Skip to main content

Recent Progress in Selective Oxidations with Hydrogen Peroxide Catalyzed by Polyoxometalates

  • Chapter
  • First Online:
Book cover Frontiers of Green Catalytic Selective Oxidations

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

In this chapter, we summarize recent progress achieved in the liquid-phase selective oxidation of organic compounds using hydrogen peroxide as the green oxidant and anionic transition-metal oxide nano-sized clusters or polyoxometalates (POMs) as catalysts. POMs possess a unique combination of properties, including inorganic nature, metal oxide-like structure, thermal stability, thermodynamic stability to oxidation and hydrolysis over a wide pH range, tunable solubility, acid, and redox properties. In recent years, POMs have received significant attention as homogeneous molecular catalysts and building blocks for the construction of heterogeneous catalysts for green selective oxidations. Therefore, both homogeneous and heterogeneous POM-based catalyst systems will be covered in their relevance to the environmentally benign production of vital oxygen-containing compounds and oxidative decontamination of toxic compounds. The chapter starts with a description of some novel highly selective POM catalysts capable of heterolytic activation of H2O2. Then new approaches to biphasic catalysis with POMs are discussed in terms of their compliance with the principles of green chemistry. Finally, recent achievements in POM immobilization techniques, such as irreversible adsorption on carbon nanomaterials, encapsulation within supramolecular complexes covalently anchored to silica, and incorporation within metal–organic frameworks, are surveyed with special attention given to catalyst stability and reusability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cavani F, Centi G, Perathoner S, Trifiro F (eds) (2009) Sustainable industrial processes. Wiley-VCH, Weinheim

    Google Scholar 

  2. Duprez D, Cavani F (eds) (2014) Handbook of advanced methods and processes in oxidation catalysis. Imperial College Press, London

    Google Scholar 

  3. Catal. Sci. Technol. 1 (2011) Special issue on heterogeneous catalysis for fine chemicals. Pagliaro M, Hutchings G (guest eds)

    Google Scholar 

  4. Clerici MG, Kholdeeva OA (eds) (2013) Liquid phase oxidation via heterogeneous catalysis: organic synthesis and industrial applications. Wiley, Hoboken, New Jersey

    Google Scholar 

  5. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  6. Sheldon R, Arends IWCE, Hanefeld U (2007) Green chemistry and catalysis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  7. Strukul G (ed) (1992) Catalytic oxidations with hydrogen peroxide as oxidant. Kluwer Academic Publishers, Dordrecht, Boston

    Google Scholar 

  8. Jones CW (1999) Application of hydrogen peroxide and derivatives. Royal Society of Chemistry, Cambridge

    Google Scholar 

  9. Strukul G, Scarso A (2013) Environmentally benign oxidants. In: Clerici MG, Kholdeeva OA (eds) Liquid phase oxidation via heterogeneous catalysis: organic synthesis and industrial applications. Wiley, Hoboken, New Jersey, pp 1 − 20. https://doi.org/10.1002/9781118356760.ch1

    Google Scholar 

  10. Catalysts (2019) Special issue on direct synthesis of hydrogen peroxide, Strukul G, Menegazzo F (guest eds), https://www.mdpi.com/si/catalysts/hydrogen_peroxide

  11. Sheldon RA, van Bekkum H (eds) (2001) Fine chemicals through heterogeneous catalysis. Wiley-VCH, Weinheim

    Google Scholar 

  12. Hook BD (2013) Engineering aspects of liquid phase oxidations. In: Clerici MG, Kholdeeva OA (eds) Liquid phase oxidation via heterogeneous catalysis: organic synthesis and industrial applications. Wiley, Hoboken, New Jersey, pp 496 − 506. https://doi.org/10.1002/9781118356760.ch10

    Chapter  Google Scholar 

  13. Sheldon RA, Kochi JK (1981) Metal-catalyzed oxidations of organic compounds. Academic Press, New York

    Google Scholar 

  14. Masarwa A, Rachmilovich-Calis S, Meyerstein N, Meyerstein D (2005) Oxidation of organic substrates in aerated aqueous solutions by the Fenton reagent. Coord Chem Rev 249:1937–1943. https://doi.org/10.1016/j.ccr.2005.01.003

    Article  CAS  Google Scholar 

  15. Taramasso M, Perego G, Notari B (1983) Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. US Patent application 4 410 501

    Google Scholar 

  16. For recent review see: Clerici MG, Domine ME (2013) Oxidation reactions catalyzed by transitions metal–substituted zeolites. In: Clerici MG, Kholdeeva OA (eds) Liquid phase oxidation via heterogeneous catalysis: organic synthesis and industrial applications. Wiley, Hoboken, New Jersey, pp 21 − 93. https://doi.org/10.1002/9781118356760.ch2

    Chapter  Google Scholar 

  17. Romano U, Ricci M (2013) The hydroxylation of phenol to hydroquinone and catechol, In: Clerici MG, Kholdeeva OA (eds) Liquid phase oxidation via heterogeneous catalysis: organic synthesis and industrial applications. Wiley, Hoboken, New Jersey, pp 451 − 462. https://doi.org/10.1002/9781118356760.ch10

    Chapter  Google Scholar 

  18. Rivetti F, Buzzoni R (2013) The greening of nylon: the ammoximation process. In: Clerici MG, Kholdeeva OA (eds) Liquid phase oxidation via heterogeneous catalysis: organic synthesis and industrial applications. Wiley, Hoboken, New Jersey, pp 462 − 474. https://doi.org/10.1002/9781118356760.ch10

    Chapter  Google Scholar 

  19. Forlin A, Bergamo M, Lindner J (2013) Production of propylene oxide. In: Clerici MG, Kholdeeva OA (eds) Liquid phase oxidation via heterogeneous catalysis: organic synthesis and industrial applications. Wiley, Hoboken, New Jersey, pp 474 − 496. https://doi.org/10.1002/9781118356760.ch10

    Chapter  Google Scholar 

  20. Kholdeeva OA (2013) Selective oxidations catalyzed by mesoporous metal silicates. In: Clerici MG, Kholdeeva OA (eds) Liquid phase oxidation via heterogeneous catalysis: organic synthesis and industrial applications. Wiley, Hoboken, New Jersey, pp 127 − 219. https://doi.org/10.1002/9781118356760.ch4

    Chapter  Google Scholar 

  21. Kholdeeva OA (2014) Recent developments in liquid-phase selective oxidation using environmentally benign oxidants and mesoporous metal silicates. Catal Sci Technol 4:1869–1889. https://doi.org/10.1039/C4CY00087K

    Article  CAS  Google Scholar 

  22. Gallo A, Tiozzo C, Psaro R, Carniato F, Guidotti M (2013) Niobium metallocenes deposited onto mesoporous silica via dry impregnation as catalysts for selective epoxidation of alkenes. J Catal 298:77–83. https://doi.org/10.1016/j.jcat.2012.11.015

    Article  CAS  Google Scholar 

  23. Ivanchikova ID, Maksimchuk NV, Skobelev IY, Kaichev VV, Kholdeeva OA (2015) Mesoporous niobium-silicates prepared by evaporation-induced self-assembly as catalysts for selective oxidations with aqueous H2O2. J Catal 332:138–148. https://doi.org/10.1016/j.jcat.2015.10.003

    Article  CAS  Google Scholar 

  24. Kholdeeva OA, Ivanchikova ID, Maksimchuk NV, Skobelev IY, H2O2-based selective oxidations: Nb(V) versus Ti(IV). Catal Today, https://doi.org/10.1016/j.cattod.2018.04.002

    Article  CAS  Google Scholar 

  25. Pope MT (1983) Heteropoly and isopoly oxometalates. Springer-Verlag, Berlin

    Book  Google Scholar 

  26. Pope MT (2004) Polyoxo anions: synthesis and structure. In: Wedd AG (ed) Comprehensive coordination chemistry II, vol. 4. Elsevier Science, New York, pp 635–678. https://doi.org/10.1002/chin.200440229

  27. Hill CL, Prosser-McCartha CM (1995) Catalysis by transition metal oxygen anion clusters. Coord Chem Rev 143:407–455. https://doi.org/10.1016/0010-8545(95)01141-B

    Article  CAS  Google Scholar 

  28. Neumann R (2004) Polyoxometalates as catalysts for oxidation with hydrogen peroxide and molecular oxygen. In: Beller M, Bolm C (eds) Transition metals for organic synthesis, 2nd ed, vol. 2, Wiley-VCH, Weinheim; pp. 415–426. https://doi.org/10.1002/9783527619405.ch5k

  29. Hill CL (2004) Polyoxometalates: reactivity. In: Wedd AG (ed) Comprehensive coordination chemistry II, vol. 4. Elsevier Science, New York, pp 679–759. https://doi.org/10.1002/chin.200440228

  30. Neumann R (2010) Activation of molecular oxygen, polyoxometalates, and liquid-phase catalytic oxidation. Inorg Chem 49:3594–3601. https://doi.org/10.1021/ic9015383

    Article  CAS  PubMed  Google Scholar 

  31. Mizuno N, Kamata K (2011) Catalytic oxidation of hydrocarbons with hydrogen peroxide by vanadium-based polyoxometalates. Coord Chem Rev 255:2358–2370. https://doi.org/10.1016/j.ccr.2011.01.041

    Article  CAS  Google Scholar 

  32. Wang S-S, Yang G-Y (2015) Recent advances in polyoxometalate-catalyzed reactions. Chem Rev 115:4893–4962. https://doi.org/10.1021/cr500390v

    Article  CAS  PubMed  Google Scholar 

  33. Weinstock IA, Schreiber RE, Neumann R (2018) Dioxygen in polyoxometalate mediated reactions. Chem Rev 118:2680–2717. https://doi.org/10.1021/acs.chemrev.7b00444

    Article  CAS  PubMed  Google Scholar 

  34. Kholdeeva OA (2006) Titanium-monosubstituted polyoxometalates: relation between homogeneous and heterogeneous Ti–single–site–based catalysis. Top Catal 40:229–243. https://doi.org/10.1007/s11244-006-0124-4

    Article  CAS  Google Scholar 

  35. Kholdeeva OA, Maksimovskaya RI (2007) Titanium–and zirconium-monosubstituted polyoxometalates as molecular models for studying mechanisms of oxidation catalysis. J Mol Catal A: Chem 262:7–24. https://doi.org/10.1016/j.molcata.2006.08.023

    Article  CAS  Google Scholar 

  36. Kholdeeva OA (2013) Hydrogen peroxide activation over TiIV: what have we learned from studies on Ti-containing polyoxometalates? Eur J Inorg Chem 2013:1595–1605. https://doi.org/10.1002/ejic.201201396

    Article  CAS  Google Scholar 

  37. Guillemot G, Matricardi E, Chamoreau L-M, Thouvenot R, Proust A (2015) Oxidovanadium (V) anchored to silanol-functionalized polyoxotungstates: molecular models for single-site silica–supported vanadium catalysts. ACS Catal 5:7415–7423. https://doi.org/10.1021/acscatal.5b01878

    Article  CAS  Google Scholar 

  38. Zhang T, Mazaud L, Chamoreau L-M, Paris C, Guillemot G, Proust A (2018) Unveiling the active surface sites in heterogeneous titanium-based silicalite epoxidation catalysts: input of silanol-functionalized polyoxotungstates as soluble analogues. ACS Catal 8:2330–2342. https://doi.org/10.1021/acscatal.8b00256

    Article  CAS  Google Scholar 

  39. Maksimchuk NV, Maksimov GM, Evtushok VYu, Ivanchikova ID, Chesalov YuA, Maksimovskaya RI, Kholdeeva OA, Solé-Daura A, Poblet JM, Carbó JJ (2018) Relevance of protons in heterolytic activation of H2O2 over Nb(V): insights from model studies on nb-substituted polyoxometalates. ACS Catal 8:9722–9737. https://doi.org/10.1021/acscatal.8b02761

    Article  CAS  Google Scholar 

  40. Thematic issue on polyoxometalates (1998) Hill CL (guest ed) Chem Rev 98:1–390

    Google Scholar 

  41. Thematic issue frontiers in metal oxide cluster science (2011) Weinstock IA (guest ed) Israel J Chem 51:169–302

    Google Scholar 

  42. Themed collection polyoxometalate cluster science (2012) Cronin L, Müller A (guest eds) Chem Soc Rev 41:7325–7648

    Google Scholar 

  43. Kozhevnikov IV (2002) Catalysis by polyoxometalates. In: Roberts SN, Kozhevnikov IV, Derouane E (eds) Catalysts for fine chemical synthesis, vol 2. Wiley, Chichester

    Google Scholar 

  44. Neumann R, Khenkin AM (2006) Molecular oxygen and oxidation catalysis by phosphovanadomolybdates. Chem Commun 2529–2538. https://doi.org/10.1039/b600711m

  45. Mizuno N, Kamata K, Uchida S, Yamaguchi K (2009) Liquid-phase oxidations with hydrogen peroxide and molecular oxygen catalyzed by polyoxometalate-based compounds. In: Mizuno N (ed) Modern heterogeneous oxidation catalysis: design, reactions and characterization. Wiley–VCH, Weinheim, pp 185–217. https://doi.org/10.1002/9783527627547.ch6

  46. Hill CL, Kholdeeva OA (2013) Selective liquid phase oxidations in the presence of supported polyoxometalates. In: Clerici MG, Kholdeeva OA (eds) Liquid phase oxidation via heterogeneous catalysis: organic synthesis and industrial applications. Wiley, Hoboken, New Jersey, pp 263–319. https://doi.org/10.1002/9781118356760.ch6

    Chapter  Google Scholar 

  47. Du D-Y, Yan L-K, Su Z-M, Li S-L, Lan Y-Q, Wang E-B (2013) Chiral polyoxometalate-based materials: from design syntheses to functional applications. Coord Chem Rev 257:702–717. https://doi.org/10.1016/j.ccr.2012.10.004

    Article  CAS  Google Scholar 

  48. Carraro M, Fiorani G, Sartorel A, Bonchio M (2014) Polyoxometalates catalysts for sustainable oxidations and energy applications, In: Duprez D, Cavani F (eds) Handbook of advanced methods and processes in oxidation catalysis. Imperial College Press, London, pp 586 − 630. https://doi.org/10.1142/9781848167513_0021

    Chapter  Google Scholar 

  49. Sun M, Zhang J, Putaj P, Caps V, Lefebvre F, Pelletier J, Basset J-M (2014) Catalytic oxidation of light alkanes (C1–C4) by heteropoly compounds. Chem Rev 114:981–1019. https://doi.org/10.1021/cr300302b

    Article  CAS  PubMed  Google Scholar 

  50. Kamata K (2015) Design of highly functionalized polyoxometalate-based catalysts. Bull Chem Soc Jpn 88:1017–1028. https://doi.org/10.1246/bcsj.20150154

    Article  CAS  Google Scholar 

  51. Maldotti A, Amadelli R, Molinari A (2013) Heterogeneous photocatalysis for selective oxidations with molecular oxygen. In: Clerici MG, Kholdeeva OA (eds) Liquid phase oxidation via heterogeneous catalysis: organic synthesis and industrial applications. Wiley, Hoboken, New Jersey, pp 411–450. https://doi.org/10.1002/9781118356760.ch9

    Chapter  Google Scholar 

  52. Sullivan KP, Yin Q, Collins-Wildman DL, Tao M, Geletii YV, Musaev DG, Lian T, Hill CL (2018) In: Debbie C (ed) Frontiers in chemistry 6. https://doi.org/10.3389/fchem.2018.00365

  53. Lauinger SM, Yin Q, Geletii YV, Hill CL (2017) Adv Inorg Chem 69:117–154. https://doi.org/10.1016/bs.adioch.2016.12.002

    Article  CAS  Google Scholar 

  54. Kholdeeva OA, Maksimov GM, Maksimovskaya RI, Kovaleva LA, Fedotov MA, Grigoriev VA, Hill CL (2000) Dimeric titanium-containing polyoxometalate. Synthesis, characterization, and catalysis of H2O2–based thioether oxidation. Inorg Chem 39:3828–3837. https://doi.org/10.1021/ic0000653

    Article  CAS  PubMed  Google Scholar 

  55. Kholdeeva OA, Trubitsina TA, Maksimov GM, Golovin AV, Maksimovskaya RI (2005) Synthesis, characterization, and reactivity of Ti(IV)–monosubstituted Keggin polyoxometalates. Inorg Chem 44:1635–1642. https://doi.org/10.1021/ic0490829

    Article  CAS  PubMed  Google Scholar 

  56. Maksimchuk NV, Melgunov MS, Mrowiec-Białoń J, Jarzębski AB, Kholdeeva OA (2005) H2O2-based allylic oxidation of α-pinene over different single site catalysts. J Catal 235:175–183. https://doi.org/10.1016/j.jcat.2005.08.001

    Article  CAS  Google Scholar 

  57. Kholdeeva OA, Trubitsina TA, Timofeeva MN, Maksimov GM, Maksimovskaya RI, Rogov VA (2005) The role of protons in cyclohexene oxidation with H2O2 catalysed by Ti(IV)-monosubstituted Keggin polyoxometalate. J Mol Catal A: Chemical 232:173–178. https://doi.org/10.1016/j.molcata.2005.01.036

    Article  CAS  Google Scholar 

  58. Jiménez-Lozano P, Ivanchikova ID, Kholdeeva OA, Poblet JM, Carbó JJ (2012) Alkene oxidation by Ti-containing polyoxometalates. Unambiguous characterization of the role of protonation state. Chem Commun 48:9266–9268. https://doi.org/10.1039/c2cc34577c

    Article  CAS  Google Scholar 

  59. Goto Y, Kamata K, Yamaguchi K, Uehara K, Hikichi S, Mizuno N (2006) Synthesis, structural characterization, and catalytic performance of dititanium-substituted γ-Keggin silicotungstate. Inorg Chem 45:2347–2356. https://doi.org/10.1021/ic052179q

    Article  CAS  PubMed  Google Scholar 

  60. Takahashi E, Kamata K, Kikukawa Y, Sato S, Suzuki K, Yamaguchi K, Mizuno N (2015) Synthesis and oxidation catalysis of a Ti-substituted phosphotungstate, and identification of the active oxygen species. Catal Sci Tecnol 5:4778–4789. https://doi.org/10.1039/C5CY01031D

    Article  CAS  Google Scholar 

  61. Hussain F, Bassil BS, Kortz U, Kholdeeva OA, Timofeeva MN, de Oliveira P, Keita B, Nadjo L (2007) Dititanium-containing 19-tungstodiarsenate(III) [Ti2(OH)2As2W19O67(H2O)]8−: synthesis, structure, electrochemistry, and oxidation catalysis. Chem Eur J 13:4733–4742. https://doi.org/10.1002/chem.200700043

    Article  CAS  PubMed  Google Scholar 

  62. Kholdeeva OA, Donoeva BG, Trubitsina TA, Al-Kadamany G, Kortz U (2009) Unique catalytic performance of the polyoxometalate [Ti2(OH)2As2W19O67(H2O)]8−: the role of 5-coordinated titanium in H2O2 activation. Eur J Inorg Chem 2009:5134–5141. https://doi.org/10.1002/ejic.200900608

    Article  CAS  Google Scholar 

  63. Donoeva BG, Trubitsina TA, Antonova NS, Carbó JJ, Poblet JM, Al Kadamany G, Kortz U, Kholdeeva OA (2010) Epoxidation of alkenes with H2O2 catalyzed by di-titanium-containing 19-tungstodiarsenate(III): experimental and theoretical studies. Eur J Inorg Chem 2010:5312–5317. https://doi.org/10.1002/ejic.201000615

    Article  CAS  Google Scholar 

  64. Jiménez-Lozano P, Skobelev IY, Kholdeeva OA, Poblet JM, Carbó JJ (2016) Alkene epoxidation catalyzed by Ti-containing polyoxometalates: unprecedented β-oxygen transfer mechanism. Inorg Chem 55:6080–6084. https://doi.org/10.1021/acs.inorgchem.6b00621

    Article  CAS  PubMed  Google Scholar 

  65. Antonova NS, Carbó JJ, Kortz U, Kholdeeva O, Poblet JM (2010) Mechanistic insights into alkene epoxidation with H2O2 by Ti- and other TM-containing polyoxometalates: role of the metal nature and coordination environment. J Am Chem Soc 132:7488–7497. https://doi.org/10.1021/ja1023157

    Article  CAS  PubMed  Google Scholar 

  66. Matveev KI (1977) Development of new homogeneous catalysts for oxidation of ethylene to acetaldehyde. Kinet Katal 18:716–728

    Google Scholar 

  67. Nakagawa Y, Kamata K, Kotani M, Yamaguchi K, Mizuno N (2005) Polyoxovanadometalate-catalyzed selective epoxidation of alkenes with hydrogen peroxide. Angew Chem Int Ed 44:5136–5141. https://doi.org/10.1002/ange.200500491

    Article  CAS  Google Scholar 

  68. Kamata K, Yonehara K, Nakagawa Y, Uehara K, Mizuno N (2010) Efficient stereo- and regioselective hydroxylation of alkanes catalysed by a bulky polyoxometalate. Nat Chem 2:478–483. https://doi.org/10.1038/nchem.648

    Article  CAS  PubMed  Google Scholar 

  69. Kamata K, Sugahara K, Yonehara K, Ishimoto R, Mizuno N (2011) Efficient epoxidation of electron-deficient alkenes with hydrogen peroxide catalyzed by [γ-PW10O38V2(μ-OH)2]3−. Chem Eur J 17:7549–7559. https://doi.org/10.1002/chem.201101001

    Article  CAS  PubMed  Google Scholar 

  70. Yamaura T, Kamata K, Yamaguchi K, Mizuno N (2013) Efficient sulfoxidation with hydrogen peroxide catalyzed by a divanadium-substituted phosphotungstate. Catal Today 203:76–80. https://doi.org/10.1016/j.cattod.2012.01.026

    Article  CAS  Google Scholar 

  71. Yonehara K, Kamata K, Yamaguchi K, Mizuno N (2011) An efficient H2O2-based oxidative bromination of alkenes, alkynes, and aromatics by a divanadium-substituted phosphotungstate. Chem Commun 47:1692–1694. https://doi.org/10.1039/C0CC04889E

    Article  CAS  Google Scholar 

  72. Kamata K, Yamaura T, Mizuno N (2012) Chemo- and regioselective direct hydroxylation of arenes with hydrogen peroxide catalyzed by a divanadium-substituted phosphotungstate. Angew Chem Int Ed 51:7275–7278. https://doi.org/10.1002/anie.201201605

    Article  CAS  Google Scholar 

  73. Zalomaeva OV, Evtushok VY, Maksimov GM, Kholdeeva OA (2015) Selective oxidation of pseudocumene and 2-methylnaphthalene with aqueous hydrogen peroxide catalyzed by γ-Keggin divanadium-substituted polyoxotungstate. J Organomet Chem 793:210–216. https://doi.org/10.1016/j.jorganchem.2015.04.020

    Article  CAS  Google Scholar 

  74. Skobelev IY, Evtushok VYu, Kholdeeva OA, Maksimchuk NV, Maksimovskaya RI, Ricart JM, Poblet JM, Carbó JJ (2017) Understanding the regioselectivity of aromatic hydroxylation over divanadium-substituted γ-Keggin polyoxotungstate. ACS Catal 7:8514–8523. https://doi.org/10.1021/acscatal.7b02694

    Article  CAS  Google Scholar 

  75. Ivanchikova ID, Maksimchuk NV, Maksimovskaya RI, Maksimov GM, Kholdeeva OA (2014) Highly selective oxidation of alkylphenols to p-benzoquinones with aqueous hydrogen peroxide catalyzed by divanadium-substituted polyoxotungstates. ACS Catal 4:2706–2713. https://doi.org/10.1021/cs500738e

    Article  CAS  Google Scholar 

  76. Zalomaeva OV, Evtushok VY, Maksimov GM, Maksimovskaya RI, Kholdeeva OA (2017) Synthesis of coenzyme Q0 through divanadium-catalyzed oxidation of 3,4,5-trimethoxytoluene with hydrogen peroxide. Dalton Trans 46:5202–5209. https://doi.org/10.1039/C7DT00552K

    Article  CAS  PubMed  Google Scholar 

  77. Kholdeeva OA, Zalomaeva OV (2016) Recent advances in transition-metal-catalyzed selective oxidation of substituted phenols and methoxyarenes with environmentally benign oxidants. Coord Chem Rev 306:302–330. https://doi.org/10.1016/j.ccr.2015.07.019

    Article  CAS  Google Scholar 

  78. Zhang D, Liang Z, Xie S, Ma P, Zhang C, Wang J, Niu J (2014) A new Nb28 cluster based on tungstophosphate, [{Nb4O6(OH)4}{Nb6P2W12O61}4]36–. Inorg Chem 53:9917–9922. https://doi.org/10.1021/ic501575x

    Article  CAS  PubMed  Google Scholar 

  79. Rhule JT, Hill CL, Judd DA, Schinazi RF (1998) Polyoxometalates in medicine. Chem Rev 98:327–357. https://doi.org/10.1021/cr960396q

    Article  CAS  PubMed  Google Scholar 

  80. Droege MW, Finke RG (1991) a novel triperoxyniobium-containing polyoxoanion, SiW9(NbO2)3O377−: synthesis, characterization, catalytic allylic epoxidations with H2O2 and preliminary kinetic studies. J Mol Catal 69:323–338. https://doi.org/10.1016/0304-5102(91)80113-H

    Article  CAS  Google Scholar 

  81. Harrup MK, Kim GS, Zeng H, Johnson RP, VanDerveer D, Hill CL (1998) Triniobium polytungstophosphates. syntheses, structures, clarification of isomerism and reactivity in the presence of H2O2. Inorg Chem 37:5550–5556. https://doi.org/10.1021/ic980467z

    Article  CAS  PubMed  Google Scholar 

  82. Satake N, Hirano T, Kamata K, Suzuki K, Yamaguchi K, Mizuno N (2015) Synthesis, structural characterization, and oxidation catalysis of a diniobium-substituted silicodecatungstate. Chem Lett 44:899–901. https://doi.org/10.1246/cl.150213

    Article  CAS  Google Scholar 

  83. Nyman M (2011) Polyoxoniobate chemistry in the 21st century. Dalton Trans 40:8049–8058. https://doi.org/10.1039/C1DT10435G

    Article  CAS  PubMed  Google Scholar 

  84. Kinnan MK, Creasy WR, Fullmer LB, Schreuder-Gibson HL, Nyman M (2014) Nerve agent degradation with polyoxoniobates. Eur J Inorg Chem 2014:2361–2367. https://doi.org/10.1002/ejic.201400016

    Article  CAS  Google Scholar 

  85. Ge W, Wang X, Zhang L, Du L, Zhou Y, Wang J (2016) Fully-occupied Keggin type polyoxometalate as solid base for catalyzing CO2 cycloaddition and Knoevenagel condensation. Catal Sci Technol 6:460–467. https://doi.org/10.1039/C5CY01038A

    Article  CAS  Google Scholar 

  86. Guo W, Lv H, Sullivan KP, Gordon WO, Balboa A, Wagner GW, Musaev DG, Bacsa J, Hill CL (2016) Broad-spectrum liquid- and gas-phase decontamination of chemical warfare agents by one-dimensional heteropolyniobates. Angew Chem Int Ed 55:7403–7407. https://doi.org/10.1002/anie.201601620

    Article  CAS  Google Scholar 

  87. Dong J, Hu J, Chi Y, Lin Z, Zou B, Yang S, Hill CL, Hu C (2017) A polyoxoniobate-polyoxovanadate double-anion catalyst for simultaneous oxidative and hydrolytic decontamination of chemical warfare agent simulants. Angew Chem Int Ed 56:4473–4477. https://doi.org/10.1002/anie.201700159

    Article  CAS  Google Scholar 

  88. Venturello C, Alneri E, Ricci M (1983) A new, effective catalytic system for epoxidation of olefins by hydrogen peroxide under phase-transfer conditions. J Org Chem 48:3831–3833. https://doi.org/10.1021/jo00169a052

    Article  CAS  Google Scholar 

  89. Ishii Y, Yamawaki K, Ura T, Yamada H, Yoshiba T, Ogawa M (1988) Hydrogen peroxide oxidation catalyzed by heteropoly acids combined with cetylpiridinium chloride: epoxidation of olefins and allylic alcohols, ketonization of alcohols and diols, and oxidative cleavage of 1,2-diols and olefins. J Org Chem 53:3587–3593. https://doi.org/10.1021/jo00250a032

    Article  CAS  Google Scholar 

  90. Zhou Y, Guo ZJ, Hou W, Wang Q, Wang J (2015) Polyoxometalate-based phase transfer catalysis for liquid–solid organic reactions: a review. Catal Sci Technol 5:4324–4335. https://doi.org/10.1021/jo00250a032

    Article  CAS  Google Scholar 

  91. Duncan DC, Chambers RC, Hecht E, Hill CL (1995) Mechanism and dynamics in the H3[PW12O40]-catalyzed selective epoxidation of terminal olefins by H2O2. Formation, reactivity, and stability of {PO4[WO(O2)2]4}3−. J Am Chem Soc 117:681–691. https://doi.org/10.1021/ja00107a012

    Article  CAS  Google Scholar 

  92. Xi Z, Zhou N, Sun Y, Li K (2001) Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide. Science 292:1139–1141. https://doi.org/10.1126/science.292.5519.1139

    Article  CAS  Google Scholar 

  93. Li C, Gao J, Jiang Z, Wang S, Lu H, Yang Y, Jing F (2005) Selective oxidations on recoverable catalysts assembled in emulsions. Top Catal 35:169–175. https://doi.org/10.1007/s11244-005-3821-5

    Article  CAS  Google Scholar 

  94. Lu H, Gao J, Jiang Z, Jing F, Yang Y, Wang G, Li C (2006) Ultra-deep desulfurization of diesel by selective oxidation with [C18H37N(CH3)3]4[H2NaPW10O36] catalyst assembled in emulsion droplets. J Catal 239:369–375. https://doi.org/10.1016/j.jcat.2006.01.025

    Article  CAS  Google Scholar 

  95. Yin P, Wang J, Xiao Z, Wu P, Wei Y, Liu T (2012) Polyoxometalate-organic hybrid molecules as amphiphilic emulsion catalysts for deep desulfurization. Chem Eur J 18:9174–9178. https://doi.org/10.1002/chem.201201551

    Article  CAS  PubMed  Google Scholar 

  96. Xu J, Zhao S, Ji Y, Song Y-F (2013) Deep desulfurization by amphiphilic lanthanide-containing polyoxometalates in ionic-liquid emulsion systems under mild conditions. Chem Eur J 19:709–715. https://doi.org/10.1002/chem.201202595

    Article  CAS  PubMed  Google Scholar 

  97. Cavani F, Alini S (2009) In: Cavani F, Centi G, Perathoner S, Trifiro F (eds) Sustainable industrial processes. Wiley-VCH, pp 331–391

    Google Scholar 

  98. Zhu W, Li H, He X, Zhang Q, Shu H, Yan Y (2008) Synthesis of adipic acid catalyzed by surfactant-type peroxotungstates and peroxomolybdates. Catal Commun 9:551–555. https://doi.org/10.1016/j.catcom.2007.07.038

    Article  CAS  Google Scholar 

  99. Kerenkan AE, Beland F, Do TO (2016) Chemically catalyzed oxidative cleavage of unsaturated fatty acids and their derivatives into valuable products for industrial applications: a review and perspective. Catal Sci Technol 6:971–987. https://doi.org/10.1039/c5cy01118c

    Article  Google Scholar 

  100. Santacesaria E, Sorrentino A, Rainone F, Di Serio M, Speranza F (2000) Oxidative cleavage of the double bond of monoenic fatty chains in two steps: a new promising route to azelaic acid and other industrial products. Ind Eng Chem Res 39:2766–2771. https://doi.org/10.1021/ie990920u

    Article  CAS  Google Scholar 

  101. Poli E, Clacens JM, Barrault J, Pouilloux Y (2009) Solvent-free selective epoxidation of fatty esters over a tungsten-based catalyst. Catal Today 140:19–22. https://doi.org/10.1016/j.cattod.2008.07.004

    Article  CAS  Google Scholar 

  102. Godard A, De Caro P, Thiebaud-Roux S, Vedrenne E, Mouloungui Z (2013) New environmentally friendly oxidative scission of oleic acid into azelaic acid and pelargonic acid. J Am Oil Chem Soc 90:133–140. https://doi.org/10.1007/s11746-012-2134-7

    Article  CAS  Google Scholar 

  103. Kadyrov R, Hackenberger D (2014) Oxidative cleavage of long chain olefins to carboxylic acids with hydrogen peroxide. Top Catal 57:1366–1371. https://doi.org/10.1007/s11244-014-0304-6

    Article  CAS  Google Scholar 

  104. Haimov A, Cohen H, Neumann R (2004) Alkylated polyethyleneimine/polyoxometalate synzymes as catalysts for the oxidation of hydrophobic substrates in water with hydrogen peroxide. J Am Chem Soc 126:11762–11763. https://doi.org/10.1021/ja046349u

    Article  CAS  PubMed  Google Scholar 

  105. Maayan G, Fish RH, Neumann R (2003) Polyfluorinated quaternary ammonium salts of polyoxometalate anions: fluorous biphasic oxidation catalysis with and without fluorous solvents. Org Lett 5:3547–3550. https://doi.org/10.1021/ol0348598

    Article  CAS  PubMed  Google Scholar 

  106. Zeng H, Newkome GR, Hill CL (2000) Poly(polyoxometalate) dendrimers: molecular prototypes of new catalytic materials. Angew Chem Int Ed 39:1772–1774. https://doi.org/10.1002/(SICI)1521-3773(20000515)39:10%3c1771:AID-ANIE1771%3e3.0.CO;2-D

    Article  CAS  Google Scholar 

  107. Plault L, Hauseler A, Nlate S, Astruc D, Ruiz J, Gatard S, Neumann R (2004) Synthesis of dendritic polyoxometalate complexes assembled by ionic bonding and their function as recoverable and reusable oxidation catalysts. Angew Chem Int Ed 43:2924–2928. https://doi.org/10.1002/anie.200453870

    Article  CAS  Google Scholar 

  108. Jahier C, Cantuel M, McClenaghan ND, Buffeteau T, Cavagnat D, Agbossou F, Carraro M, Nlate S (2009) Enantiopure dendritic polyoxometalates: chirality transfer from dendritic wedges to a POM cluster for asymmetric sulfide oxidation. Chem Eur J 15:8703–8708. https://doi.org/10.1002/chem.200901512

    Article  CAS  PubMed  Google Scholar 

  109. Jahier C, Coustou MF, Cantuel M, McClenaghan ND, Buffeteau T, Cavagnat D, Carraro M, Nlate S (2011) Optically active tripodal dendritic polyoxometalates: synthesis, characterization and their use in asymmetric sulfide oxidation with hydrogen peroxide. Eur J Inorg Chem 2011:727–738. https://doi.org/10.1002/ejic.201001111

    Article  CAS  Google Scholar 

  110. Pera-Titus M, Leclercq L, Clacens JM, De Campo F, Nardello-Rataj V (2014) Pickering interfacial catalysis for biphasic systems: from emulsion design to green reactions. Angew Chem Int Ed 53:2–18. https://doi.org/10.1002/anie.201402069

    Article  CAS  Google Scholar 

  111. Leclercq L, Mouret A, Proust A, Schmitt V, Bauduin P, Aubry JM, Nardello-Rataj V (2012) Pickering emulsion stabilized by catalytic polyoxometalate nanoparticles: a new effective medium for oxidation reactions. Chem Eur J 18:14352–14358. https://doi.org/10.1002/chem.201201799

    Article  CAS  PubMed  Google Scholar 

  112. Zhang J, Wang A, Wang Y, Wang H, Gui J (2014) Heterogeneous oxidative desulfurization of diesel oil by hydrogen peroxide: catalysis of an amphipathic hybrid material supported on SiO2. Chem Eng J 245:65–70. https://doi.org/10.1016/j.cej.2014.01.103

    Article  CAS  Google Scholar 

  113. Yang Y, Yue L, Li HL, Maher E, Li YG, Wang YZ, Wu LX, Yam VWW (2012) Photo-responsive self-assembly of an azobenzene-ended surfactant-encapsulated polyoxometalate complex for modulating catalytic reactions. Small 8:3105–3110. https://doi.org/10.1002/smll.201200768

    Article  CAS  PubMed  Google Scholar 

  114. Yang Y, Zhang B, Wang YZ, Yue L, Li W, Wu LX (2013) A photo-driven polyoxometalate complex shuttle and its homogeneous catalysis and heterogeneous separation. J Am Chem Soc 135:14500–14503. https://doi.org/10.1021/ja405788

    Article  CAS  PubMed  Google Scholar 

  115. Wu L (2017) Organically encapsulated polyoxometalate catalysts: supramolecular composition and synergistic catalysis. In: Encapsulated catalysts. Elsevier, pp 1 − 33 http://dx.doi.org/10.1016/B978-0-12-803836-9.00001-8

    Google Scholar 

  116. Vazylyev M, Sloboda-Rozner D, Haimov A, Maayan G, Neumann R (2005) Strategies for oxidation catalyzed by polyoxometalates at the interface of homogeneous and heterogeneous catalysis. Topics Catal 34:93–99. https://doi.org/10.1007/s11244-005-3793-5

    Article  CAS  Google Scholar 

  117. Proust A, Thouvenot R, Gouzerh P, Functionalization of polyoxometalates: towards advanced applications in catalysis and materials science. Chem Commun 2008:1837–1852. https://doi.org/10.1039/b715502f

  118. Kholdeeva OA, Maksimchuk NV, Maksimov GM (2010) Polyoxometalate-based heterogeneous catalysts for liquid phase selective oxidations: Comparison of different strategies. Catal Today 157:107–113. https://doi.org/10.1016/j.cattod.2009.12.016

    Article  CAS  Google Scholar 

  119. Dolbecq A, Dumas E, Mayer CR, Mialane P (2010) Hybrid organic−inorganic polyoxometalate compounds: from structural diversity to applications. Chem Rev 110:6009–6048. https://doi.org/10.1021/cr1000578

    Article  CAS  PubMed  Google Scholar 

  120. Song YF, Tsunashima R (2012) Recent advances on polyoxometalate-based molecular and composite materials. Chem Soc Rev 41:7384–7402. https://doi.org/10.1039/C2CS35143A

    Article  CAS  PubMed  Google Scholar 

  121. Proust A, Matt B, Villanneau R, Guillemot G, Gouzerh P, Izzet G (2012) Functionalization and post-functionalization: a step towards polyoxometalate-based materials. Chem Soc Rev 41:7605–7622. https://doi.org/10.1039/C2CS35119F

    Article  CAS  PubMed  Google Scholar 

  122. Zhou Y, Chen G, Long Z, Wang J (2014) Recent advances in polyoxometalate-based heterogeneous catalytic materials for liquid-phase organic transformations. RSC Adv 4:42092–42113. https://doi.org/10.1039/C4RA05175K

    Article  CAS  Google Scholar 

  123. Rhule JT, Neiwert WA, Hardcastle KI, Do BT, Hill CL (2001) Ag5PV2Mo10O40, a heterogeneous catalyst for air-based selective oxidation at ambient temperature. J Am Chem Soc 123:12101–12102. https://doi.org/10.1021/ja015812p

    Article  CAS  PubMed  Google Scholar 

  124. Mizuno N, Kamata K, Yamaguchi K (2006) Liquid-phase oxidations catalyzed by polyoxometalates. In: Richards R (ed) Surface and nanomolecular catalysis. CRC Press LLC, Boca Raton, Fla, pp 463–492

    Google Scholar 

  125. Mizuno N, Uchida S, Kamata K, Ishimoto R, Nojima S, Yonehara K, Sumida Y (2010) A flexible nonporous heterogeneous catalyst for size-selective oxidation through a bottom-up approach. Angew Chem Int Ed 49:9972–9976. https://doi.org/10.1002/anie.201005275

    Article  CAS  Google Scholar 

  126. Izumi Y (1998) Recent advances in immobilization of heteropolyacids. Res Chem Intermed 24:461–471. https://doi.org/10.1163/156856798X00500

    Article  CAS  Google Scholar 

  127. Okuhara T (2002) Water-tolerant solid acid catalysts. Chem Rev 102:3641–3666. https://doi.org/10.1021/cr0103569

    Article  CAS  PubMed  Google Scholar 

  128. Kholdeeva OA, Vanina MP, Timofeeva MN, Maksimovskaya RI, Trubitsina TA, Melgunov MS, Burgina EB, Mrowiec-Bialon J, Jarzebski AB, Hill CL (2004) Co-containing polyoxometalate-based heterogeneous catalysts for the selective aerobic oxidation of aldehydes under ambient conditions. J Catal 226:363–371. https://doi.org/10.1016/j.jcat.2004.05.032

    Article  CAS  Google Scholar 

  129. Yun SK, Pinnavaia TJ (1996) Layered double hydroxides intercalated by polyoxometalate anions with Keggin (α-H2W12O 6−40 ), Dawson (α-P2W18O 6−62 ), and Finke (Co4(H2O)2(PW9O34) 10−2 ) structures. Inorg Chem 35:6853–6860. https://doi.org/10.1021/ic960287u

    Article  CAS  Google Scholar 

  130. Jana SK, Kubota Y, Tatsumi T (2008) Cobalt-substituted polyoxometalate pillared hydrotalcite: synthesis and catalysis in liquid-phase oxidation of cyclohexanol with molecular oxygen. J Catal 255:40–47. https://doi.org/10.1016/j.jcat.2008.01.022

    Article  CAS  Google Scholar 

  131. Omwoma S, Chen W, Tsunashima R, Song YF (2014) Recent advances on polyoxometalates intercalated layered double hydroxides: from synthetic approaches to functional material applications. Coord Chem Rev 258–259:58–71. https://doi.org/10.1016/j.ccr.2013.08.039

    Article  CAS  Google Scholar 

  132. Neumann R, Miller HJ (1995) Alkene oxidation in water using hydrophobic silica particles derivatized with polyoxometalates as catalysts. J Chem Soc Chem Commun 2277 − 2278. https://doi.org/10.1039/c39950002277

  133. Okun NM, Anderson TM, Hill CL (2003) [(FeIII(OH2)2)3(A-α-PW9O34)2]9− on cationic silica nanoparticles, a new type of material and efficient heterogeneous catalyst for aerobic oxidations. J Am Chem Soc 125:3194–3195. https://doi.org/10.1021/ja0267223

    Article  CAS  PubMed  Google Scholar 

  134. Bordoloi A, Lefebvre F, Halligudi SB (2007) Selective oxidation of anthracene using inorganic–organic hybrid materials based on molybdovanadophosphoric acids. J Catal 247:166–175. https://doi.org/10.1016/j.jcat.2007.01.020

    Article  CAS  Google Scholar 

  135. Yamaguchi K, Yoshida C, Uchida S, Mizuno N (2005) Peroxotungstate immobilized on ionic liquid-modified silica as a heterogeneous epoxidation catalyst with hydrogen peroxide. J Am Chem Soc 127:530–531. https://doi.org/10.1021/ja043688e

    Article  CAS  PubMed  Google Scholar 

  136. Maksimchuk NV, Melgunov MS, Chesalov YuA, Mrowiec-Białoń J, Jarzębski AB, Kholdeeva OA (2007) Aerobic oxidations of α-pinene over cobalt-substituted polyoxometalate supported on amino-modified mesoporous silicates. J Catal 246:241–248. https://doi.org/10.1016/j.jcat.2006.11.026

    Article  CAS  Google Scholar 

  137. Neumann R, Cohen M (1997) Solvent-anchored supported liquid phase catalysis: polyoxometalate-catalyzed oxidations. Angew Chem Int Ed 36:1738–1740. https://doi.org/10.1002/anie.199717381

    Article  CAS  Google Scholar 

  138. Johnson BJS, Stein A (2001) Surface modification of mesoporous, macroporous, and amorphous silica with catalytically active polyoxometalate clusters. Inorg Chem 40:801–808. https://doi.org/10.1021/ic991440y

    Article  CAS  PubMed  Google Scholar 

  139. Liu Y, Murata K, Inaba M (2004) Epoxidation of propylene with molecular oxygen in methanol over a peroxo-heteropoly compound immobilized on palladium exchanged HMS. Green Chem 6:510–515. https://doi.org/10.1039/B407290C

    Article  CAS  Google Scholar 

  140. Carraro M, Sandei L, Sartorel A, Scorrano G, Bonchio M (2006) Hybrid polyoxotungstates as second-generation POM-based catalysts for microwave-assisted H2O2 activation. Org Lett 8:3671–3674. https://doi.org/10.1021/ol061197o

    Article  CAS  PubMed  Google Scholar 

  141. Izumi Y, Urabe K (1981) Catalysis of heteropoly acids entrapped in activated carbon. Chem Lett 663–66 https://doi.org/10.1246/cl.1981.6634

  142. Schwegler MA, Vinke P, van der Eijk M, van Bekkum H (1992) Activated carbon as a support for heteropolyanion catalysts. Appl Catal 80:41–57. https://doi.org/10.1016/0926-860X(92)85107-M

    Article  CAS  Google Scholar 

  143. Evtushok VYu, Suboch AN, Podyacheva OYu, Stonkus OA, Zaikovskii VI, Chesalov YuA, Kibis LS, Kholdeeva OA (2018) Highly efficient catalysts based on divanadium-substituted polyoxometalate and N-doped carbon nanotubes for selective oxidation of alkylphenols. ACS Catal 8:1297–1307. https://doi.org/10.1021/acscatal.7b03933

    Article  CAS  Google Scholar 

  144. Eder D (2010) Carbon nanotube−inorganic hybrids. Chem Rev 110:1348–1385. https://doi.org/10.1021/cr800433k

    Article  CAS  PubMed  Google Scholar 

  145. Toma FM, Sartorel A, Iurlo M, Carraro M, Parisse P, Maccato C, Rapino S, Gonzalez BR, Amenitsch H, Da Ros T, Casalis L, Goldoni A, Marcaccio M, Scorrano G, Scoles G, Paolucci F, Prato M, Bonchio M (2010) Nat Chem 2:826–831. https://doi.org/10.1038/NCHEM.761

    Article  CAS  PubMed  Google Scholar 

  146. Guo SX, Liu Y, Lee CY, Bond A, Zhang MJ, Geletii YV, Hill CL (2013) Graphene-supported [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]10- for highly efficient electrocatalytic water oxidation. Energy Environ Sci 6:2654–2663. https://doi.org/10.1039/c3ee41892h

    Article  CAS  Google Scholar 

  147. Pan D, Chen J, Tao W, Nie L, Yao S (2006) Polyoxometalate-modified carbon nanotubes: new catalyst support for methanol electro-oxidation. Langmuir 22:5872–5876. https://doi.org/10.1021/la053171w

    Article  CAS  PubMed  Google Scholar 

  148. Cui Z, Li CM, Jiang SP (2011) PtRu catalysts supported on heteropolyacid and chitosan functionalized carbon nanotubes for methanol oxidation reaction of fuel cells. Phys Chem Chem Phys 13:16349–16357. https://doi.org/10.1039/C1CP21271K

    Article  CAS  PubMed  Google Scholar 

  149. Kawasaki N, Wang H, Nakanishi R, Hamanaka S, Kitaura R, Shinohara H, Yokoyama T, Yoshikawa H, Awaga K (2011) Nanohybridization of polyoxometalate clusters and single-wall carbon nanotubes: applications in molecular cluster batteries. Angew Chem Int Ed 50:3471–3474. https://doi.org/10.1002/ange.201007264

    Article  CAS  Google Scholar 

  150. Ji Y, Huang L, Hu J, Streb C, Song YF (2015) Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems. Energy Environ Sci 8:776–789. https://doi.org/10.1039/C4EE03749A

    Article  CAS  Google Scholar 

  151. Giusti A, Charron G, Mazerat S, Compain JD, Mialane P, Dolbecq A, Riviere E, Wernsdorfer W, Biboum RN, Keita B, Nadjo L, Filoramo A, Bourgoin JP, Mallah T (2009) Magnetic bistability of individual single-molecule magnets grafted on single-wall carbon nanotubes. Angew Chem Int Ed 48:4949–4952. https://doi.org/10.1002/ange.200901806

    Article  CAS  Google Scholar 

  152. Salavati H, Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I (2010) Sonocatalytic epoxidation of alkenes by vanadium-containing polyphosphomolybdate immobilized on multi-wall carbon nanotubes. Ultrason Sonochemistry 17:453–459. https://doi.org/10.1016/j.ultsonch.2009.09.011

    Article  CAS  Google Scholar 

  153. Wang R, Yu F, Zhang G, Zhao H (2010) Performance evaluation of the carbon nanotubes supported Cs2.5H0.5PW12O40 as efficient and recoverable catalyst for the oxidative removal of dibenzothiophene. Catal Today 150:37–41. https://doi.org/10.1016/j.cattod.2009.10.001

    Article  CAS  Google Scholar 

  154. Chen W, Huang L, Hu J, Li T, Jia F, Song YF (2014) Connecting carbon nanotubes to polyoxometalate clusters for engineering high-performance anode materials. Phys Chem Chem Phys 16:19668–19673. https://doi.org/10.1039/C4CP03202K

    Article  CAS  PubMed  Google Scholar 

  155. Sheldon RA, Wallau M, Arends IWCE, Schuchardt U (1998) Heterogeneous catalysts for liquid-phase oxidations: philosophers’ stones or Trojan horses? Acc Chem Res 31:485–493. https://doi.org/10.1021/ar9700163

    Article  CAS  Google Scholar 

  156. Podyacheva OYu, Ismagilov ZR (2015) Nitrogen-doped carbon nanomaterials: to the mechanism of growth, electrical conductivity and application in catalysis. Catal Today 249:12–22. https://doi.org/10.1016/j.cattod.2014.10.033

    Article  CAS  Google Scholar 

  157. Arrigo R, Schuster ME, Xie Z, Yi Y, Wowsnick G, Sun LL, Hermann KE, Friedrich M, Kast P, Hävecker M, Knop-Gericke A, Schlögl R (2015) Nature of the N-Pd interaction in nitrogen-doped carbon nanotube catalysts. ACS Catal 5:2740–2753. https://doi.org/10.1021/acscatal.5b00094

    Article  CAS  Google Scholar 

  158. Xia W (2016) Interactions between metal species and nitrogen-functionalized carbon nanotubes. Catal Sci Technol 6:630–644. https://doi.org/10.1039/C5CY01694K

    Article  CAS  Google Scholar 

  159. Li M, Xu F, Li H, Wang Y (2016) Nitrogen-doped porous carbon materials: promising catalysts or catalyst supports for heterogeneous hydrogenation and oxidation. Catal Sci Technol 6:3670–3693. https://doi.org/10.1039/C6CY00544F

    Article  CAS  Google Scholar 

  160. Cao Y, Mao S, Li M, Chen Y, Wang Y (2017) Metal/porous carbon composites for heterogeneous catalysis: old catalysts with improved performance promoted by N-doping. ACS Catal 7:8090–8112. https://doi.org/10.1021/acscatal.7b02335

    Article  CAS  Google Scholar 

  161. Bulushev DA, Zacharska M, Shlyakhova EV, Chuvilin AL, Guo Y, Beloshapkin S, Okotrub AV, Bulusheva LG (2016) Single isolated Pd2+ cations supported on N-doped carbon as active sites for hydrogen production from formic acid decomposition. ACS Catal 6:681–691. https://doi.org/10.1021/acscatal.5b02381

    Article  CAS  Google Scholar 

  162. Podyacheva OY, Lisitsyn AS, Kibis LS, Stadnichenko AI, Boronin AI, Slavinskaya EM, Stonkus OA, Yashnik SA, Ismagilov ZR (2018) Influence of the nitrogen-doped carbon nanofibers on the catalytic properties of supported metal and oxide nanoparticles. Catal Today 301:125–133. https://doi.org/10.1016/j.cattod.2017.01.004

    Article  CAS  Google Scholar 

  163. Evtushok VY, Podyacheva OY, Suboch AN, Maksimchuk NV, Stonkus OA, Kibis LS, Kholdeeva OA H2O2-based selective oxidation by divanadium-substituted polyoxotungstate supported on nitrogen-doped carbon nanomaterials. Catal. Today, submitted. https://doi.org/10.1016/j.cattod.2019.03.060

  164. Wang Y, Kamata K, Ishimoto R, Ogasawara Y, Suzuki K, Yamaguchi K, Mizuno N (2015) Composites of [γ-H2PV2W10O40]3− and [α-SiW12O40]4− supported on Fe2O3 as heterogeneous catalysts for selective oxidation with aqueous hydrogen peroxide. Catal Sci Technol 5:2602–2611. https://doi.org/10.1039/c4cy01693a

    Article  CAS  Google Scholar 

  165. Kholdeeva OA, Ivanchikova ID, Guidotti M, Ravasio N (2007) Highly efficient production of 2,3,5-trimethyl-1,4-benzoquinone using aqueous H2O2 and grafted Ti(IV)/SiO2 catalyst. Green Chem 9:731–733. https://doi.org/10.1039/B617162A

    Article  CAS  Google Scholar 

  166. Ivanchikova ID, Kovalev MK, Mel’gunov MS, Shmakov AN, Kholdeeva OA (2014) User-friendly synthesis of highly selective and recyclable mesostructured titanium-silicate catalysts for the production of bulky benzoquinones. Catal Sci Technol 4:200–207. https://doi.org/10.1039/C3CY00615H

    Article  CAS  Google Scholar 

  167. Qi W, Wang Y, Li W, Wu L (2010) Surfactant-encapsulated polyoxometalates as immobilized supramolecular catalysts for highly efficient and selective oxidation reactions. Chem Eur J 16:1068–1078. https://doi.org/10.1002/chem.200902261

    Article  CAS  PubMed  Google Scholar 

  168. Yan Y, Wu L (2011) Polyoxometalate-incorporated supramolecular self assemblies: structures and functional properties. Isr J Chem 51:181–190. https://doi.org/10.1002/ijch.201000077

    Article  CAS  Google Scholar 

  169. Shi L, Wang YZ, Li B, Wu LX (2014) Polyoxometalate complexes for oxidative kinetic resolution of secondary alcohols: unique effects of chiral environment, immobilization and aggregation. Dalton Trans 43:9177–9188. https://doi.org/10.1039/C4DT00742E

    Article  CAS  PubMed  Google Scholar 

  170. Hwang YK, Férey G, Lee UH, Chang JS Liquid phase oxidation of organic compounds by metal-organic frameworks. In: Clerici MG, Kholdeeva OA (eds) Liquid phase oxidation via heterogeneous catalysis: organic synthesis and industrial applications. Wiley, Hoboken, New Jersey, pp 371–409. https://doi.org/10.1002/9781118356760.ch8

    Chapter  Google Scholar 

  171. Du DY, Qin JS, Li SL, Su ZM, Lan YQ (2014) Recent advances in porous polyoxometalate based metal–organic framework materials. Chem Soc Rev 43:4615–4632. https://doi.org/10.1016/j.ccr.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  172. Kholdeeva OA (2016) Liquid-phase selective oxidation catalysis with metal-organic frameworks. Catal Today 278:22–29. https://doi.org/10.1016/j.cattod.2016.06.010

    Article  CAS  Google Scholar 

  173. Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I (2005) A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309:2040–2042. https://doi.org/10.1126/science.1116275

    Article  CAS  PubMed  Google Scholar 

  174. Maksimchuk NV, Timofeeva MN, Melgunov MS, Shmakov AN, Chesalov YuA, Dybtsev DN, Fedin VP, Kholdeeva OA (2008) Heterogeneous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal substituted polyoxometalates. J Catal 257:315–323. https://doi.org/10.1016/j.jcat.2008.05.014

    Article  CAS  Google Scholar 

  175. Maksimchuk NV, Kovalenko KA, Arzumanov SS, Chesalov YuA, Stepanov AG, Fedin VP, Kholdeeva OA (2010) Hybrid polyoxotungstate/MIL-101 materials: synthesis, characterization, and catalysis of H2O2-based alkene epoxidation. Inorg Chem 49:2920–2930. https://doi.org/10.1021/ic902459f

    Article  CAS  PubMed  Google Scholar 

  176. Maksimchuk NV, Kholdeeva OA, Kovalenko KA, Fedin VP (2011) MIL-101 supported polyoxometalates: synthesis, characterization and catalytic applications in selective liquid-phase oxidation. Israel J Chem 2:281–289. https://doi.org/10.1002/ijch.201000082

    Article  CAS  Google Scholar 

  177. Balula SS, Granadeiro CM, Barbosa ADS, Santos ICMS, Cunha-Silva L (2013) Multifunctional catalyst based on sandwich-type polyoxotungstate and MIL-101 for liquid phase oxidations. Catal Today 210:142–148. https://doi.org/10.1016/j.cattod.2012.12.003

    Article  CAS  Google Scholar 

  178. Granadeiro CM, Barbosa ADS, Ribeiro S, Santos ICMS, de Castro B, Cunha − Silva L, Balula SS (2014) Oxidative catalytic versatility of a trivacantpolyoxotungstate incorporated into MIL-101(Cr). Catal Sci Technol 4:1416–1425. https://doi.org/10.1039/c3cy00853c

    Article  CAS  Google Scholar 

  179. Lin ZJ, Zheng HQ, Chen J, Zhuang WE, Lin YX, Su JW, Huang YB, Cao R (2018) Encapsulation of phosphotungstic acid into metal—organic frameworks with tunable window sizes: screening of PTA@MOF Catalysts for efficient oxidative desulfurization. Inorg Chem 57:13009–13019. https://doi.org/10.1021/acs.inorgchem.8b02272

    Article  CAS  PubMed  Google Scholar 

  180. Yang X-L, Qiao L-M, Dai W-L (2015) Phosphotungstic acid encapsulated in metal-organic framework UiO-66: an effective catalyst for the selective oxidation of cyclopentene to glutaraldehyde. Microporous Mesoporous Mater 211:73–81. https://doi.org/10.1016/j.micromeso.2015.02.035

    Article  CAS  Google Scholar 

  181. Cao R, Han JW, Anderson TM, Hillesheim DA, Hardcastle KI, Slonkina E, Hedman B, Hodgson KO, Kirk ML, Musaev DG, Morokuma K, Geletii YV, Hill CL (2008) Late transition metal-oxo compounds and open-framework materials that catalyze aerobic oxidations. Adv Inorg Chem 60:245–272. https://books.google.ru/books?isbn=0123739772

  182. Yu R, Kuang XF, Wu XY, Lu CZ, Donahue JP (2009) Stabilization and immobilization of polyoxometalates in porous coordination polymers through host–guest interactions. Coord Chem Rev 253:2872–2890. https://doi.org/10.1016/j.ccr.2009.07.003

    Article  CAS  Google Scholar 

  183. Song J, Luo Z, Britt DK, Furukawa H, Yaghi OM, Hardcastle KI, Hill CL (2011) A multiunit catalyst with synergistic stability and reactivity: a polyoxometalatemetal organic framework for aerobic decontamination. J Am Chem Soc 133:6839–16846. https://doi.org/10.1021/ja203695h

    Article  CAS  Google Scholar 

  184. Zou C, Zhang Z, Xu X, Gong Q, Li J, Wu C-D (2012) A multifunctional organic–inorganic hybrid structure based on MnIII−porphyrin and polyoxometalate as a highly effective dye scavenger and heterogenous catalyst. J Am Chem Soc 134:87–90. https://doi.org/10.1021/ja209196t

    Article  CAS  PubMed  Google Scholar 

  185. Han Q, He C, Zhao M, Qi B, Niu J, Duan C (2013) Engineering chiral polyoxometalate hybrid metal−organic frameworks for asymmetric dihydroxylation of olefins. J Am Chem Soc 135:10186–10189. https://doi.org/10.1021/ja401758c

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks all coauthors of the joint papers published on selective oxidation catalysis by polyoxometalates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oxana A. Kholdeeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kholdeeva, O.A. (2019). Recent Progress in Selective Oxidations with Hydrogen Peroxide Catalyzed by Polyoxometalates. In: Bryliakov, K. (eds) Frontiers of Green Catalytic Selective Oxidations. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-32-9751-7_3

Download citation

Publish with us

Policies and ethics