Skip to main content

Machine Learning in Neural Networks

  • Chapter
  • First Online:
Frontiers in Psychiatry

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1192))

Abstract

Evidence now suggests that precision psychiatry is becoming a cornerstone of medical practices by providing the patient of psychiatric disorders with the right medication at the right dose at the right time. In light of recent advances in neuroimaging and multi-omics, more and more biomarkers associated with psychiatric diseases and treatment responses are being discovered in precision psychiatry applications by leveraging machine learning and neural network approaches. In this article, we focus on the most recent developments for research in precision psychiatry using machine learning, deep learning, and neural network algorithms, together with neuroimaging and multi-omics data. First, we describe different machine learning approaches that are employed to assess prediction for diagnosis, prognosis, and treatment in various precision psychiatry studies. We also survey probable biomarkers that have been identified to be involved in psychiatric diseases and treatment responses. Furthermore, we summarize the limitations with respect to the mentioned precision psychiatry studies. Finally, we address a discussion of future directions and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin E, Lane HY. Machine learning and systems genomics approaches for multi-omics data. Biomark Res. 2017;5:2.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bzdok D, Meyer-Lindenberg A. Machine learning for precision psychiatry: opportunities and challenges. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3(3):223–30.

    Article  PubMed  Google Scholar 

  3. Davatzikos C. Machine learning in neuroimaging: progress and challenges. Neuroimage. 2018.

    Google Scholar 

  4. Iniesta R, Stahl D, McGuffin P. Machine learning, statistical learning and the future of biological research in psychiatry. Psychol Med. 2016;46(12):2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lane HY, Tsai GE, Lin E. Assessing gene–gene interactions in pharmacogenomics. Mol Diagn Ther. 2012;16(1):15–27.

    Article  CAS  PubMed  Google Scholar 

  6. Lin E, Hwang Y, Liang KH, Chen EY. Pattern-recognition techniques with haplotype analysis in pharmacogenomics. Pharmacogenomics. 2007;8(1):75–83.

    Article  CAS  PubMed  Google Scholar 

  7. Torres EB, Isenhower RW, Nguyen J, Whyatt C, Nurnberger JI, Jose JV, et al. Toward precision psychiatry: statistical platform for the personalized characterization of natural behaviors. Front Neurol. 2016;7:8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gandal MJ, Leppa V, Won H, Parikshak NN, Geschwind DH. The road to precision psychiatry: translating genetics into disease mechanisms. Nat Neurosci. 2016;19(11):1397–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lin E, Tsai SJ. Genome-wide microarray analysis of gene expression profiling in major depression and antidepressant therapy. Prog Neuropsychopharmacol Biol Psychiatry. 2016;64:334–40.

    Article  CAS  PubMed  Google Scholar 

  10. Lin E, Lane HY. Genome-wide association studies in pharmacogenomics of antidepressants. Pharmacogenomics. 2015;16(5):555–66.

    Article  CAS  PubMed  Google Scholar 

  11. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.

    Article  PubMed  Google Scholar 

  12. Ching T, Himmelstein DS, Beaulieu-Jones BK, Kalinin AA, Do BT, Way GP, et al. Opportunities and obstacles for deep learning in biology and medicine. J R Soc Interface. 2018;15(141).

    Article  PubMed Central  PubMed  Google Scholar 

  13. Dana D, Gadhiya SV, St Surin LG, Li D, Naaz F, Ali Q, et al. Deep learning in drug discovery and medicine; scratching the surface. Molecules. 2018;23(9).

    Article  PubMed Central  CAS  Google Scholar 

  14. Grapov D, Fahrmann J, Wanichthanarak K, Khoomrung S. Rise of deep learning for genomic, proteomic, and metabolomic data integration in precision medicine. OMICS. 2018.

    Google Scholar 

  15. Zhang S, Hosseini Bamakan SM, Qu Q, Li S. Learning for personalised medicine: a comprehensive review from deep learning perspective. IEEE Rev Biomed Eng. 2018.

    Google Scholar 

  16. Hulshoff Pol H, Bullmore E. Neural networks in psychiatry. Eur Neuropsychopharmacol. 2013;23(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  17. Fernandes BS, Williams LM, Steiner J, Leboyer M, Carvalho AF, Berk M. The new field of ‘precision psychiatry’. BMC Med. 2017;15(1):80.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dwyer DB, Falkai P, Koutsouleris N. Machine learning approaches for clinical psychology and psychiatry. Annu Rev Clin Psychol. 2018;14:91–118.

    Article  PubMed  Google Scholar 

  19. Arbabshirani MR, Plis S, Sui J, Calhoun VD. Single subject prediction of brain disorders in neuroimaging: promises and pitfalls. Neuroimage. 2017;145(Pt B):137–65.

    Article  PubMed  Google Scholar 

  20. Kloppel S, Stonnington CM, Chu C, Draganski B, Scahill RI, Rohrer JD, et al. Automatic classification of MR scans in Alzheimer’s disease. Brain. 2008;131(Pt 3):681–9.

    Article  PubMed  Google Scholar 

  21. Ju R, Hu C, Zhou P, Li Q. Early diagnosis of Alzheimer’s disease based on resting-state brain networks and deep learning. IEEE/ACM Trans Comput Biol Bioinform. 2017.

    Google Scholar 

  22. Ortiz A, Munilla J, Gorriz JM, Ramirez J. Ensembles of deep learning architectures for the early diagnosis of the Alzheimer’s disease. Int J Neural Syst. 2016;26(7):1650025.

    Article  PubMed  Google Scholar 

  23. Akhavan Aghdam M, Sharifi A, Pedram MM. Combination of rs-fMRI and sMRI data to discriminate autism spectrum disorders in young children using deep belief network. J Digit Imaging. 2018.

    Google Scholar 

  24. Pinaya WH, Gadelha A, Doyle OM, Noto C, Zugman A, Cordeiro Q, et al. Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. Sci Rep. 2016;6:38897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Schmaal L, Marquand AF, Rhebergen D, van Tol MJ, Ruhe HG, van der Wee NJ, et al. Predicting the naturalistic course of major depressive disorder using clinical and multimodal neuroimaging information: a multivariate pattern recognition study. Biol Psychiatry. 2015;78(4):278–86.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Miotto R, Li L, Kidd BA, Dudley JT. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep. 2016;6:26094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin E, Kuo PH, Liu YL, Yu YW, Yang AC, Tsai SJ. A deep learning approach for predicting antidepressant response in major depression using clinical and genetic biomarkers. Front Psychiatry. 2018;9:290.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kautzky A, Baldinger P, Souery D, Montgomery S, Mendlewicz J, Zohar J, et al. The combined effect of genetic polymorphisms and clinical parameters on treatment outcome in treatment-resistant depression. Eur Neuropsychopharmacol. 2015;25(4):441–53.

    Article  CAS  PubMed  Google Scholar 

  29. Patel MJ, Andreescu C, Price JC, Edelman KL, Reynolds CF 3rd, Aizenstein HJ. Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction. Int J Geriatr Psychiatry. 2015;30(10):1056–67.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chekroud AM, Zotti RJ, Shehzad Z, Gueorguieva R, Johnson MK, Trivedi MH, et al. Cross-trial prediction of treatment outcome in depression: a machine learning approach. Lancet Psychiatry. 2016;3(3):243–50.

    Article  PubMed  Google Scholar 

  31. Iniesta R, Malki K, Maier W, Rietschel M, Mors O, Hauser J, et al. Combining clinical variables to optimize prediction of antidepressant treatment outcomes. J Psychiatr Res. 2016;78:94–102.

    Article  PubMed  Google Scholar 

  32. Zou H, Zhang HH. On the adaptive elastic-net with a diverging number of parameters. Ann Stat. 2009;37(4):1733–51.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Maciukiewicz M, Marshe VS, Hauschild AC, Foster JA, Rotzinger S, Kennedy JL, et al. GWAS-based machine learning approach to predict duloxetine response in major depressive disorder. J Psychiatr Res. 2018;99:62–8.

    Article  PubMed  Google Scholar 

  34. Tibshirani R. The lasso method for variable selection in the Cox model. Stat Med. 1997;16(4):385–95.

    Article  CAS  PubMed  Google Scholar 

  35. Casanova R, Barnard RT, Gaussoin SA, Saldana S, Hayden KM, Manson JE, et al. Using high-dimensional machine learning methods to estimate an anatomical risk factor for Alzheimer’s disease across imaging databases. Neuroimage. 2018;183:401–11.

    Article  PubMed  Google Scholar 

  36. Algamal ZY, Lee MH. Regularized logistic regression with adjusted adaptive elastic net for gene selection in high dimensional cancer classification. Comput Biol Med. 2015;67:136–45.

    Article  CAS  PubMed  Google Scholar 

  37. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. J Stat Softw. 2010;33(1):1–22.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Walter M, Alizadeh S, Jamalabadi H, Lueken U, Dannlowski U, Walter H, et al. Translational machine learning for psychiatric neuroimaging. Prog Neuropsychopharmacol Biol Psychiatry. 2018.

    Google Scholar 

  39. Woo CW, Chang LJ, Lindquist MA, Wager TD. Building better biomarkers: brain models in translational neuroimaging. Nat Neurosci. 2017;20(3):365–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moreno-De-Luca D, Ross ME, Ross DA. Leveraging the power of genetics to bring precision medicine to psychiatry: too little of a good thing? Biol Psychiatry. 2018;83(8):e45–6.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Folkersen L, Brynedal B, Diaz-Gallo LM, Ramskold D, Shchetynsky K, Westerlind H, et al. Integration of known DNA, RNA and protein biomarkers provides prediction of anti-TNF response in rheumatoid arthritis: results from the COMBINE study. Mol Med. 2016;22:322–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gombojav B, Song YM, Lee K, Yang S, Kho M, Hwang YC, et al. The healthy twin study, Korea updates: resources for omics and genome epidemiology studies. Twin Res Hum Genet. 2013;16(1):241–5.

    Article  PubMed  Google Scholar 

  43. Qvarfordt M, Anderson M, Svartengren M. Quality and learning aspects of the first 9000 spirometries of the Life Gene study. NPJ Prim Care Respir Med. 2018;28(1):6.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chen CH, Yang JH, Chiang CWK, Hsiung CN, Wu PE, Chang LC, et al. Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Hum Mol Genet. 2016;25(24):5321–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lin JC, Fan CT, Liao CC, Chen YS. Taiwan Biobank: making cross-database convergence possible in the big data era. Gigascience. 2018;7(1):1–4.

    Article  PubMed  Google Scholar 

  46. Lin E, Kuo PH, Liu YL, Yang AC, Kao CF, Tsai SJ. Association and interaction of APOA5, BUD13, CETP, LIPA and health-related behavior with metabolic syndrome in a Taiwanese population. Sci Rep. 2016;6:36830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lin E, Kuo PH, Liu YL, Yang AC, Kao CF, Tsai SJ. Effects of circadian clock genes and environmental factors on cognitive aging in old adults in a Taiwanese population. Oncotarget. 2017;8(15):24088–98.

    PubMed  PubMed Central  Google Scholar 

  48. Lin E, Kuo PH, Liu YL, Yang AC, Kao CF, Tsai SJ. Effects of circadian clock genes and health-related behavior on metabolic syndrome in a Taiwanese population: evidence from association and interaction analysis. PLoS ONE. 2017;12(3):e0173861.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Lin E, Tsai SJ, Kuo PH, Liu YL, Yang AC, Kao CF, et al. The rs1277306 variant of the REST gene confers susceptibility to cognitive aging in an elderly Taiwanese population. Dement Geriatr Cogn Disord. 2017;43(3–4):119–27.

    Article  CAS  PubMed  Google Scholar 

  50. Lin E, Tsai SJ, Kuo PH, Liu YL, Yang AC, Kao CF, et al. The ADAMTS9 gene is associated with cognitive aging in the elderly in a Taiwanese population. PLoS ONE. 2017;12(2):e0172440.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Lin E, Yang AC, Tsai SJ. Association between metabolic syndrome and cognitive function in old adults in a Taiwanese population. Taiwanese J Psychiatry. 2017;31(3):232–40.

    Google Scholar 

  52. Ben-Hamo R, Efroni S. Biomarker robustness reveals the PDGF network as driving disease outcome in ovarian cancer patients in multiple studies. BMC Syst Biol. 2012;6:3.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Tebani A, Afonso C, Marret S, Bekri S. Omics-based strategies in precision medicine: toward a paradigm shift in inborn errors of metabolism investigations. Int J Mol Sci. 2016;17(9).

    Article  PubMed Central  Google Scholar 

  54. Dalvie S, Koen N, McGregor N, O’Connell K, Warnich L, Ramesar R, et al. Toward a global roadmap for precision medicine in psychiatry: challenges and opportunities. OMICS. 2016;20(10):557–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Williams LM. Precision psychiatry: a neural circuit taxonomy for depression and anxiety. Lancet Psychiatry. 2016;3(5):472–80.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hu Y, Hase T, Li HP, Prabhakar S, Kitano H, Ng SK, et al. A machine learning approach for the identification of key markers involved in brain development from single-cell transcriptomic data. BMC Genom. 2016;17(Suppl 13):1025.

    Article  CAS  Google Scholar 

  57. Serretti A. The present and future of precision medicine in psychiatry: focus on clinical psychopharmacology of antidepressants. Clin Psychopharmacol Neurosci. 2018;16(1):1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stein MB, Smoller JW. Precision psychiatry-will genomic medicine lead the way? JAMA Psychiatry. 2018;75(7):663–4.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant MOST 107-2634-F-075-002 from Taiwan Ministry of Science and Technology, and grant V105D17-002-MY2-2 from the Taipei Veterans General Hospital. We thank Emily Ting for English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Jen Tsai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lin, E., Tsai, SJ. (2019). Machine Learning in Neural Networks. In: Kim, YK. (eds) Frontiers in Psychiatry. Advances in Experimental Medicine and Biology, vol 1192. Springer, Singapore. https://doi.org/10.1007/978-981-32-9721-0_7

Download citation

Publish with us

Policies and ethics