Skip to main content

Microfluidic Technology for Single-Cell Manipulation

  • Chapter
  • First Online:
Microfluidics for Single-Cell Analysis

Part of the book series: Integrated Analytical Systems ((ANASYS))

  • 1250 Accesses

Abstract

Single-cell analysis has attracted much attention in the field of biological and biomedical study owing to the heterogeneity among individual cells. This poses significant challenges to conventional bulk assays which would mask rare but important information owing to the assumption of average behavior. To avoid the interference of useless cells and obtain the single cells in the trial of genomics, proteomics, metabonomics, and single-cell behavior study, various cell manipulation techniques have been developed for single-cell research. In this chapter, we introduce the principles of droplet generation and single-cell encapsulation and review the latest achievements of cell manipulation technique by categorizing externally applied manipulation forces: microstructures, electrical, optical, magnetic, acoustic, and mechanical. This chapter will also introduce our latest work and provide important references and ideas for the development of droplet microfluidic-based single-cell manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang L, Vertes A (2018) Single-cell mass spectrometry approaches to explore cellular heterogeneity. Angew Chem Int Ed 57(17):4466–4477. https://doi.org/10.1002/anie.201709719

    Article  CAS  Google Scholar 

  2. Altschuler SJ, Wu LF (2010) Cellular heterogeneity: do differences make a difference? Cell 141(4):559–563. https://doi.org/10.1016/j.cell.2010.04.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mao S, Zhang W, Huang Q, Khan M, Li H, Uchiyama K, Lin JM (2018) In situ scatheless cell detachment reveals correlation between adhesion strength and viability at single-cell resolution. Angew Chem Int Ed 57(1):236–240. https://doi.org/10.1002/anie.201710273

    Article  CAS  Google Scholar 

  4. Zhu Z, Yang CJ (2016) Hydrogel droplet microfluidics for high-throughput single molecule/cell analysis. Acc Chem Res 50(1):22–31. https://doi.org/10.1021/acs.accounts.6b00370

    Article  CAS  PubMed  Google Scholar 

  5. Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A, Theis FJ, Teichmann SA, Marioni JC, Stegle O (2015) Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat Biotechnol 33(2):155–160. https://doi.org/10.1038/nbt.3102

    Article  CAS  PubMed  Google Scholar 

  6. Qin Y, Wu L, Schneider T, Yen GS, Wang J, Xu S, Li M, Paguirigan AL, Smith JL, Radich JP (2018) A self-digitization dielectrophoretic (SD-DEP) chip for high-efficiency single-cell capture, on-demand compartmentalization, and downstream nucleic acid analysis. Angew Chem Int Ed 130(35):11548–11553. https://doi.org/10.1002/anie.201807314

    Article  CAS  Google Scholar 

  7. Fritzsch FS, Dusny C, Frick O, Schmid A (2012) Single-cell analysis in biotechnology, systems biology, and biocatalysis. Annu Rev Chem Biomol Eng 3:129–155. https://doi.org/10.1146/annurev-chembioeng-062011-081056

    Article  CAS  PubMed  Google Scholar 

  8. Huang Q, Mao S, Khan M, Zhou L, Lin J-M (2018) Dean flow assisted cell ordering system for lipid profiling in single-cells using mass spectrometry. Chem Commun 54(21):2595–2598. https://doi.org/10.1039/c7cc09608a

    Article  CAS  Google Scholar 

  9. Lan F, Demaree B, Ahmed N, Abate AR (2017) Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding. Nat Biotechnol 35(7):640. https://doi.org/10.1038/nbt.3880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Terekhov SS, Smirnov IV, Stepanova AV, Bobik TV, Mokrushina YA, Ponomarenko NA, Belogurov AA, Rubtsova MP, Kartseva OV, Gomzikova MO, Moskovtsev AA (2017) Microfluidic droplet platform for ultrahigh-throughput single-cell screening of biodiversity. Proc Natl Acad Sci USA 114(10):201621226. https://doi.org/10.1073/pnas.1621226114

    Article  CAS  Google Scholar 

  11. Wood DK, Weingeist DM, Bhatia SN, Engelward BP (2010) Single cell trapping and DNA damage analysis using microwell arrays. Proc Natl Acad Sci USA 107(22):10008–10013. https://doi.org/10.1073/pnas.1004056107

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cole RH, Tang S-Y, Siltanen CA, Shahi P, Zhang JQ, Poust S, Gartner ZJ, Abate AR (2017) Printed droplet microfluidics for on demand dispensing of picoliter droplets and cells. Proc Natl Acad Sci USA 114(33):8728–8733. https://doi.org/10.1073/pnas.1704020114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Joensson HN, Andersson Svahn H (2012) Droplet microfluidics—a tool for single-cell analysis. Angew Chem Int Ed 51(49):12176–12192. https://doi.org/10.1002/anie.201200460

    Article  CAS  Google Scholar 

  14. Shang L, Cheng Y, Zhao Y (2017) Emerging droplet microfluidics. Chem Rev 117(12):7964–8040. https://doi.org/10.1021/acs.chemrev.6b00848

    Article  CAS  PubMed  Google Scholar 

  15. Zhang W, Li N, Koga D, Zhang Y, Zeng H, Nakajima H, Lin J-M, Uchiyama K (2018) Inkjet printing based droplet generation for integrated online digital polymerase chain reaction. Anal Che 90(8):5329–5334. https://doi.org/10.1021/acs.analchem.8b00463

    Article  CAS  Google Scholar 

  16. Yusof A, Keegan H, Spillane CD, Sheils OM, Martin CM, O’Leary JJ, Zengerle R, Koltay P (2011) Inkjet-like printing of single-cells. Lab Chip 11(14):2447–2454. https://doi.org/10.1039/c1lc20176j

    Article  CAS  PubMed  Google Scholar 

  17. Zhong Q, Bhattacharya S, Kotsopoulos S, Olson J, Taly V, Griffiths AD, Link DR, Larson JW (2011) Multiplex digital PCR: breaking the one target per color barrier of quantitative PCR. Lab Chip 11(13):2167–2174. https://doi.org/10.1039/c1lc20126c

    Article  CAS  PubMed  Google Scholar 

  18. Pekin D, Skhiri Y, Baret JC, Le CD, Mazutis L, Salem CB, Millot F, El HA, Hutchison JB, Larson JW (2011) Quantitative and sensitive detection of rare mutations using droplet-based microfluidics. Lab Chip 11(13):2156–2166. https://doi.org/10.1039/c1lc20128j

    Article  CAS  PubMed  Google Scholar 

  19. Konry T, Dominguezvillar M, Baecherallan C, Hafler DA, Yarmush ML (2011) Droplet-based microfluidic platforms for single T cell secretion analysis of IL-10 cytokine. Biosens Bioelectron 26(5):2707–2710. https://doi.org/10.1016/j.bios.2010.09.006

    Article  CAS  PubMed  Google Scholar 

  20. Konry T, Golberg A, Yarmush M (2013) Live single cell functional phenotyping in droplet nano-liter reactors. Sci Rep 3(11):3179. https://doi.org/10.1038/srep03179

    Article  PubMed  PubMed Central  Google Scholar 

  21. Solvas XCI, Niu X, Leeper K, Cho S, Chang SI, Edel JB, Demello AJ (2011) Fluorescence detection methods for microfluidic droplet platforms. J Vis Exp 58:3437. https://doi.org/10.3791/3437

    Article  CAS  Google Scholar 

  22. Chen Q, Utech S, Chen D, Prodanovic R, Lin J-M, Weitz DA (2016) Controlled assembly of heterotypic cells in a core–shell scaffold: organ in a droplet. Lab Chip 16(8):1346–1349. https://doi.org/10.1039/C6LC00231E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen Q, Dong C, Jing W, Lin JM (2016) Flexible control of cellular encapsulation, permeability, and release in a droplet-templated bifunctional copolymer scaffold. Biomicrofluidics 10(6):064115. https://doi.org/10.1063/1.4972107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Christopher GF, Anna SL (2007) Microfluidic methods for generating continuous droplet streams. J Phys D Appl Phys 40(19):R319–R336(318). https://doi.org/10.1088/0022-3727/40/19/r01

    Article  CAS  Google Scholar 

  25. de Menech M, Garstecki P, Jousse F, Stone HA (2008) Transition from squeezing to dripping in a microfluidic T-shaped junction. J Fluid Mech 595(595):141–161. https://doi.org/10.1017/S002211200700910X

    Article  Google Scholar 

  26. Liu J, Lin J-M, Knopp D (2008) Using a circular groove surrounded inlet to generate monodisperse droplets inside a microfluidic chip in a gravity-driven manner. J Micromech Microeng 18(9):095014. https://doi.org/10.1088/0960-1317/18/9/095014

    Article  CAS  Google Scholar 

  27. Haeberle S, Zengerle R, Ducrée J (2007) Centrifugal generation and manipulation of droplet emulsions. Microfluid Nanofluid 3(1):65–75. https://doi.org/10.1007/s10404-006-0106-7

    Article  Google Scholar 

  28. Li H-F, Pang Y-F, Liu J-J, Lin J-M (2011) Suspending nanoliter droplet arrays for cell capture and copper ion stimulation. Sens Actuators B: Chem 155(1):415–421. https://doi.org/10.1016/j.snb.2010.12.023

    Article  CAS  Google Scholar 

  29. Cramer C, Fischer P, Windhab EJ (2004) Drop formation in a co-flowing ambient fluid. Chem Eng Sci 59(15):3045–3058. https://doi.org/10.1016/j.ces.2004.04.006

    Article  CAS  Google Scholar 

  30. Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86(18):4163–4166. https://doi.org/10.1103/physrevlett.86.4163

    Article  CAS  PubMed  Google Scholar 

  31. Basova EY, Foret F (2014) Droplet microfluidics in (bio)chemical analysis. Analyst 140(1):22–38. https://doi.org/10.1039/c4an01209g

    Article  Google Scholar 

  32. Okushima S, Nisisako T, Torii T, Higuchi T (2004) Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 20(23):9905–9908. https://doi.org/10.1021/la0480336

    Article  CAS  PubMed  Google Scholar 

  33. Lin R, Fisher JS, Simon MG, Lee AP (2012) Novel on-demand droplet generation for selective fluid sample extraction. Biomicrofluidics 6(2):024103. https://doi.org/10.1063/1.3699972

    Article  PubMed Central  Google Scholar 

  34. Ding Y, i Solvas XC (2015) “V-junction”: a novel structure for high-speed generation of bespoke droplet flows. Analyst 140(2):414–421. https://doi.org/10.1039/c4an01730g

    Article  CAS  PubMed  Google Scholar 

  35. Eggersdorfer M, Zheng W, Nawar S, Mercandetti C, Ofner A, Leibacher I, Koehler S, Weitz D (2017) Tandem emulsification for high-throughput production of double emulsions. Lab Chip 17(5):936–942. https://doi.org/10.1039/C6LC01553K

    Article  CAS  PubMed  Google Scholar 

  36. Chen F, Lin L, Zhang J, He Z, Uchiyama K, Lin J-M (2016) Single-cell analysis using drop-on-demand inkjet printing and probe electrospray ionization mass spectrometry. Anal Chem 88(8):4354–4360. https://doi.org/10.1021/acs.analchem.5b04749

    Article  CAS  PubMed  Google Scholar 

  37. Zhang W, Li N, Zeng H, Nakajima H, Lin J-M, Uchiyama K (2017) Inkjet printing based separation of mammalian cells by capillary electrophoresis. Anal Chem 89(17):8674–8677. https://doi.org/10.1021/acs.analchem.7b02624

    Article  CAS  PubMed  Google Scholar 

  38. Korenaga A, Chen F, Li H, Uchiyama K, Lin J-M (2017) Inkjet automated single cells and matrices printing system for matrix-assisted laser desorption/ionization mass spectrometry. Talanta 162:474–478. https://doi.org/10.1016/j.talanta.2016.10.055

    Article  CAS  PubMed  Google Scholar 

  39. Liu W, Mao S, Wu J, Lin J-M (2013) Development and applications of paper-based electrospray ionization-mass spectrometry for monitoring of sequentially generated droplets. Analyst 138(7):2163–2170. https://doi.org/10.1039/C3AN36404F

    Article  CAS  PubMed  Google Scholar 

  40. Liu W, Wang N, Lin X, Ma Y, Lin J-M (2014) Interfacing microsampling droplets and mass spectrometry by paper spray ionization for online chemical monitoring of cell culture. Anal Chem 86(14):7128–7134. https://doi.org/10.1021/ac501678q

    Article  CAS  PubMed  Google Scholar 

  41. Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z, Cristobal G, Marquez M, Weitz DA (2006) Electric control of droplets in microfluidic devices. Angew Chem Int Ed 45(16):2556–2560. https://doi.org/10.1002/anie.200503540

    Article  CAS  Google Scholar 

  42. Liu J, Tan S-H, Yap YF, Ng MY, Nguyen N-T (2011) Numerical and experimental investigations of the formation process of ferrofluid droplets. Microfluid Nanofluid 11(2):177–187. https://doi.org/10.1007/s10404-011-0784-7

    Article  Google Scholar 

  43. Nguyen NT, Ting TH, Yap YF, Wong TN, Chai CK, Ong WL, Zhou J, Tan SH, Yobas L (2007) Thermally mediated droplet formation in microchannels. Appl Phys Lett 91(8):s10404

    Article  Google Scholar 

  44. Xiong S, Chin LK, Ando K, Tandiono T, Liu AQ, Ohl CD (2015) Droplet generation via a single bubble transformation in a nanofluidic channel. Lab Chip 15(6):1451–1457. https://doi.org/10.1039/c4lc01184h

    Article  CAS  PubMed  Google Scholar 

  45. Park SY, Wu TH, Chen Y, Teitell MA, Chiou PY (2011) High-speed droplet generation on demand driven by pulse laser-induced cavitation. Lab Chip 11(6):1010–1012. https://doi.org/10.1039/c0lc00555j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huebner A, Srisa-Art M, Holt D, Abell C, Hollfelder F, Demello AJ, Edel JB (2007) Quantitative detection of protein expression in single cells using droplet microfluidics. Chem Commun 28(12):1218–1220. https://doi.org/10.1039/b618570c

    Article  CAS  Google Scholar 

  47. Collins DJ, Neild A, Demello A, Liu AQ, Ai Y (2015) The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation. Lab Chip 15(17):3439–3459. https://doi.org/10.1039/c5lc00614g

    Article  CAS  PubMed  Google Scholar 

  48. Chabert M, Viovy JL (2008) Microfluidic high-throughput encapsulation and hydrodynamic self-sorting of single cells. Proc Natl Acad Sci USA 105(9):3191–3196. https://doi.org/10.1073/pnas.0708321105

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jing T, Ramji R, Warkiani ME, Han J, Lim CT, Chen CH (2015) Jetting microfluidics with size-sorting capability for single-cell protease detection. Biosens Bioelectron 66:19–23. https://doi.org/10.1016/j.bios.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  50. Edd JF, Di Carlo D, Humphry KJ, Köster S, Irimia D, Weitz DA, Toner M (2008) Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8(8):1262–1264. https://doi.org/10.1039/b805456h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kemna EW, Schoeman RM, Wolbers F, Vermes I, Weitz DA, Van Den Berg A (2012) High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. Lab Chip 12(16):2881–2887. https://doi.org/10.1039/c2lc00013j

    Article  CAS  PubMed  Google Scholar 

  52. Ramji R, Wang M, Bhagat AAS, Weng DTS, Thakor NV, Lim CT, Chen CH (2014) Single cell kinase signaling assay using pinched flow coupled droplet microfluidics. Biomicrofluidics 8(3):47–53. https://doi.org/10.1063/1.4878635

    Article  CAS  Google Scholar 

  53. Novo P, Dell’Aica M, Janasek D, Zahedi RP (2016) High spatial and temporal resolution cell manipulation techniques in microchannels. Analyst 141(6):1888–1905. https://doi.org/10.1039/C6AN00027D

    Article  CAS  PubMed  Google Scholar 

  54. Dudani JS, Gossett DR, Tse HT, Di CD (2013) Pinched-flow hydrodynamic stretching of single-cells. Lab Chip 13(18):3728–3734. https://doi.org/10.1039/c3lc50649e

    Article  CAS  PubMed  Google Scholar 

  55. Mcgrath J, Jimenez M, Bridle H (2014) Deterministic lateral displacement for particle separation: a review. Lab Chip 14(21):4139–4158. https://doi.org/10.1039/C4LC00939H

    Article  CAS  PubMed  Google Scholar 

  56. Cheng Q, Huang H, Chen L, Li X, Ge Z, Chen T, Yang Z, Sun L (2014) Dielectrophoresis for bioparticle manipulation. Int J Mol Sci 15(10):18281. https://doi.org/10.3390/ijms151018281

    Article  CAS  Google Scholar 

  57. Zhang H, Liu KK (2008) Optical tweezers for single cells. J R Soc Interface 5(24):671–690. https://doi.org/10.1098/rsif.2008.0052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lim B, Reddy V, Hu XH, Kim KW, Jadhav M, Abedini-Nassab R, Noh YW, Yong TL, Yellen BB, Kim CG (2014) Magnetophoretic circuits for digital control of single particles and cells. Nat Commun 5:3846. https://doi.org/10.1038/ncomms4846

    Article  CAS  PubMed  Google Scholar 

  59. Ahmed D, Ozcelik A, Bojanala N, Nama N, Upadhyay A, Chen Y, Hannarose W, Huang TJ (2016) Rotational manipulation of single cells and organisms using acoustic waves. Nat Commun 7:11085. https://doi.org/10.1038/ncomms11085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yarmush ML, King KR (2009) Living-cell microarrays. Annu Rev Biomed Eng 11(1):235. https://doi.org/10.1146/annurev.bioeng.10.061807.160502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jonczyk R, Kurth T, Lavrentieva A, Walter JG, Scheper T, Stahl F (2016) Living cell microarrays: an overview of concepts. Microarrays 5(2):11. https://doi.org/10.3390/microarrays5020011

    Article  CAS  PubMed Central  Google Scholar 

  62. Lin L, Chu YS, Thiery JP, Lim CT, Rodriguez I (2013) Microfluidic cell trap array for controlled positioning of single cells on adhesive micropatterns. Lab Chip 13(4):714. https://doi.org/10.1039/c2lc41070b

    Article  CAS  PubMed  Google Scholar 

  63. Sarioglu AF, Aceto N, Kojic N, Donaldson MC, Zeinali M, Hamza B, Engstrom A, Zhu H, Sundaresan TK, Miyamoto DT (2015) A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat Methods 12(7):685–691. https://doi.org/10.1038/nmeth.3404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lecault V, Vaninsberghe M, Sekulovic S, Knapp DJHF, Wohrer S, Bowden W, Viel F, Mclaughlin T, Jarandehei A, Miller M (2011) High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays. Nat Methods 8(7):581. https://doi.org/10.1038/nmeth.1614

    Article  CAS  PubMed  Google Scholar 

  65. Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8(8):425–454. https://doi.org/10.1146/annurev.bioeng.8.061505.095739

    Article  CAS  PubMed  Google Scholar 

  66. Yasukawa T, Nagamine K, Horiguchi Y, Shiku H, Koide M, Itayama T, Shiraishi F, Matsue T (2008) Electrophoretic cell manipulation and electrochemical gene-function analysis based on a yeast two-hybrid system in a microfluidic device. Anal Chem 80(10):3722–3727. https://doi.org/10.1021/ac800143t

    Article  CAS  PubMed  Google Scholar 

  67. Park K, Suk HJ, Akin D, Bashir R (2009) Dielectrophoresis-based cell manipulation using electrodes on a reusable printed circuit board. Lab Chip 9(15):2224–2229. https://doi.org/10.1039/b904328d

    Article  CAS  PubMed  Google Scholar 

  68. Glawdel T, Ren CL (2009) Electro-osmotic flow control for living cell analysis in microfluidic PDMS chips. Mech Res Commun 36(1):75–81. https://doi.org/10.1016/j.mechrescom.2008.06.015

    Article  Google Scholar 

  69. Mehrishi JN, Bauer J (2015) Electrophoresis of cells and the biological relevance of surface charge. Electrophoresis 23(13):1984–1994. https://doi.org/10.1002/1522-2683(200207)23:13%3c1984:AID-ELPS1984%3e3.0.CO;2-U

    Article  Google Scholar 

  70. Wyatt Shields Iv C, Reyes CD, López GP (2015) Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15(5):1230–1249. https://doi.org/10.1039/C4LC01246A

    Article  CAS  Google Scholar 

  71. Takahashi K, Hattori A, Suzuki I, Ichiki T, Yasuda K (2004) Non-destructive on-chip cell sorting system with real-time microscopic image processing. J Nanobiotechnol 2(1):5. https://doi.org/10.1186/1477-3155-2-5

    Article  Google Scholar 

  72. Guo F, Ji XH, Liu K, He RX, Zhao LB, Guo ZX, Liu W, Guo SS, Zhao XZ (2010) Droplet electric separator microfluidic device for cell sorting. Appl Phys Lett 96(19):1392. https://doi.org/10.1063/1.3360812

    Article  CAS  Google Scholar 

  73. Plouffe BD, Murthy SK, Lewis LH (2015) Fundamentals and application of magnetic particles in cell isolation and enrichment: a review. Rep Prog Phys 78(1):016601. https://doi.org/10.1088/0034-4885/78/1/016601

    Article  CAS  PubMed  Google Scholar 

  74. Pohl HA (1951) The motion and precipitation of suspensoids in divergent electric fields. J Appl Phys 22(7):869–871. https://doi.org/10.1063/1.1700065

    Article  CAS  Google Scholar 

  75. Gascoyne PR, Vykoukal J (2015) Particle separation by dielectrophoresis. Electrophoresis 23(13):1973–1983. https://doi.org/10.1002/1522-2683(200207)23:13%3c1973::AID-ELPS1973%3e3.0.CO;2-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Chuang CH, Wu YT (2012) Dielectrophoretic chip with multilayer electrodes and micro-cavity array for trapping and programmably releasing single cells. Biomed Microdevices 14(2):271–278. https://doi.org/10.1007/s10544-011-9603-x

    Article  CAS  PubMed  Google Scholar 

  77. Thomas RS, Morgan H, Green NG (2009) Negative DEP traps for single cell immobilisation. Lab Chip 9(11):1534–1540. https://doi.org/10.1039/B819267G

    Article  CAS  PubMed  Google Scholar 

  78. Jang L-S, Huang P-H, Lan K-C (2009) Single-cell trapping utilizing negative dielectrophoretic quadrupole and microwell electrodes. Biosens Bioelectron 24(12):3637–3644. https://doi.org/10.1016/j.bios.2009.05.027

    Article  CAS  PubMed  Google Scholar 

  79. Park H, Kim D, Yun KS (2010) Single-cell manipulation on microfluidic chip by dielectrophoretic actuation and impedance detection. Sens Actuators B-Chem 150(1):167–173. https://doi.org/10.1016/j.snb.2010.07.020

    Article  CAS  Google Scholar 

  80. Kim SH, Yamamoto T, Fourmy D, Fujii T (2011) Electroactive microwell arrays for highly efficient single-cell trapping and analysis. Small 7(22):3239–3247. https://doi.org/10.1002/smll.201101028

    Article  CAS  PubMed  Google Scholar 

  81. Dittrich PS, Schwille P (2003) An integrated microfluidic system for reaction, high-sensitivity detection, and sorting of fluorescent cells and particles. Anal Chem 75(21):5767–5774. https://doi.org/10.1021/ac034568c

    Article  CAS  PubMed  Google Scholar 

  82. Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24(4):156. https://doi.org/10.1103/physrevlett.24.156

    Article  CAS  Google Scholar 

  83. Ashkin A, Dziedzic JM, Bjorkholm J, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11(5):288–290. https://doi.org/10.1364/OL.11.000288

    Article  CAS  PubMed  Google Scholar 

  84. Hosic S, Murthy SK, Koppes AN (2016) Microfluidic sample preparation for single cell analysis. Anal Chem 88(1):354–380. https://doi.org/10.1021/acs.analchem.5b04077

    Article  CAS  PubMed  Google Scholar 

  85. Jonáš A, Zemanek P (2008) Light at work: the use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis 29(24):4813–4851. https://doi.org/10.1002/elps.200800484

    Article  CAS  PubMed  Google Scholar 

  86. Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in optical tweezers. Annu Rev Biochem 77:205–228. https://doi.org/10.1146/annurev.biochem.77.043007.090225

    Article  CAS  PubMed  Google Scholar 

  87. Bellini N, Vishnubhatla KC, Bragheri F, Ferrara L, Minzioni P, Ramponi R, Cristiani I, Osellame R (2010) Femtosecond laser fabricated monolithic chip for optical trapping and stretching of single cells. Opt Express 18(5):4679–4688. https://doi.org/10.1364/OE.18.004679

    Article  CAS  PubMed  Google Scholar 

  88. Kim SB, Yoon SY, Sung HJ, Kim SS (2008) Cross-type optical particle separation in a microchannel. Anal Chem 80(7):2628–2630. https://doi.org/10.1021/ac8000918

    Article  PubMed  Google Scholar 

  89. Kovac J, Voldman J (2007) Intuitive, image-based cell sorting using optofluidic cell sorting. Anal Chem 79(24):9321–9330. https://doi.org/10.1021/ac071366y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wang C, Ye M, Cheng L, Li R, Zhu W, Shi Z, Fan C, He J, Liu J, Liu Z (2015) Simultaneous isolation and detection of circulating tumor cells with a microfluidic silicon-nanowire-array integrated with magnetic upconversion nanoprobes. Biomaterials 54:55–62. https://doi.org/10.1016/j.biomaterials.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  91. Liu J, Shi J, Jiang L, Zhang F, Wang L, Yamamoto S, Takano M, Chang M, Zhang H, Chen Y (2012) Segmented magnetic nanofibers for single cell manipulation. Appl Surf Sci 258(19):7530–7535. https://doi.org/10.1016/j.apsusc.2012.04.077

    Article  CAS  Google Scholar 

  92. Burguillos MA, Magnusson C, Nordin M, Lenshof A, Augustsson P, Hansson MJ, Elmer E, Lilja H, Brundin P, Laurell T (2013) Microchannel acoustophoresis does not impact survival or function of microglia, leukocytes or tumor cells. PLoS One 8(5):e64233. https://doi.org/10.1371/journal.pone.0064233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Grenvall C, Magnusson C, Lilja H, Laurell T (2015) Concurrent isolation of lymphocytes and granulocytes using prefocused free flow acoustophoresis. Anal Chem 87(11):5596. https://doi.org/10.1021/acs.analchem.5b00370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li S, Ding X, Guo F, Chen Y, Lapsley MI, Lin SCS, Wang L, Mccoy JP, Cameron CE, Huang TJ (2013) An on-chip, multichannel droplet sorter using standing surface acoustic waves. Anal Chem 85(11):5468–5474. https://doi.org/10.1021/ac400548d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Schmid L, Weitz DA, Franke T (2014) Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. Lab Chip 14(19):3710–3718. https://doi.org/10.1039/c4lc00588k

    Article  CAS  PubMed  Google Scholar 

  96. And JRR, Folch A (2005) Large-scale single-cell trapping and imaging using microwell arrays. Anal Chem 77(17):5628–5634. https://doi.org/10.1021/ac0505977

    Article  CAS  Google Scholar 

  97. Carlo DD, Wu LY, Lee LP (2006) Dynamic single cell culture array. Lab Chip 6(11):1445–1449. https://doi.org/10.1039/b605937f

    Article  CAS  PubMed  Google Scholar 

  98. Chen J, Chen D, Yuan T, Chen X, Zhu J, Morschhauser A, Nestler J, Otto T, Gessner T (2014) Microfluidic chips for cells capture using 3-D hydrodynamic structure array. Microsyst Technol 20(3):485–491. https://doi.org/10.1007/s00542-013-1933-6

    Article  CAS  Google Scholar 

  99. Chung J, Kim YJ, Yoon E (2011) Highly-efficient single-cell capture in microfluidic array chips using differential hydrodynamic guiding structures. Appl Phys Lett 98(12):123701. https://doi.org/10.1063/1.3565236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fröhlich J, König H (2000) New techniques for isolation of single prokaryotic cells 1. FEMS Microbiol Rev 24(5):567–572. https://doi.org/10.1111/j.1574-6976.2000.tb00558.x

    Article  PubMed  Google Scholar 

  101. Anis Y, Houkal J, Holl M, Johnson R, Meldrum D (2011) Diaphragm pico-liter pump for single-cell manipulation. Biomed Microdevices 13(4):651–659. https://doi.org/10.1007/s10544-011-9535-5

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kim BC, Moraes C, Huang J, Matsuoka T, Thouless MD, Takayama S (2015) Fracture-based fabrication of normally closed, adjustable, and fully reversible microscale fluidic channels. Small 10(19):4020–4029. https://doi.org/10.1002/smll.201400147

    Article  CAS  Google Scholar 

  103. Hoefemann H, Wadle S, Bakhtina N, Kondrashov V, Wangler N, Zengerle R (2012) Sorting and lysis of single cells by BubbleJet technology. Sens Actuators B-Chem 168(12):442–445. https://doi.org/10.1016/j.snb.2012.04.005

    Article  CAS  Google Scholar 

  104. Gong Y, Ogunniyi AO, Love JC (2010) Massively parallel detection of gene expression in single cells using subnanolitre wells. Lab Chip 10(18):2334–2337. https://doi.org/10.1039/c004847j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liu ET, Lauffenburger DA (2009) Systems biomedicine: concepts and perspectives. Academic Press, Salt Lake

    Google Scholar 

  106. Shi Q, Qin L, Wei W, Geng F, Fan R, Shin YS, Guo D, Hood L, Mischel PS, Heath JR (2012) Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc Natl Acad Sci USA 109(2):419–424. https://doi.org/10.1073/pnas.1110865109

    Article  PubMed  Google Scholar 

  107. White AK, Heyries KA, Doolin C, Vaninsberghe M, Hansen CL (2013) High-throughput microfluidic single-cell digital polymerase chain reaction. Anal Chem 85(15):7182–7190. https://doi.org/10.1021/ac400896j

    Article  CAS  PubMed  Google Scholar 

  108. Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL, Espinoza FH, Desai TJ, Krasnow MA, Quake SR (2014) Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509(7500):371–375. https://doi.org/10.1038/nature13173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Streets AM, Zhang X, Cao C, Pang Y, Wu X, Xiong L, Yang L, Fu Y, Zhao L, Tang F (2014) Microfluidic single-cell whole-transcriptome sequencing. Proc Natl Acad Sci USA 111(19):7048. https://doi.org/10.1073/pnas.1402030111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Fan HC, Wang J, Potanina A, Quake SR (2011) Whole-genome molecular haplotyping of single cells. Nat Biotechnol 29(1):51–57. https://doi.org/10.1038/nbt.1739

    Article  CAS  PubMed  Google Scholar 

  111. Sun H, Olsen T, Zhu J, Tao J, Ponnaiya B, Amundson SA, Brenner DJ, Lin Q (2014) A Bead-based microfluidic approach to integrated single-cell gene expression analysis by quantitative RT-PCR. RSC Adv 5(7):4886–4893. https://doi.org/10.1039/C4RA13356K

    Article  CAS  Google Scholar 

  112. DeKosky BJ, Kojima T, Rodin A, Charab W, Ippolito GC, Ellington AD, Georgiou G (2015) In-depth determination and analysis of the human paired heavy-and light-chain antibody repertoire. Nat Med 21(1):86. https://doi.org/10.1007/978-3-319-58518-5_3

    Article  CAS  PubMed  Google Scholar 

  113. Macosko E, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas A, Kamitaki N, Martersteck E (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161(5):1202–1214. https://doi.org/10.1016/j.cell.2015.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Klein Allon M, Mazutis L, Akartuna I, Tallapragada N, Veres A, Li V, Peshkin L, Weitz David A, Kirschner Marc W (2015) Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5):1187–1201. https://doi.org/10.1016/j.cell.2015.04.044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Rival A, Jary D, Delattre C, Fouillet Y, Castellan G, Bellemincomte A, Gidrol X (2014) An EWOD-based microfluidic chip for single-cell isolation, mRNA purification and subsequent multiplex qPCR. Lab Chip 14(19):3739–3749. https://doi.org/10.1039/C4LC00592A

    Article  CAS  PubMed  Google Scholar 

  116. Zinchenko A, Devenish SR, Kintses B, Colin PY, Fischlechner M, Hollfelder F (2014) One in a million: flow cytometric sorting of single cell-lysate assays in monodisperse picolitre double emulsion droplets for directed evolution. Anal Chem 86(5):2526–2533. https://doi.org/10.1021/ac403585p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sarkar A, Kolitz S, Lauffenburger DA, Han J (2014) Microfluidic probe for single-cell lysis and analysis in adherent tissue culture. Nat Commun 5(5):3421. https://doi.org/10.1038/ncomms4421

    Article  CAS  PubMed  Google Scholar 

  118. Tsong TY (1991) Electroporation of cell membranes. Biophys J 60(2):297–306. https://doi.org/10.3109/07388559609147426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sersa G, Miklavcic D, Cemazar M, Rudolf Z, Pucihar G, Snoj M (2008) Electrochemotherapy in treatment of tumours. Eur J Surg Oncol 34(2):232–240. https://doi.org/10.1016/j.ejso.2007.05.016

    Article  CAS  PubMed  Google Scholar 

  120. Lee SW, Tai YC (1999) A micro cell lysis device. Sens Actuator A-Phys 73(1–2):74–79. https://doi.org/10.1016/S0924-4247(98)00257-X

    Article  CAS  Google Scholar 

  121. Lu H, Schmidt MA, Jensen KF (2004) A microfluidic electroporation device for cell lysis. Lab Chip 5(1):23–29. https://doi.org/10.1039/B406205A

    Article  PubMed  Google Scholar 

  122. Chao-Wang Y, Jia-Ling H, Chyung A (2012) Development of an integrated chip for automatic tracking and positioning manipulation for single cell lysis. Sensors 12(3):2400–2413. https://doi.org/10.3390/s120302400

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Ming Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, W., Li, N., Lin, JM. (2019). Microfluidic Technology for Single-Cell Manipulation. In: Lin, JM. (eds) Microfluidics for Single-Cell Analysis. Integrated Analytical Systems. Springer, Singapore. https://doi.org/10.1007/978-981-32-9729-6_4

Download citation

Publish with us

Policies and ethics