Raju NJ, Dey S, Gossel W, Wycisk P (2012) Fluoride hazard and assessment of groundwater quality in the semi-arid Upper Panda River basin, Sonbhadra district, Uttar Pradesh, India. Hydrol Sci J 57(7):1433–1452

    Article  Google Scholar 

  • Rao NS (2009) Fluoride in groundwater, Varaha River Basin, Visakhapatnam District, Andhra Pradesh, India. Environ Monit Assess 47–60

    Article  Google Scholar 

  • Ravenscroft P, Burgess WG, Ahmed KM, Burren M, Perrin J (2005) Arsenic in groundwater of the Bengal Basin, Bangladesh: distribution, field relations, and hydrogeological setting. Hydrogeol J 13(5–6):727–751

    Article  Google Scholar 

  • Reddy AGS, Reddy DV, Rao PN, Prasad KM (2010) Hydrogeochemical characterization of fluoride rich groundwater of Wailpalli watershed, Nalgonda District, Andhra Pradesh, India. Environ Monit Assess 171(1–4):561–577

    Article  Google Scholar 

  • Rehana S, Mujumdar PP (2011) River water quality response under hypothetical climate change scenarios in Tunga-Bhadra river, India. Hydrol Process 25(22):3373–3386

    Article  Google Scholar 

  • Rekha, Naik SN, Prasad R (2006) Pesticide residue in organic and conventional food-risk analysis. J Chem Health Saf 13(6):12–19

    Article  Google Scholar 

  • Reuveny R (2007) Climate change-induced migration and violent conflict. Political Geogr 26(6):656–673

    Article  Google Scholar 

  • Robertson FN (1989) Arsenic in ground-water under oxidizing conditions, south-west United States. Environ Geochem Health 11:171–185

    Article  Google Scholar 

  • Sajil Kumar PJ, Jegathambal P, Nair S, James EJ (2015) Temperature and pH dependent geochemical modeling of fluoride mobilization in the groundwater of a crystalline aquifer in southern India. J Geochem Explor 156:1–9

    Article  Google Scholar 

  • Samanta G, Sharma R, Roychowdhury T, Chakraborti D (2004) Arsenic and other elements in hair, nails, and skin-scales of arsenic victims in West Bengal, India. Sci Total Environ 326(1–3):33–47

    Article  Google Scholar 

  • Sarma NAMRS, Sunil JAAK (2010) Fluoride incidence in groundwater: a case study from Talupula, Andhra Pradesh, India. Environ Monit Assess

    Google Scholar 

  • Saxena VK, Ahmed S (2001) Dissolution of fluoride in groundwater: a water-rock interaction study. Environ Geol 40(9):1084–1087

    Article  Google Scholar 

  • Saxena V, Ahmed S (2003) Inferring the chemical parameters for the dissolution of fluoride in groundwater. Environ Geol 43(6):731–736

    Article  Google Scholar 

  • Scheyer A, Graeff C, Morville S, Mirabel P, Millet M (2005) Analysis of some organochlorine pesticides in an urban atmosphere (Strasbourg, east of France). Chemosphere 58(11):1517–1524

    Article  Google Scholar 

  • Scotia G. of N (2010) Government of Nova Scotia. Halifax, Nova Scotia, Canada

    Google Scholar 

  • Sethy NK, Jha VN, Sutar AK, Rath P, Sahoo SK, Ravi PM, Tripathi RM (2014) Assessment of naturally occurring radioactive materials in the surface soil of uranium mining area of Jharkhand, India. J Geochem Explor 142:29–35

    Article  Google Scholar 

  • Shah BA (2010) Arsenic-contaminated groundwater in Holocene sediments from parts of middle Ganga plain, Uttar Pradesh, India. Curr Sci 98(10):1359–1365

    Google Scholar 

  • Shamsudduha M, Uddin A (2007) Quaternary shoreline shifting and hydrogeologic influence on the distribution of groundwater arsenic in aquifers of the Bengal Basin. J Asian Earth Sci 31(2):177–194

    Article  Google Scholar 

  • Sherif MM, Singh VP (1999) Effect of climate change on sea water intrusion in coastal aquifers. Hydrol Process 13:1277–1287

    Article  Google Scholar 

  • Singh S, Singh B, Kumar A (2003) Natural radioactivity measurements in soil samples from Hamirpur district, Himachal Pradesh, India. Radiat Meas 36(1–6):547–549

    Article  Google Scholar 

  • Singh S, Rani A, Mahajan RK (2005) 226Ra, 232Th and 40K analysis in soil samples from some areas of Punjab and Himachal Pradesh, India using gamma ray spectrometry. Radiat Meas 39(4):431–439

    Article  Google Scholar 

  • Singh BB, Sharma R, Gill JPS, Aulakh RS, Banga HS (2011) Climate change, zoonoses and India. Rev Sci Tech 30(3):779–788

    Article  Google Scholar 

  • Singh S, Sharma A, Kumar B, Kulshrestha UC (2017) Wet deposition fluxes of atmospheric inorganic reactive nitrogen at an urban and rural site in the Indo-Gangetic Plain. Atmos Pollut Res 8(4):669–677

    Article  Google Scholar 

  • Sinkkonen S, Paasivirta J (2000) Degradation half-life times of PCDDs, PCDFs and PCBs for environmental fate modeling. Chemosphere 40(9–11):943–949

    Article  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17(5):517–568

    Article  Google Scholar 

  • Smedley PL, Zhang M, Zhang G, Luo Z (2003) Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Appl Geochem 18(9):1453–1477

    Article  Google Scholar 

  • Smedley PL, Knudson J, Maiga D (2007) Arsenic in groundwater from mineralised Proterozoic basement rocks of Burkina Faso. Appl Geochem 22:1074–1092

    Article  Google Scholar 

  • Sobrevila C (2008) The role of indigenous peoples in biodiversity conservation: the natural but often forgotten partners. The World Bank, 102

    Google Scholar 

  • Sophocleous M (2004) Climate change: why should water professionals care? Ground Water 42(5):637

    Article  MathSciNet  Google Scholar 

  • Stanton JS, Qi SL (2006) Ground-water quality of the northern High Plains aquifer, 1997, 2002–04. Publications of the US Geological Survey US Geological Survey, Lincoln, NE

    Google Scholar 

  • Subba Rao N (2008) Factors controlling the salinity in groundwater in parts of Guntur district, Andhra Pradesh, India. Environ Monit Assess 138(1–3):327–341

    Article  Google Scholar 

  • Subba Rao N (2011) High-fluoride groundwater. Environ Monit Assess 176(1–4):637–645

    Article  Google Scholar 

  • Subramani T, Rajmohan N, Elango L (2010) Groundwater geochemistry and identification of hydrogeochemical processes in a hard rock region, Southern India. Environ Monit Assess 162(1–4):123–137

    Article  Google Scholar 

  • Swaminathan M (1975) Operational research projects, purpose and approach. Indian Farming

    Google Scholar 

  • Sweetman AJ, Valle MD, Prevedouros K, Jones KC (2005) The role of soil organic carbon in the global cycling of persistent organic pollutants (POPs): interpreting and modelling field data. Chemosphere 60(7):959–972

    Article  Google Scholar 

  • Tajul Baharuddin MF, Taib S, Hashim R, Abidin MHZ, Rahman NI (2013) Assessment of seawater intrusion to the agricultural sustainability at the coastal area of Carey Island, Selangor, Malaysia. Arab J Geosci 6(10):3909–3928

    Article  Google Scholar 

  • Taylor RG, Howard KWF (1994) Goundwater quality. In: Nash H, McCall GJH (eds) Goundwater quality. Chapman & Hall, London, UK, pp 31–44

    Google Scholar 

  • Tripathi RM, Sahoo SK, Jha VN, Khan AH, Puranik VD (2008) Assessment of environmental radioactivity at uranium mining, processing and tailings management facility at Jaduguda, India. Appl Radiat Isot 66(11):1666–1670

    Article  Google Scholar 

  • Tripathi RM, Sahoo SK, Jha VN, Kumar R, Shukla AK, Puranik VD, Kushwaha HS (2011) Radiation dose to members of public residing around uranium mining complex, Jaduguda, Jharkhand, India. Radiat Prot Dosimetry 147(4):565–572

    Article  Google Scholar 

  • UNESCO (2009) Water in a changing world. The United Nations world water development report 3 WATER. The United Nations Educational, Scientific and Cultural Organization (UNESCO), London, UK

    Google Scholar 

  • UNFCCC (2008) Report of the Conference of the Parties on its thirteenth session, held in Bali from 3 to 15 December 2007, 1–60. https://unfccc.int/resource/docs/2007/cop13/eng/06a01.pdf

  • USEPA (2008) White paper: aquatic life criteria for contaminants of emerging concern, part I: general challenges and recommendations. USEPA

    Google Scholar 

  • USEPA (2013) Impacts of climate change on the occurrence of harmful algal blooms. United States Environmental Protection Agency; Office of Water

    Google Scholar 

  • van Geen A, Cheng Z, Jia Q, Zheng Y, Seddique AA, Rahman MW, Rahman MM, Ahmed KM (2007) Monitoring 51 community wells in Araihazar, Bangladesh, for up to 5 years: implications for arsenic mitigation. J Environ Sci Health A Tox Hazard Subst Environ Eng 42:1729–1740

    Article  Google Scholar 

  • Vasickova P, Psikal I, Kralik P, Widen F, Hubalek Z, Pavlik I (2007) Hepatitis E virus: a review. Vet Med 52(9):365–384

    Article  Google Scholar 

  • Virkutyte J, Sillanpää M (2006) Chemical evaluation of potable water in Eastern Qinghai Province, China: human health aspects. Environ Int 32(1):80–86

    Article  Google Scholar 

  • Vivona R, Presiosi E, Madé B, Giuliano G (2007) Occurrence of minor toxic elements in volcanic-sedimentary aquifers: a case study in central Italy. Hydrogeol J 15:1183–1196

    Article  Google Scholar 

  • Weber FA, Hofacker AF, Voegelin A, Kretzschmar R (2010) Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil. Environ Sci Technol 44(1):116–122

    Article  Google Scholar 

  • Whitehead PG, Wilby RL, Battarbee RW, Kernan M, Wade AJ (2009) A review of the potential impacts of climate change on surface water quality. Hydrol Sci J 54(1):101–123

    Article  Google Scholar 

  • Whitehead PG, Barbour E, Futter MN, Sarkar S, Rodda H, Caesar J, Butterfield D, Jin L, Sinha R, Nicholls R, Salehin M (2015a) Impacts of climate change and socio-economic scenarios on flow and water quality of the Ganges, Brahmaputra and Meghna (GBM) river systems: low flow and flood statistics. Environ Sci Process Impacts 17(6):1057–1069

    Google Scholar 

  • Whitehead PG, Sarkar S, Jin L, Futter MN, Caesar J, Barbour E, Butterfield D, Sinha R, Nicholls R, Hutton C, Leckie HD (2015b) Dynamic modeling of the Ganga river system: impacts of future climate and socio-economic change on flows and nitrogen fluxes in India and Bangladesh. Environ Sci Process Impacts 17(6):1082–1097

    Google Scholar 

  • WHO (2017) Guidelines for drinking-water quality, 2nd edn., vol 1. Recommendations—addendum

    Google Scholar 

  • Wilby R (1994) Exceptional weather in the Midlands, UK, during 1988–1990 results in the rapid acidification of an upland stream. Environ Pollut 86:15–19

    Article  Google Scholar 

  • Wirsing RG, Jasparro C (2007) River rivalry: water disputes, resource insecurity and diplomatic deadlock in South Asia. Water Policy 9(3):231–251

    Article  Google Scholar 

  • Wright RF (2008) The decreasing importance of acidification episodes with recovery from acidification: an analysis of the 30-year record from Birkenes, Norway. Hydrol Earth Syst Sci 12:353–362

    Article  Google Scholar 

  • Wu Y, Wang Y, Xie X (2014) Occurrence, behavior and distribution of high levels of uranium in shallow groundwater at Datong basin, northern China. Sci Total Environ 472:809–817

    Article  Google Scholar 

  • Yadav IC, Devi NL, Syed JH, Cheng Z, Li J, Zhang G, Jones KC (2015) Current status of persistent organic pesticides residues in air, water, and soil, and their possible effect on neighboring countries: a comprehensive review of India. Sci Total Environ 511:123–137

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, N., Mahanta, C., Kumar, M. (2020). Water Quality Under the Changing Climatic Condition: A Review of the Indian Scenario. In: Kumar, M., Snow, D., Honda, R. (eds) Emerging Issues in the Water Environment during Anthropocene. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-32-9771-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9771-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9770-8

  • Online ISBN: 978-981-32-9771-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics