Skip to main content

Phytoremediation of Heavy Metals/Metalloids by Native Herbaceous Macrophytes of Wetlands: Current Research and Perspectives

  • Chapter
  • First Online:
Emerging Issues in the Water Environment during Anthropocene

Abstract

This chapter focuses on heavy metal/metalloid phytoremediation potential of some native herbaceous wetland macrophytes with special reference to macrophytes found in wetlands of Assam, India. Depending on the plant type, site condition and contaminants, seven different plant-based phytoremediation techniques can be used. Aquatic macrophytes are usually found to follow phytofiltration (rhizofiltration) technique for cleanup of inorganic as well as organic contaminants in aquatic environment. Physiological, biochemical and molecular mechanisms of the plants are being studied for better understanding of metal uptake, translocation, localization and tolerance capacity. Accumulation of toxic metals/metalloids in plant cells cause deactivation of cell enzymes, consequently affects plant growth. Detoxification mechanisms of plant to survive and grow in metal contaminated environments include chelation of metal cations by ligands and sequestered away these toxic metal complexes into less metabolically active sites such as vacuoles and cell wall where metal cannot readily dissociate. Different techniques such as electron energy loss spectroscopy (EELS), particle-induced X-ray emission (micro-PIXE), transmission electron microscopy (TEM), nuclear micro-probe technique (NMP) are applied to assess the distribution of metals/metalloids in plant tissues at subcellular level. However, physicochemical parameters such as pH, salinity, light, temperature and, presence of other cations and anions also play important roles in metal/metalloids uptake by macrophyte. Some of the macrophytes are reported as hyperaccumulator of one or more metals/metalloids. Many of the native macrophytes found in Indian wetlands also have worldwide distribution which indicates their global interest in the research area of phytoremediation. This chapter also presents an appraisal of the current research and practical applicability of these macrophytes in an effort to elucidate their significance in environmental pollution research. A multidisciplinary as well as integrated approach towards this phytoremediation technology is necessary to make it as the most promising solution to combat heavy metal contamination in aquatic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah MA (2012) Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L. Environ Technol 33(13–15):1609–1614

    Article  Google Scholar 

  • Abhilash PC, Yunus M (2011) Can we use biomass produced from phytoremediation? Biomass Bioenergy 35:1371–1372

    Article  Google Scholar 

  • Adams N, Carroll D, Madalinski K, Rock S (2000) Introduction to phytoremediation. United States Environmental Protection Agency, Office of Research and Development, Washington DC, USA

    Google Scholar 

  • Ager FJ, Ynsa MD, Domínguez-Solís JR, López-Martín MC, Gotor C, Romero LC (2003) Nuclear micro-probe analysis of Arabidopsis thaliana leaves. Nucl Instrum Methods Phys Res B 210:401–406

    Article  Google Scholar 

  • Ahmad A, Ghufran R, Zularisam AW (2011) Phytosequestration of metals in selected plants growing on a contaminated Okhla industrial areas, Okhla, New Delhi, India. Water Air Soil Pollut 217(1):255–266

    Article  Google Scholar 

  • Ahmed S, Popov V, Trevedi RC (2008) Constructed wetland as tertiary treatment for municipal wastewater. Institution of Civil Engineers, pp 77–84. WR2

    Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881

    Article  Google Scholar 

  • Anderson CWN, Brooks RR, Stewart RB, Simcock R (1999) Gold uptake by plants. Gold Bull 32:48–52

    Article  Google Scholar 

  • Andreazza R, Bortolon L, Pieniz S, Camargo FAO, Bortolon ESO (2013) Copper phytoextraction and phytostabilization by Brachiaria decumbens Stapf. in vineyard soils and a copper mining waste. Open J Soil Sci 3:273–282

    Article  Google Scholar 

  • Ashraf MA, Maah MJ, Yusoff I (2011) Heavy metals accumulation in plants growing in ex tin mining catchment. Int J Environ Sci Technol 8(2):401–416

    Article  Google Scholar 

  • Audet P, Charest C (2007) Dynamics of arbuscular mycorrhizal symbiosis in heavy metal phytoremediation: meta-analytical and conceptual perspectives. Environ Pollut 147(3):609–614

    Article  Google Scholar 

  • Augustynowicz J, Łukowicz K, Tokarz K, Płachno BJ (2015) Potential for chromium (VI) bioremediation by the aquatic carnivorous plant Utricularia gibba L. (Lentibulariaceae). Environ Sci Pollut Res 22:9742–9748

    Article  Google Scholar 

  • Aurangzeb N, Nisa S, Bibi Y, Javed F, Hussain F (2014) Phytoremediation potential of aquatic herbs from steel foundry effluent. Braz J Chem Eng 31:881–886

    Article  Google Scholar 

  • Baruah S, Bora MS, Sharma P, Deb P, Sarma KP (2017) Understanding of the distribution, translocation, bioaccumulation, and ultrastructural changes of Monochoria hastata plant exposed to cadmium. Water Air Soil Pollut 228:4–21

    Article  Google Scholar 

  • Bidwell SD, Crawford SA, Woodrow IE, Sommer-Knudsen J, Marshall AT (2004) Sub-cellular localization of Ni in the hyperaccumulator, Hybanthus floribundus (Lindley) F. Muell. Plant Cell Environ 27:705–716

    Article  Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    Article  Google Scholar 

  • Bordoloi S, Basumatary B (2016) A study on degradation of heavy metals in crude oil-contaminated soil using Cyperus rotundus. In: Phytoremediation, pp 53–60

    Google Scholar 

  • Burken JG, Schnoor JL (1999) Distribution and volatilization of organic compounds following uptake by hybrid poplar trees. Int J Phytorem 1:139–151

    Article  Google Scholar 

  • Cambrollé J, Redondo-Gómez S, Mateos-Naranjo E, Figueroa ME (2008) Comparison of the role of two Spartina species in terms of phytostabilization and bioaccumulation of metals in the estuarine sediment. Mar Pollut Bull 56:2037–2042

    Article  Google Scholar 

  • Cenkci S, Cigerci IH, Yildiz M, Özay C, Bozdag A, Terzi H (2010) Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Exp Bot 67:467–473

    Article  Google Scholar 

  • Chandra R, Yadav S (2011) Phytoremediation of Cd, Cr Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperous esculentus. Int J Phytorem 13:580–591

    Article  Google Scholar 

  • Chaney RL (1983) Plant uptake of inorganic waste constituents. In: Parr JFEA (ed) Land treatment of hazardous wastes. Noyes Data Corp, Park Ridge, NJ, pp 50–76

    Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1443

    Article  Google Scholar 

  • Chaudhury D, Majumder A, Misra AK, Bandyopadhyay K (2014) Cadmium removal by Lemna minor and Spirodela polyrhiza. Int J Phytorem 16:1119–1132

    Article  Google Scholar 

  • Chen J-C, Wang K-S, Chen H, Lu C-Y, Huang L-C, Li H-C, Peng T-H, Chang S-H (2010) Phytoremediation of Cr(III) by Ipomonea aquatica (water spinach) from water in the presence of EDTA and chloride: effects of Cr speciation. Bioresour Technol 101:3033–3039

    Article  Google Scholar 

  • Clark JR, VanHassel JR, Nicholson RB, Cherry DS, Cairns J Jr (1981) Accumulation and depuration of metals by duck-weed (Lemna perpusilla). Ecotoxicol Environ Saf 5:87–96

    Article  Google Scholar 

  • Cobbett C (2003) Heavy metals and plants-model systems and hyperaccumulators. New Phytol 159:289–293

    Article  Google Scholar 

  • Dabonne S, Koffi B, Kouadio E, Koffi A, Due E, Kouame L (2010) Traditional utensils: potential sources of poisoning by heavy metals. Br J Pharmacol Toxicol 1:90–92

    Google Scholar 

  • Dal Corso G, Farinati S, Furini A (2010) Regulatory networks of cadmium stress in plants. Plant Signal Behav 5:663–667

    Article  Google Scholar 

  • Dalvi AA, Bhalerao SA (2013) Response of plants towards heavy metal toxicity: an overview of avoidance, tolerance and uptake mechanism. Ann Plant Sci 2(9):362–368

    Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36

    Article  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sasthi NA, Meaghar RB, Salt DE (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and gamma-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    Article  Google Scholar 

  • Dhankher OP, Pilon-Smits EAH, Meagher RB, Doty S (2011) Biotechnological approaches for phytoremediation. In: Altman A, Hasegawa PM (eds) Plant biotechnology and agriculture. Academic Press, Oxford, pp 309–328

    Google Scholar 

  • Dhir B, Sharmila P, Pardha Saradhi P, Nasim SA (2009) Physiological and antioxidant responses of Salvinia natans exposed to chromium-rich wastewater. Ecotoxicol Environ Saf 72:1790–1797

    Article  Google Scholar 

  • Dhir B, Sharmila P, Pardha Saradhi P, Sharma S, Kumar R, Mehta D (2011) Heavy metal induced physiological alterations in Salvinia natans. Ecotoxicol Environ Saf 74:1678–1684

    Article  Google Scholar 

  • Dogan M, Karatas M, Aasim M (2018) Cadmium and lead bioaccumulation potentials of an aquatic macrophyte Ceratophyllum demersum L.: a laboratory study. Ecotoxicol Environ Saf 148:431–440

    Article  Google Scholar 

  • Drazkiewicz M, Baszynski T (2005) Growth parameters and photosynthetic pigments in leaf segments of Zea mays exposed to cadmium, as related to protection mechanisms. J Plant Physiol 162:1013–1021

    Article  Google Scholar 

  • Flowers TJ, Galal HK, Bromham L (2010) Evolution of halophytes: multiple origins of salt tolerance. Funct Plant Biol 37:604–612

    Article  Google Scholar 

  • Fulekar M, Singh A, Bhaduri AM (2009) Genetic engineering strategies for enhancing phytoremediation of heavy metals. Afr J Biotechnol 8:529–535

    Google Scholar 

  • Fumbarov TS, Goldsbrough PB, Adam Z, Tel-Or E (2005) Characterization and expression of metallothionein gene in the aquatic fern Azolla filiculoides under heavy metal stress. Planta 223:69–76

    Article  Google Scholar 

  • Gallego S, Benavides M, Tomarow A (2002) Involvement of an antioxidant defense system in the adaptive response to heavy metal ions in Helianthus annus L. cells. Plant Growth Regul 36:267–273

    Article  Google Scholar 

  • Gambrell R (1994) Trace and toxic metals in wetlands—a review. J Environ Qual 23:883–891

    Article  Google Scholar 

  • Gatliff EG (1994) Vegetative remediation process offers advantages over traditional pump-and-treat technologies. Remediation 4(3):343–352

    Article  Google Scholar 

  • Gerhardt KE, Huang X, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  Google Scholar 

  • Ghnaya T, Nouairi I, Slama I, Messedi D, Grignon C, Adbelly C, Ghorbel MH (2005) Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum. J Plant Physiol 162:1133

    Article  Google Scholar 

  • Ghosh S (2010) Wetland macrophytes as toxic metal accumulators. Int J Environ Sci 1:523–528

    Google Scholar 

  • Greipsson S (2011) Phytoremediation. Nat Educ Knowl 3(10):7

    Google Scholar 

  • Guimaraes JR, Meili M, Hylander R, de Castro e Silva E, Roulet R, Mauro JB, de Lemos R (2000) Mercury net methylation in five tropical flood plain regions of Brazil: high in the root zone of floating macrophyte mats but low in surface sediments and flooded soils. Sci Total Environ 261:99–107

    Google Scholar 

  • Gupta D, Nicoloso F, Schetinger M, Rossato L, Pereira L, Castro G, Srivastava S, Tripathi R (2009) Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater 172:479–484

    Article  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  Google Scholar 

  • Harada E, Kim JA, Meyer AJ, Hell R, Clemens S, Choi YE (2010) Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses. Plant Cell Physiol 51(10):1627–1637

    Article  Google Scholar 

  • Hazra M, Avishek K, Pathak G (2015) Phytoremedial potential of Typha latifolia, Eichhornia crassipes and Monochoria hastata found in contaminated water bodies across Ranchi city (India). Int J Phytorem 17:835–840

    Article  Google Scholar 

  • Heaton ACP, Rugh CL, Kim T, Wang NJ, Meagher RB (2003) Toward detoxifying mercury-polluted aquatic sediments with rice genetically engineered for mercury resistance. Environ Toxicol Chem 22:2940–2947

    Article  Google Scholar 

  • Heaton ACP, Rugh CL, Wang N-J, Meagher RB (2005) Physiological responses of transgenic merA-TOBACCO (Nicotiana tabacum) to foliar and root mercury exposure. Water Air Soil Pollut 161:137–155

    Article  Google Scholar 

  • Horner JE, Castle JW, Rodger JH Jr, Gulde CM (2012) Design and performance of pilot-scale constructed wetland treatment systems for treating oil field produced water from sub-Saharan Africa. Water Air Soil Pollut 223:1945–1957

    Article  Google Scholar 

  • ITRC (Interstate Technology & Regulatory Council) (2009) Phytotechnology technical and regulatory guidance and decision trees, revised. PHYTO-3, Washington, DC

    Google Scholar 

  • Jain SK, Vasudevan P, Jha NK (1990) Azolla pinnata R. Br. and Lemna minor L. for removal of lead and zinc from polluted water. Water Res 24(2):177–183

    Article  Google Scholar 

  • Jayasri MA, Suthindhiran K (2017) Effect of zinc and lead on the physiological and biochemical properties of aquatic plant Lemna minor: its potential role in phytoremediation. Appl Water Sci 7:1247–1253

    Article  Google Scholar 

  • Klink A (2017) A comparison of trace metal bioaccumulation and distribution in Typha latifolia and Phragmites australis: implication for phytoremediation. Environ Sci Pollut Res 24:3843–3852

    Article  Google Scholar 

  • Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27:799–810

    Article  Google Scholar 

  • Kumar V, Chopra AK (2018) Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of the activated sludge process-based municipal wastewater treatment plant. Environ Technol 39(1):12–23

    Article  Google Scholar 

  • Kumari A, Lal B, Rai UN (2016a) Assessment of native plant species for phytoremediation of heavy metals growing in the vicinity of NTPC sites, Kahalgaon, India. Int J Phytorem 18(6):592–597

    Article  Google Scholar 

  • Kumari S, Kumar B, Sheel R (2016b) Bioremediation of heavy metals by serious aquatic weed, Salvinia. Int J Curr Microbiol Appl Sci 5(9):355–368

    Article  Google Scholar 

  • LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, AbdelSamie M, Chiang CY, Tagmount A, deSouza M, Neuhierl B, Böck A, Caruso J, Terry N (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135:377–383

    Article  Google Scholar 

  • Li B, Shi JB, Wang X, Meng M, Huang L, Qi XL, He B, Ye ZH (2013) Variations and constancy of mercury and methylmercury accumulation in rice grown at contaminated paddy field sites in three Provinces of China. Environ Pollut 181:91–97

    Article  Google Scholar 

  • Liang Zhu Y, Pilon-Smits E, Jouanin L, Terry N (1999) Overexpression of glutathione synthetase in indian mustard enhances cadmium accumulation and tolerance. Plant Physiol 119:73–80

    Article  Google Scholar 

  • Lima LKS, Pelosi BT, Silva MGC, Vieira MGA (2013) Lead and chromium biosorption by Pistia stratiotes biomass. Chem Eng Trans 32:1045–1050

    Google Scholar 

  • Liu D, Kottke I (2004) Subcellular localization of cadmium in the root cells of Allium cepa by electron energy loss spectroscopy and cytochemistry. J Biosci 29:329–335

    Article  Google Scholar 

  • Liu J, Dong Y, Xu H, Wang D, Xu J (2007) Accumulation of Cd, Pb and Zn by 19 wetland plant species in constructed wetland. J Hazard Mater 147(3):947–953

    Article  Google Scholar 

  • Liu D, Li T, Jin X, Yang X, Islam E, Mahmood Q (2008) Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii. J Integr Plant Biol 50:129–140

    Article  Google Scholar 

  • Long XX, Zhang YG, Jun D, Zhou QX (2009) Zinc, cadmium and lead accumulation and characteristics of rhizosphere microbial population associated with hyperaccumulator Sedum alfredii Hance under natural conditions. Bull Environ Contam Toxicol 82:460–467

    Article  Google Scholar 

  • Lu Q, He ZL, Graetz DA, Stoffella PJ, Yang X (2011) Uptake and distribution of metals by water lettuce (Pistia stratiotes L.). Environ Sci Pollut Res 18:978–986

    Article  Google Scholar 

  • Lytle CM, Lytle FW, Yang N, Qian J, Hansen D, Zayed A, Terry N (1998) Reduction of Cr(VI) to Cr(III) by wetland plants: potential for in situ heavy metal detoxification. Environ Sci Techol 32:3087–3093

    Article  Google Scholar 

  • Ma X, Burken JG (2003) TCE diffusion to the atmosphere in phytoremediation applications. Environ Sci Technol 37:2534–2539

    Article  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang WH, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    Article  Google Scholar 

  • Manousaki E, Kalogerakis N (2011) Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind Eng Chem Res 50:656–660

    Article  Google Scholar 

  • Manousaki E, Kadukova J, Papadantonakis N, Kalogerakis N (2008) Phytoextraction and phyto-excretion of Cd by Tamarix smyrnensis growing on contaminated non saline and saline soils. Environ Res 106:326

    Article  Google Scholar 

  • Mauro JB, Guimares JR, Melamed R (1999) Mercury methylation in a tropical macrophyte: influence of abiotic parameters. Appl Organomet Chem 13:1–6

    Article  Google Scholar 

  • Mazumdar K, Das S (2015) Phytoremediation of Pb, Zn, Fe, and Mg with 25 wetland plant species from a paper mill contaminated site in North East India. Environ Sci Pollut Res 22:701–710

    Article  Google Scholar 

  • McGrath S, Zhao F (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    Article  Google Scholar 

  • Memon AR, Schroder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175

    Article  Google Scholar 

  • Milic D, Lukovic J, Ninkov J, Zeremski-Skoric T, Zoric L, Vasin J, Milic S (2012) Heavy metal content in alophytic plants from inland and maritime saline areas. Cent Eur J Biol 7:307–317

    Google Scholar 

  • Miranda AF, Muradov N, Gujar A, Stevenson T, Nugegoda D, Ball AS, Mouradov A (2014) Application of aquatic plants for the treatment of selenium-richmining wastewater and production of renewable fuels and petrochemicals. J Sustain Bioenergy Syst 4:97–112

    Article  Google Scholar 

  • MoEF (Ministry of Environment & Forests) (2011) A state-of-the-art report on bioremediation, its applications to contaminated sites in India. http://www.moef.nic.in

  • Mohanty M (2016) Post-harvest management of phytoremediation technology. J Environ Anal Toxicol. http://DOI.org/10.4172/2161-0525.1000398

  • Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci. https://DOI.org/10.3389/fpls.2016.00303

  • Mukhopadhyay S, Maiti SK (2010) Phytoremediation of metal enriched mine waste: a review. Global J Environ Res 4:135–150

    Google Scholar 

  • Nandakumar R, Chen L, Rogers SMD (2005) Agrobacterium-mediated transformation of the wetland monocot Typha latifolia L. (broadleaf cattail). Plant Cell Rep 23:744–750

    Article  Google Scholar 

  • Olguín EJ, Galván GS (2010) Aquatic phytoremediation: novel insights in tropical and subtropical regions. Pure Appl Chem 82(1):27–38

    Article  Google Scholar 

  • Olguín EJ, Galván GS (2012) Heavy metal removal in phytofiltration and phycoremediation: the need to differentiate between bioadsorption and bioaccumulation. New Biotechnol 30:3–8

    Article  Google Scholar 

  • Pardue JH, Patrick WH Jr (1995) Changes in metal speciation following alteration of sediment redox status. In: Allen H (ed) Metal-contaminated aquatic sediments. Science Publishers, Ann Arbor, MI, pp 169–185

    Google Scholar 

  • Parmar S, Singh V (2015) Phytoremediation approaches for heavy metal pollution: a review. J Plant Sci Res 2:135

    Google Scholar 

  • Parra LMM, Torres G, Arenas AD, Sánchez E, Rodríguez K (2012) Phytoremediation of low levels of heavy metals using duckweed (Lemna minor). Abiotic stress responses in plants. Springer, New York, pp 451–463

    Google Scholar 

  • Patel AK, Das N, Kumar M (2019) Multilayer arsenic mobilization and multimetal co-enrichment in the alluvium (Brahmaputra) plains of India: a tale of redox domination along the depth. Chemosphere 224:140–150

    Article  Google Scholar 

  • Pimentel D, McNair S, Janecka J, Wightman J, Simmonds C, O’Connell C, Wong E, Russel L, Zern J, Aquino T, Tsomondo T (2001) Economic and environmental threats of alien plant, animal, and microbe invasions. Agric Ecosyst Environ 84:1–20

    Article  Google Scholar 

  • Poklonov VA (2016) Removal of aluminum by aquatic plants Ceratophyllum demersum and Chara fragilis from water of experimental ecosystems. Russ J Gen Chem 86(13):2978–2982

    Article  Google Scholar 

  • Prasad MNV (2003) Phytoremediation of metal-polluted ecosystems: hype for commercialization. Russ J Plant Physiol 50:686–700

    Article  Google Scholar 

  • Prasad MNV (2004) Phytoremediation of metals in the environment for sustainable development. Proc Indian Natl Sci Acad 70:71–98

    Google Scholar 

  • Prasad MNV (2007) Aquatic plants for phytotechnology. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, Berlin, Heidelberg, pp 259–274

    Chapter  Google Scholar 

  • Prasad MNV, Malec P, Waloszek A, Bojko M, Strzalka K (2001) Physiological responses of Lemna trisulca L. (duckweed) to cadmium and copper bioaccumulation. Plant Sci 161:881–889

    Article  Google Scholar 

  • Radić S, Babić M, Skobić D, Roje V, Pevalek-Kozlina B (2010) Ecotoxicological effects of aluminum and zinc on growth and antioxidants in Lemna minor L. Ecotoxicol Environ Saf 73(3):336–342

    Article  Google Scholar 

  • Rahman MA, Hasegawa H, Ueda K, Maki T, Okumura C, Rahman MM (2007) Arsenic accumulation in duckweed (Spirodela polyrhiza L.): a good option for phytoremediation. Chemosphere 69(3):493–499

    Article  Google Scholar 

  • Rahman MA, Reichman SM, De Filippis L, Sany SBT, Hasegawa H (2016) Phytoremediation of toxic metals in soils and wetlands: concepts and applications. Environmental remediation technologies for metal-contaminated soils. Springer, Japan, pp 161–195

    Chapter  Google Scholar 

  • Rai PK (2009a) Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit Rev Environ Sci Technol 39:697–753

    Article  Google Scholar 

  • Rai PK (2009b) Heavy metals in water, sediments and wetland plants in an aquatic ecosystem of tropical industrial region, India. Environ Monit Assess 158:433–457

    Article  Google Scholar 

  • Raskin I, Kumar PBAN, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5(3):285–290

    Article  Google Scholar 

  • Redondo-Gómez S (2013) Bioaccumulation of heavy metals in Spartina. Funct Plant Biol 40:913–921

    Article  Google Scholar 

  • Rezania S, Taib SM, Din MFM, Dahalan FA, Kamyab H (2016) Comprehensive review on phytotechnology: heavy metals removal by diverse aquatic plants species from wastewater. J Hazard Mater 318:587–599

    Article  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928

    Article  Google Scholar 

  • Sabiha-Javied MT, Tufai M, Irfan N (2009) Heavy metal pollution from phosphate rock used for the production of fertilizer in Pakistan. Microchem J 91:94–99

    Article  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    Article  Google Scholar 

  • Sekabira K, Oryem-Origa H, Mutumba G, Kakudidi E, Basamba TA (2011) Heavy metal phytoremediation by Commelina benghalensis (L) and Cynodon dactylon (L) growing in Urban stream sediments. Int J Plant Physiol Biochem 3(8):133–142

    Google Scholar 

  • Shabani N, Sayadi MH (2012) Evaluation of heavy metals accumulation by two emergent macrophytes from the polluted soil: an experimental study. Environmentalist 32:91–98

    Article  Google Scholar 

  • Shim J, Kumar M, Mukherjee S, Goswami R (2019) Sustainable removal of pernicious arsenic and cadmium by a novel composite of MnO2 impregnated alginate beads: a cost-effective approach for wastewater treatment. J Environ Manag 234:8–20

    Article  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57(4):711–726

    Article  Google Scholar 

  • Shukla OP, Dubey S, Rai UN (2007) Preferential accumulation of cadmium and chromium: toxicity in Bacopa monnieri L. under mixed metal treatments. Bull Environ Contam Toxicol 78:252–257

    Article  Google Scholar 

  • Singh A, Prasad SM (2011) Reduction of heavy metal load in food chain: technology assessment. Rev Environ Sci Bio 10:199–214

    Article  Google Scholar 

  • Skinner K, Wright N, Porter-Goff E (2007) Mercury uptake and accumulation by four species of aquatic plants. Environ Pollut 145(1):234–237

    Article  Google Scholar 

  • Song W-Y, Sohn EJ, Martinoia E, Lee YJ, Yang Y-Y, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919

    Article  Google Scholar 

  • Sood A, Uniyal PL, Prasanna R, Ahluwalia AS (2012) Phytoremediation potential of aquatic macrophyte, Azolla. Ambio 41:122–137

    Article  Google Scholar 

  • Sridhar BBM, Diehl SV, Han FX, Monts DL, Su Y (2005) Anatomical changes due to uptake and accumulation of Zn and Cd in Indian mustard (Brassica juncea). Environ Exp Bot 54:131–141

    Article  Google Scholar 

  • Terry N, Bañuelos G (eds) (2000) Phytoremediation of contaminated soils and waters. CRC Press LLC, Boca Raton, FL, USA. http://dx.doi.org/10.1.1.467.809

  • Thakur S, Singh L, Wahid ZA, Siddiqui MF, Atnaw SM, Din MFM (2016) Plant-driven removal of heavy metals from soil: uptake, translocation, tolerance mechanism, challenges, and future perspectives. Environ Monit Assess. https://doi.org/10.1007/s10661-016-5211-9

  • Touceda-Gonzalez M, Alvarez-Lopeza V, Prieto-Fernandez A, Rodríguez-Garrido B, Trasar-Cepeda C, Mench M, Puschenreiter M, Quintela-Sabarís C, Macías-García F, Kidd PS (2017) Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in Cu-rich mine tailings. J Environ Manag 186:301–313

    Article  Google Scholar 

  • Vaillant N, Monnet F, Hitmi A, Sallanon H, Coudret A (2005) Comparative study of responses in four Datura species to a zinc stress. Chemosphere 59:1005–1013

    Article  Google Scholar 

  • Vale C, Catarino F, Cortesao C, Cacador M (1990) Presence of metal-rich rhizoconcretions on the roots of Spartina maritima from the salt marshes of the Tagus estuary, Portugal. Sci Total Environ 97:617–626

    Article  Google Scholar 

  • Valipour A, Ahn YH (2016) Constructed wetlands as sustainable ecotechnologies in decentralization practices: a review. Environ Sci Pollut Res 23:180–197

    Article  Google Scholar 

  • Van Aken B (2009) Transgenic plants for enhanced phytoremediation of toxic explosives. Curr Opin Biotechnol 20:231–236

    Article  Google Scholar 

  • Van der Ent A, Baker A, Reeves R, Pollard A, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

    Article  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, Van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res. http://dx.DOI.org/10.1007/s11356-009-0213-6

  • Vogel-Mikus K, Simcic J, Pelicon P, Budnar M, Kump P, Necemer M (2008) Comparison of essential and non-essential element distribution in leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE. Plant Cell Environ 31:1484–1496

    Article  Google Scholar 

  • Vymazal J (2007) Removal of nutrients in various types of constructed wetlands. Sci Total Environ 380:48–65

    Article  Google Scholar 

  • Vymazal J (2016) Concentration is not enough to evaluate accumulation of heavy metals and nutrients in plants. Sci Total Environ 544:495–498

    Article  Google Scholar 

  • Wan X, Lei M, Chen T (2016) Cost-benefit calculation of phytoremediation technology for heavy metal-contaminated soil. Sci Total Environ 563–564:796–802

    Article  Google Scholar 

  • Wang Y, Dong C, Xue Z, Jin Q, Xu Y (2016) De novo transcriptome sequencing and discovery of genes related to copper tolerance in Paeonia ostii. Gene 576:126–135

    Article  Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700

    Article  Google Scholar 

  • Wenhua H, Xiao C, Guanling S, Qunhui W, Chein CC (2007) Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiol Biochem 45:62–69

    Article  Google Scholar 

  • Weyens N, van der Lelie D, Taghavi S, Vangronsveld J (2009) Phytoremediation: plant-endophyte partnerships take the challenge. Curr Opin Biotechnol 20:248–254

    Article  Google Scholar 

  • White PJ (2016) Selenium accumulation by plants. Ann Bot 117:217–235

    Google Scholar 

  • Xu L, Wang Y, Liu W, Wang J, Zhu X, Zhang K, Yu R, Wang R, Xie Y, Zhang W, Gong Y, Liu L (2015) De novo sequencing of root transcriptome reveals complex cadmium-responsive regulatory networks in radish (Raphanus sativus L.). Plant Sci 236:313–323

    Article  Google Scholar 

  • Yadav S, Chandra R (2011) Heavy metals accumulation and ecophysiological effect on Typha angustifolia L. and Cyperus esculentus L. growing in distillery and tannery effluent polluted natural wetland site, Unnao, India. Environ Earth Sci 62:1235–1243

    Article  Google Scholar 

  • Yang S, Liang S, Yi L, Xu B, Cao J, Guo Y, Zhou Y (2014) Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Front Environ Sci Eng 8(3):394–404

    Article  Google Scholar 

  • Zhang FQ, Wang YS, Lou ZP, Dong JD (2007) Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67:44–50

    Article  Google Scholar 

  • Zhou N, Zheng B, He Y (2009) Short time domain wall dynamics in the random field using model with a driving field. Phys Rev B. http://dx.DOI.org/10.1103/PhysRevB.80.134425

  • Zhu YL, Zayed AM, Quian JH, Desouza M, Terry N (1999) Phytoaccumulation of trace elements by wetland plants, II: water hyacinth. J Environ Qual 28:339–444

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Environmental Science, Tezpur University and UGC-SAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kali Prasad Sarma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bora, M.S., Sarma, K.P. (2020). Phytoremediation of Heavy Metals/Metalloids by Native Herbaceous Macrophytes of Wetlands: Current Research and Perspectives. In: Kumar, M., Snow, D., Honda, R. (eds) Emerging Issues in the Water Environment during Anthropocene. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-32-9771-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9771-5_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9770-8

  • Online ISBN: 978-981-32-9771-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics