Advertisement

Co-signaling Molecules in Neurological Diseases

  • Pia Kivisäkk
  • Samia J. KhouryEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1189)

Abstract

Inflammation plays an important role in the onset and progression of many neurological diseases. As the central nervous system (CNS) constitutes a highly specialized environment where immune activation can be detrimental, it is crucial to understand mechanisms by which the immune system is regulated during neurological diseases. The system of co-signaling pathways provides the immune system with the means to fine-tune immune responses by turning on and off immune cell activation. Studies of co-signaling molecules in neurological diseases and their animal models have highlighted the complexities of immune regulation within the CNS and the intricacies of the interplay between the different cells of the immune system and how they interact with the resident cells of the CNS. This complexity poses challenges when targeting co-signaling pathway to treat neurological diseases and may explain why no drugs targeting these pathways have been successfully developed this far. Here, we will review the current literature on some important co-signaling pathways in multiple sclerosis (MS), Alzheimer’s disease, amyotrophic lateral sclerosis (ALS), Parkinson’s disease, and ischemic stroke to understand these pathways in mediating and controlling neuroinflammation.

Keywords

Costimulatory molecules Neurological diseases Multiple sclerosis Alzheimer’s disease Amyotrophic lateral sclerosis Parkinson’s disease Ischemic stroke 

References

  1. Ait-Ghezala G, Mathura VS, Laporte V, Quadros A, Paris D, Patel N, Volmar CH, Kolippakkam D, Crawford F, Mullan M (2005) Genomic regulation after CD40 stimulation in microglia: relevance to Alzheimer’s disease. Brain Res Mol Brain Res 140(1–2):73–85.  https://doi.org/10.1016/j.molbrainres.2005.07.014 CrossRefPubMedGoogle Scholar
  2. Ait-ghezala G, Abdullah L, Volmar CH, Paris D, Luis CA, Quadros A, Mouzon B, Mullan MA, Keegan AP, Parrish J, Crawford FC, Mathura VS, Mullan MJ (2008) Diagnostic utility of APOE, soluble CD40, CD40L, and Abeta1-40 levels in plasma in Alzheimer’s disease. Cytokine 44(2):283–287.  https://doi.org/10.1016/j.cyto.2008.08.013 CrossRefPubMedGoogle Scholar
  3. Almolda B, Gonzalez B, Castellano B (2015) Are microglial cells the regulators of lymphocyte responses in the CNS? Front Cell Neurosci 9:440.  https://doi.org/10.3389/fncel.2015.00440 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aloisi F, Ria F, Penna G, Adorini L (1998) Microglia are more efficient than astrocytes in antigen processing and in Th1 but not Th2 cell activation. J Immunol 160(10):4671–4680PubMedGoogle Scholar
  5. Anderson AC, Anderson DE, Bregoli L, Hastings WD, Kassam N, Lei C, Chandwaskar R, Karman J, Su EW, Hirashima M, Bruce JN, Kane LP, Kuchroo VK, Hafler DA (2007) Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science 318(5853):1141–1143.  https://doi.org/10.1126/science.1148536 CrossRefPubMedGoogle Scholar
  6. Anderson AC, Joller N, Kuchroo VK (2016) Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. Immunity 44(5):989–1004.  https://doi.org/10.1016/j.immuni.2016.05.001 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Arima T, Rehman A, Hickey WF, Flye MW (1996) Inhibition by CTLA4Ig of experimental allergic encephalomyelitis. J Immunol 156(12):4916–4924PubMedGoogle Scholar
  8. Balashov KE, Smith DR, Khoury SJ, Hafler DA, Weiner HL (1997) Increased interleukin 12 production in progressive multiple sclerosis: induction by activated CD4+ T cells via CD40 ligand. Proc Natl Acad Sci USA 94(2):599–603PubMedCrossRefGoogle Scholar
  9. Becher B, Durell BG, Miga AV, Hickey WF, Noelle RJ (2001) The clinical course of experimental autoimmune encephalomyelitis and inflammation is controlled by the expression of CD40 within the central nervous system. J Exp Med 193(8):967–974PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bodhankar S, Chen Y, Vandenbark AA, Murphy SJ, Offner H (2013a) IL-10-producing B-cells limit CNS inflammation and infarct volume in experimental stroke. Metab Brain Dis 28(3):375–386.  https://doi.org/10.1007/s11011-013-9413-3 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bodhankar S, Chen Y, Vandenbark AA, Murphy SJ, Offner H (2013b) PD-L1 enhances CNS inflammation and infarct volume following experimental stroke in mice in opposition to PD-1. J Neuroinflammation 10:111.  https://doi.org/10.1186/1742-2094-10-111 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bodhankar S, Chen Y, Lapato A, Dotson AL, Wang J, Vandenbark AA, Saugstad JA, Offner H (2015) PD-L1 monoclonal antibody treats ischemic stroke by controlling central nervous system inflammation. Stroke 46(10):2926–2934.  https://doi.org/10.1161/STROKEAHA.115.010592 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bretscher P, Cohn M (1970) A theory of self-nonself discrimination. Science 169(3950):1042–1049PubMedPubMedCentralCrossRefGoogle Scholar
  14. Buchbinder EI, Desai A (2016) CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol 39(1):98–106.  https://doi.org/10.1097/COC.0000000000000239 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Buchhave P, Janciauskiene S, Zetterberg H, Blennow K, Minthon L, Hansson O (2009) Elevated plasma levels of soluble CD40 in incipient Alzheimer’s disease. Neurosci Lett 450(1):56–59.  https://doi.org/10.1016/j.neulet.2008.10.091 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Burman J, Svenningsson A (2016) Cerebrospinal fluid concentration of Galectin-9 is increased in secondary progressive multiple sclerosis. J Neuroimmunol 292:40–44.  https://doi.org/10.1016/j.jneuroim.2016.01.008 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE, Fanek Z, Liu L, Chen Z, Rothstein JD, Ransohoff RM, Gygi SP, Antel JP, Weiner HL (2014) Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci 17(1):131–143.  https://doi.org/10.1038/nn.3599 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Calingasan NY, Erdely HA, Altar CA (2002) Identification of CD40 ligand in Alzheimer’s disease and in animal models of Alzheimer’s disease and brain injury. Neurobiol Aging 23(1):31–39PubMedCrossRefPubMedCentralGoogle Scholar
  19. Cao Y, Nylander A, Ramanan S, Goods BA, Ponath G, Zabad R, Chiang VL, Vortmeyer AO, Hafler DA, Pitt D (2016) CNS demyelination and enhanced myelin-reactive responses after ipilimumab treatment. Neurology 86(16):1553–1556.  https://doi.org/10.1212/WNL.0000000000002594 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Carter LL, Leach MW, Azoitei ML, Cui J, Pelker JW, Jussif J, Benoit S, Ireland G, Luxenberg D, Askew GR, Milarski KL, Groves C, Brown T, Carito BA, Percival K, Carreno BM, Collins M, Marusic S (2007) PD-1/PD-L1, but not PD-1/PD-L2, interactions regulate the severity of experimental autoimmune encephalomyelitis. J Neuroimmunol 182(1-2):124–134.  https://doi.org/10.1016/j.jneuroim.2006.10.006 CrossRefPubMedGoogle Scholar
  21. Cebrian C, Zucca FA, Mauri P, Steinbeck JA, Studer L, Scherzer CR, Kanter E, Budhu S, Mandelbaum J, Vonsattel JP, Zecca L, Loike JD, Sulzer D (2014) MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration. Nat Commun 5:3633.  https://doi.org/10.1038/ncomms4633 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cebrian C, Loike JD, Sulzer D (2015) Neuroinflammation in Parkinson’s disease animal models: a cell stress response or a step in neurodegeneration? Curr Top Behav Neurosci 22:237–270.  https://doi.org/10.1007/7854_2014_356 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Chastain EM, Duncan DS, Rodgers JM, Miller SD (2011) The role of antigen presenting cells in multiple sclerosis. Biochim Biophys Acta 1812(2):265–274.  https://doi.org/10.1016/j.bbadis.2010.07.008 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Chatzigeorgiou A, Lyberi M, Chatzilymperis G, Nezos A, Kamper E (2009) CD40/CD40L signaling and its implication in health and disease. Biofactors 35(6):474–483.  https://doi.org/10.1002/biof.62 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Chavarria A, Cardenas G (2013) Neuronal influence behind the central nervous system regulation of the immune cells. Front Integr Neurosci 7:64.  https://doi.org/10.3389/fnint.2013.00064 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Chen L (2004) Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol 4(5):336–347.  https://doi.org/10.1038/nri1349 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Chen D, Ireland SJ, Remington G, Alvarez E, Racke MK, Greenberg B, Frohman EM, Monson NL (2016) CD40-mediated NF-kappaB activation in B cells is increased in multiple sclerosis and modulated by therapeutics. J Immunol 197(11):4257–4265.  https://doi.org/10.4049/jimmunol.1600782 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Chitnis T, Imitola J, Wang Y, Elyaman W, Chawla P, Sharuk M, Raddassi K, Bronson RT, Khoury SJ (2007) Elevated neuronal expression of CD200 protects Wlds mice from inflammation-mediated neurodegeneration. Am J Pathol 170(5):1695–1712.  https://doi.org/10.2353/ajpath.2007.060677 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Chiu AS, Gehringer MM, Braidy N, Guillemin GJ, Welch JH, Neilan BA (2013) Gliotoxicity of the cyanotoxin, beta-methyl-amino-L-alanine (BMAA). Sci Rep 3:1482.  https://doi.org/10.1038/srep01482 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Constantinescu CS, Hilliard B, Wysocka M, Ventura ES, Bhopale MK, Trinchieri G, Rostami AM (1999) IL-12 reverses the suppressive effect of the CD40 ligand blockade on experimental autoimmune encephalomyelitis (EAE). J Neurol Sci 171(1):60–64PubMedCrossRefGoogle Scholar
  31. Correale J, Farez M (2007) Association between parasite infection and immune responses in multiple sclerosis. Ann Neurol 61(2):97–108.  https://doi.org/10.1002/ana.21067 CrossRefPubMedGoogle Scholar
  32. Correale J, Farez M, Razzitte G (2008) Helminth infections associated with multiple sclerosis induce regulatory B cells. Ann Neurol 64(2):187–199.  https://doi.org/10.1002/ana.21438 CrossRefPubMedGoogle Scholar
  33. Cross AH, Ku G (2000) Astrocytes and central nervous system endothelial cells do not express B7-1 (CD80) or B7-2 (CD86) immunoreactivity during experimental autoimmune encephalomyelitis. J Neuroimmunol 110(1-2):76–82PubMedCrossRefGoogle Scholar
  34. Cross AH, San M, Keeling RM, Karr RW (1999) CTLA-4-Fc treatment of ongoing EAE improves recovery, but has no effect upon relapse rate. Implications for the mechanisms involved in disease perpetuation. J Neuroimmunol 96(2):144–147PubMedCrossRefGoogle Scholar
  35. Croxford JL, Miyake S, Huang YY, Shimamura M, Yamamura T (2006) Invariant V(alpha)19i T cells regulate autoimmune inflammation. Nat Immunol 7(9):987–994.  https://doi.org/10.1038/ni1370 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Dardalhon V, Schubart AS, Reddy J, Meyers JH, Monney L, Sabatos CA, Ahuja R, Nguyen K, Freeman GJ, Greenfield EA, Sobel RA, Kuchroo VK (2005) CD226 is specifically expressed on the surface of Th1 cells and regulates their expansion and effector functions. J Immunol 175(3):1558–1565PubMedCrossRefPubMedCentralGoogle Scholar
  37. de Andrade LF, Smyth MJ, Martinet L (2014) DNAM-1 control of natural killer cells functions through nectin and nectin-like proteins. Immunol Cell Biol 92(3):237–244.  https://doi.org/10.1038/icb.2013.95 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15(9):545–558.  https://doi.org/10.1038/nri3871 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Desideri G, Cipollone F, Necozione S, Marini C, Lechiara MC, Taglieri G, Zuliani G, Fellin R, Mezzetti A, di Orio F, Ferri C (2008) Enhanced soluble CD40 ligand and Alzheimer’s disease: evidence of a possible pathogenetic role. Neurobiol Aging 29(3):348–356.  https://doi.org/10.1016/j.neurobiolaging.2006.10.019 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Dong C, Juedes AE, Temann UA, Shresta S, Allison JP, Ruddle NH, Flavell RA (2001) ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409(6816):97–101.  https://doi.org/10.1038/35051100 CrossRefGoogle Scholar
  41. Eagar TN, Karandikar NJ, Bluestone JA, Miller SD (2002) The role of CTLA-4 in induction and maintenance of peripheral T cell tolerance. Eur J Immunol 32(4):972–981.  https://doi.org/10.1002/1521-4141(200204)32:4<972::AID-IMMU972>3.0.CO;2-M CrossRefPubMedGoogle Scholar
  42. Ebner F, Brandt C, Thiele P, Richter D, Schliesser U, Siffrin V, Schueler J, Stubbe T, Ellinghaus A, Meisel C, Sawitzki B, Nitsch R (2013) Microglial activation milieu controls regulatory T cell responses. J Immunol 191(11):5594–5602.  https://doi.org/10.4049/jimmunol.1203331 CrossRefPubMedGoogle Scholar
  43. Elyaman W, Kivisäkk P, Reddy J, Chitnis T, Raddassi K, Imitola J, Bradshaw E, Kuchroo VK, Yagita H, Sayegh MH, Khoury SJ (2008) Distinct functions of autoreactive memory and effector CD4+ T cells in experimental autoimmune encephalomyelitis. Am J Pathol 173(2):411–422.  https://doi.org/10.2353/ajpath.2008.080142 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Esensten JH, Helou YA, Chopra G, Weiss A, Bluestone JA (2016) CD28 costimulation: from mechanism to therapy. Immunity 44(5):973–988.  https://doi.org/10.1016/j.immuni.2016.04.020 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Famakin BM (2014) The immune response to acute focal cerebral ischemia and associated post-stroke immunodepression: a focused review. Aging Dis 5(5):307–326.  https://doi.org/10.14336/AD.2014.0500307 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Fan X, Jin T, Zhao S, Liu C, Han J, Jiang X, Jiang Y (2015a) Circulating CCR7+ICOS+ memory T follicular helper cells in patients with multiple sclerosis. PLoS One 10(7):e0134523.  https://doi.org/10.1371/journal.pone.0134523 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Fan X, Lin C, Han J, Jiang X, Zhu J, Jin T (2015b) Follicular helper CD4+ T cells in human neuroautoimmune diseases and their animal models. Mediators Inflamm 2015:638968.  https://doi.org/10.1155/2015/638968 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Field J, Shahijanian F, Schibeci S, Australia, New Zealand MSGC, Johnson L, Gresle M, Laverick L, Parnell G, Stewart G, McKay F, Kilpatrick T, Butzkueven H, Booth D (2015) The MS risk allele of CD40 is associated with reduced cell-membrane bound expression in antigen presenting cells: implications for gene function. PLoS One 10(6):e0127080.  https://doi.org/10.1371/journal.pone.0127080 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Fife BT, Bluestone JA (2008) Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 224:166–182.  https://doi.org/10.1111/j.1600-065X.2008.00662.x CrossRefPubMedGoogle Scholar
  50. Filion LG, Matusevicius D, Graziani-Bowering GM, Kumar A, Freedman MS (2003) Monocyte-derived IL12, CD86 (B7-2) and CD40L expression in relapsing and progressive multiple sclerosis. Clin Immunol 106(2):127–138PubMedCrossRefGoogle Scholar
  51. Frank MG, Barrientos RM, Biedenkapp JC, Rudy JW, Watkins LR, Maier SF (2006) mRNA up-regulation of MHC II and pivotal pro-inflammatory genes in normal brain aging. Neurobiol Aging 27(5):717–722.  https://doi.org/10.1016/j.neurobiolaging.2005.03.013 CrossRefPubMedGoogle Scholar
  52. Gagliani N, Magnani CF, Huber S, Gianolini ME, Pala M, Licona-Limon P, Guo B, Herbert DR, Bulfone A, Trentini F, Di Serio C, Bacchetta R, Andreani M, Brockmann L, Gregori S, Flavell RA, Roncarolo MG (2013) Coexpression of CD49b and LAG-3 identifies human and mouse T regulatory type 1 cells. Nat Med 19(6):739–746.  https://doi.org/10.1038/nm.3179 CrossRefPubMedGoogle Scholar
  53. Gendelman HE, Mosley RL (2015) A perspective on roles played by innate and adaptive immunity in the pathobiology of neurodegenerative disorders. J Neuroimmune Pharmacol 10(4):645–650.  https://doi.org/10.1007/s11481-015-9639-4 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Genovese MC, Becker JC, Schiff M, Luggen M, Sherrer Y, Kremer J, Birbara C, Box J, Natarajan K, Nuamah I, Li T, Aranda R, Hagerty DT, Dougados M (2005) Abatacept for rheumatoid arthritis refractory to tumor necrosis factor alpha inhibition. N Engl J Med 353(11):1114–1123.  https://doi.org/10.1056/NEJMoa050524 CrossRefPubMedGoogle Scholar
  55. Gerdes LA, Held K, Beltran E, Berking C, Prinz JC, Junker A, Tietze JK, Ertl-Wagner B, Straube A, Kumpfel T, Dornmair K, Hohlfeld R (2016) CTLA4 as immunological checkpoint in the development of multiple sclerosis. Ann Neurol 80(2):294–300.  https://doi.org/10.1002/ana.24715 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Gerritse K, Laman JD, Noelle RJ, Aruffo A, Ledbetter JA, Boersma WJ, Claassen E (1996) CD40-CD40 ligand interactions in experimental allergic encephalomyelitis and multiple sclerosis. Proc Natl Acad Sci USA 93(6):2499–2504PubMedCrossRefGoogle Scholar
  57. Gettings EJ, Hackett CT, Scott TF (2015) Severe relapse in a multiple sclerosis patient associated with ipilimumab treatment of melanoma. Mult Scler 21(5):670.  https://doi.org/10.1177/1352458514549403 CrossRefPubMedGoogle Scholar
  58. Gimsa U, ØRen A, Pandiyan P, Teichmann D, Bechmann I, Nitsch R, Brunner-Weinzierl MC (2004) Astrocytes protect the CNS: antigen-specific T helper cell responses are inhibited by astrocyte-induced upregulation of CTLA-4 (CD152). J Mol Med (Berl) 82(6):364–372.  https://doi.org/10.1007/s00109-004-0531-6 CrossRefGoogle Scholar
  59. Graves MC, Fiala M, Dinglasan LA, Liu NQ, Sayre J, Chiappelli F, van Kooten C, Vinters HV (2004) Inflammation in amyotrophic lateral sclerosis spinal cord and brain is mediated by activated macrophages, mast cells and T cells. Amyotroph Lateral Scler Other Motor Neuron Disord 5(4):213–219PubMedCrossRefGoogle Scholar
  60. Greve B, Vijayakrishnan L, Kubal A, Sobel RA, Peterson LB, Wicker LS, Kuchroo VK (2004) The diabetes susceptibility locus Idd5.1 on mouse chromosome 1 regulates ICOS expression and modulates murine experimental autoimmune encephalomyelitis. J Immunol 173(1):157–163PubMedCrossRefGoogle Scholar
  61. Grewal IS, Foellmer HG, Grewal KD, Xu J, Hardardottir F, Baron JL, Janeway CA Jr, Flavell RA (1996) Requirement for CD40 ligand in costimulation induction, T cell activation, and experimental allergic encephalomyelitis. Science 273(5283):1864–1867PubMedCrossRefGoogle Scholar
  62. Gross CC, Schulte-Mecklenbeck A, Runzi A, Kuhlmann T, Posevitz-Fejfar A, Schwab N, Schneider-Hohendorf T, Herich S, Held K, Konjevic M, Hartwig M, Dornmair K, Hohlfeld R, Ziemssen T, Klotz L, Meuth SG, Wiendl H (2016) Impaired NK-mediated regulation of T-cell activity in multiple sclerosis is reconstituted by IL-2 receptor modulation. Proc Natl Acad Sci USA 113(21):E2973–E2982.  https://doi.org/10.1073/pnas.1524924113 CrossRefPubMedGoogle Scholar
  63. Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, Caliendo J, Hentati A, Kwon YW, Deng HX et al (1994) Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264(5166):1772–1775PubMedCrossRefGoogle Scholar
  64. Hafler JP, Maier LM, Cooper JD, Plagnol V, Hinks A, Simmonds MJ, Stevens HE, Walker NM, Healy B, Howson JM, Maisuria M, Duley S, Coleman G, Gough SC, International Multiple Sclerosis Genetics C, Worthington J, Kuchroo VK, Wicker LS, Todd JA (2009) CD226 Gly307Ser association with multiple autoimmune diseases. Genes Immun 10(1):5–10.  https://doi.org/10.1038/gene.2008.82 CrossRefPubMedGoogle Scholar
  65. Han R, Luo J, Shi Y, Yao Y, Hao J (2017) PD-L1 (Programmed Death Ligand 1) protects against experimental intracerebral hemorrhage-induced brain injury. Stroke 48(8):2255–2262.  https://doi.org/10.1161/STROKEAHA.117.016705 CrossRefPubMedGoogle Scholar
  66. Hastings WD, Anderson DE, Kassam N, Koguchi K, Greenfield EA, Kent SC, Zheng XX, Strom TB, Hafler DA, Kuchroo VK (2009) TIM-3 is expressed on activated human CD4+ T cells and regulates Th1 and Th17 cytokines. Eur J Immunol 39(9):2492–2501.  https://doi.org/10.1002/eji.200939274 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, Herrup K, Frautschy SA, Finsen B, Brown GC, Verkhratsky A, Yamanaka K, Koistinaho J, Latz E, Halle A, Petzold GC, Town T, Morgan D, Shinohara ML, Perry VH, Holmes C, Bazan NG, Brooks DJ, Hunot S, Joseph B, Deigendesch N, Garaschuk O, Boddeke E, Dinarello CA, Breitner JC, Cole GM, Golenbock DT, Kummer MP (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405.  https://doi.org/10.1016/S1474-4422(15)70016-5 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723.  https://doi.org/10.1056/NEJMoa1003466 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM, Blom B, Homola ME, Streit WJ, Brown MH, Barclay AN, Sedgwick JD (2000) Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290(5497):1768–1771PubMedCrossRefGoogle Scholar
  70. Howard LM, Miller SD (2001) Autoimmune intervention by CD154 blockade prevents T cell retention and effector function in the target organ. J Immunol 166(3):1547–1553PubMedCrossRefGoogle Scholar
  71. Howard LM, Miga AJ, Vanderlugt CL, Dal Canto MC, Laman JD, Noelle RJ, Miller SD (1999) Mechanisms of immunotherapeutic intervention by anti-CD40L (CD154) antibody in an animal model of multiple sclerosis. J Clin Invest 103(2):281–290.  https://doi.org/10.1172/JCI5388 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Hristov M, Gumbel D, Lutgens E, Zernecke A, Weber C (2010) Soluble CD40 ligand impairs the function of peripheral blood angiogenic outgrowth cells and increases neointimal formation after arterial injury. Circulation 121(2):315–324.  https://doi.org/10.1161/CIRCULATIONAHA.109.862771 CrossRefPubMedGoogle Scholar
  73. Hurwitz AA, Sullivan TJ, Krummel MF, Sobel RA, Allison JP (1997) Specific blockade of CTLA-4/B7 interactions results in exacerbated clinical and histologic disease in an actively-induced model of experimental allergic encephalomyelitis. J Neuroimmunol 73(1-2):57–62PubMedCrossRefGoogle Scholar
  74. Ireland SJ, Guzman AA, O’Brien DE, Hughes S, Greenberg B, Flores A, Graves D, Remington G, Frohman EM, Davis LS, Monson NL (2014) The effect of glatiramer acetate therapy on functional properties of B cells from patients with relapsing-remitting multiple sclerosis. JAMA Neurol 71(11):1421–1428.  https://doi.org/10.1001/jamaneurol.2014.1472 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Issazadeh S, Navikas V, Schaub M, Sayegh M, Khoury S (1998) Kinetics of expression of costimulatory molecules and their ligands in murine relapsing experimental autoimmune encephalomyelitis in vivo. J Immunol 161(3):1104–1112PubMedGoogle Scholar
  76. Jacobson EM, Concepcion E, Oashi T, Tomer Y (2005) A Graves’ disease-associated Kozak sequence single-nucleotide polymorphism enhances the efficiency of CD40 gene translation: a case for translational pathophysiology. Endocrinology 146(6):2684–2691.  https://doi.org/10.1210/en.2004-1617 CrossRefPubMedGoogle Scholar
  77. Jäger A, Dardalhon V, Sobel RA, Bettelli E, Kuchroo VK (2009) Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. J Immunol 183(11):7169–7177.  https://doi.org/10.4049/jimmunol.0901906 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Javan MR, Aslani S, Zamani MR, Rostamnejad J, Asadi M, Farhoodi M, Nicknam MH (2016) Downregulation of immunosuppressive molecules, PD-1 and PD-L1 but not PD-L2, in the patients with multiple sclerosis. Iran J Allergy Asthma Immunol 15(4):296–302PubMedGoogle Scholar
  79. Jensen J, Krakauer M, Sellebjerg F (2001) Increased T cell expression of CD154 (CD40-ligand) in multiple sclerosis. Eur J Neurol 8(4):321–328PubMedCrossRefGoogle Scholar
  80. Johnson DB, Sullivan RJ, Ott PA, Carlino MS, Khushalani NI, Ye F, Guminski A, Puzanov I, Lawrence DP, Buchbinder EI, Mudigonda T, Spencer K, Bender C, Lee J, Kaufman HL, Menzies AM, Hassel JC, Mehnert JM, Sosman JA, Long GV, Clark JI (2016) Ipilimumab therapy in patients with advanced melanoma and preexisting autoimmune disorders. JAMA Oncol 2(2):234–240.  https://doi.org/10.1001/jamaoncol.2015.4368 CrossRefPubMedGoogle Scholar
  81. Joller N, Hafler JP, Brynedal B, Kassam N, Spoerl S, Levin SD, Sharpe AH, Kuchroo VK (2011) Cutting edge: TIGIT has T cell-intrinsic inhibitory functions. J Immunol 186(3):1338–1342.  https://doi.org/10.4049/jimmunol.1003081 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Kadowaki A, Miyake S, Saga R, Chiba A, Mochizuki H, Yamamura T (2016) Gut environment-induced intraepithelial autoreactive CD4(+) T cells suppress central nervous system autoimmunity via LAG-3. Nat Commun 7:11639.  https://doi.org/10.1038/ncomms11639 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386(9996):896–912.  https://doi.org/10.1016/S0140-6736(14)61393-3 CrossRefGoogle Scholar
  84. Karandikar NJ, Vanderlugt CL, Walunas TL, Miller SD, Bluestone JA (1996) CTLA-4: a negative regulator of autoimmune disease. J Exp Med 184(2):783–788PubMedCrossRefGoogle Scholar
  85. Karandikar NJ, Eagar TN, Vanderlugt CL, Bluestone JA, Miller SD (2000) CTLA-4 downregulates epitope spreading and mediates remission in relapsing experimental autoimmune encephalomyelitis. J Neuroimmunol 109(2):173–180PubMedCrossRefGoogle Scholar
  86. Kasagi S, Kawano S, Kumagai S (2011) PD-1 and autoimmunity. Crit Rev Immunol 31(4):265–295PubMedCrossRefGoogle Scholar
  87. Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA, Koulmanda M, Freeman GJ, Sayegh MH, Sharpe AH (2006) Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 203(4):883–895.  https://doi.org/10.1084/jem.20051776 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Keir ME, Francisco LM, Sharpe AH (2007) PD-1 and its ligands in T-cell immunity. Curr Opin Immunol 19(3):309–314.  https://doi.org/10.1016/j.coi.2007.04.012 CrossRefPubMedGoogle Scholar
  89. Khoury SJ, Gallon L, Chen W, Betres K, Russell ME, Hancock WW, Carpenter CB, Sayegh MH, Weiner HL (1995) Mechanisms of acquired thymic tolerance in experimental autoimmune encephalomyelitis: thymic dendritic-enriched cells induce specific peripheral T cell unresponsiveness in vivo. J Exp Med 182(2):357–366PubMedCrossRefGoogle Scholar
  90. Khoury SJ, Rochon J, Ding L, Byron M, Ryker K, Tosta P, Gao W, Freedman MS, Arnold DL, Sayre PH, Smilek DE, Group AS (2017) ACCLAIM: a randomized trial of abatacept (CTLA4-Ig) for relapsing-remitting multiple sclerosis. Mult Scler 23(5):686–695.  https://doi.org/10.1177/1352458516662727 CrossRefPubMedGoogle Scholar
  91. Kleinschnitz C, Schwab N, Kraft P, Hagedorn I, Dreykluft A, Schwarz T, Austinat M, Nieswandt B, Wiendl H, Stoll G (2010) Early detrimental T-cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood 115(18):3835–3842.  https://doi.org/10.1182/blood-2009-10-249078 CrossRefPubMedGoogle Scholar
  92. Klocke K, Sakaguchi S, Holmdahl R, Wing K (2016) Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood. Proc Natl Acad Sci USA 113(17):E2383–E2392.  https://doi.org/10.1073/pnas.1603892113 CrossRefPubMedGoogle Scholar
  93. Klohs J, Grafe M, Graf K, Steinbrink J, Dietrich T, Stibenz D, Bahmani P, Kronenberg G, Harms C, Endres M, Lindauer U, Greger K, Stelzer EH, Dirnagl U, Wunder A (2008) In vivo imaging of the inflammatory receptor CD40 after cerebral ischemia using a fluorescent antibody. Stroke 39(10):2845–2852.  https://doi.org/10.1161/STROKEAHA.107.509844 CrossRefPubMedGoogle Scholar
  94. Koguchi K, Anderson DE, Yang L, O’Connor KC, Kuchroo VK, Hafler DA (2006) Dysregulated T cell expression of TIM3 in multiple sclerosis. J Exp Med 203(6):1413–1418.  https://doi.org/10.1084/jem.20060210 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Kong YC, Flynn JC (2014) Opportunistic autoimmune disorders potentiated by immune-checkpoint inhibitors anti-CTLA-4 and anti-PD-1. Front Immunol 5:206.  https://doi.org/10.3389/fimmu.2014.00206 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Koning N, Bo L, Hoek RM, Huitinga I (2007) Downregulation of macrophage inhibitory molecules in multiple sclerosis lesions. Ann Neurol 62(5):504–514.  https://doi.org/10.1002/ana.21220 CrossRefPubMedGoogle Scholar
  97. Koning N, Swaab DF, Hoek RM, Huitinga I (2009) Distribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron-glia and glia-glia interactions. J Neuropathol Exp Neurol 68(2):159–167.  https://doi.org/10.1097/NEN.0b013e3181964113 CrossRefPubMedGoogle Scholar
  98. Korn T, Kallies A (2017) T cell responses in the central nervous system. Nat Rev Immunol 17(3):179–194.  https://doi.org/10.1038/nri.2016.144 CrossRefPubMedGoogle Scholar
  99. Koyama M, Kuns RD, Olver SD, Lineburg KE, Lor M, Teal BE, Raffelt NC, Leveque L, Chan CJ, Robb RJ, Markey KA, Alexander KA, Varelias A, Clouston AD, Smyth MJ, MacDonald KP, Hill GR (2013) Promoting regulation via the inhibition of DNAM-1 after transplantation. Blood 121(17):3511–3520.  https://doi.org/10.1182/blood-2012-07-444026 CrossRefPubMedGoogle Scholar
  100. Kroner A, Mehling M, Hemmer B, Rieckmann P, Toyka KV, Maurer M, Wiendl H (2005) A PD-1 polymorphism is associated with disease progression in multiple sclerosis. Ann Neurol 58(1):50–57.  https://doi.org/10.1002/ana.20514 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Kyi C, Carvajal RD, Wolchok JD, Postow MA (2014) Ipilimumab in patients with melanoma and autoimmune disease. J Immunother Cancer 2(1):35.  https://doi.org/10.1186/s40425-014-0035-z CrossRefPubMedPubMedCentralGoogle Scholar
  102. Laporte V, Ait-Ghezala G, Volmar CH, Ganey C, Ganey N, Wood M, Mullan M (2008) CD40 ligation mediates plaque-associated tau phosphorylation in beta-amyloid overproducing mice. Brain Res 1231:132–142.  https://doi.org/10.1016/j.brainres.2008.06.032 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Latchman YE, Liang SC, Wu Y, Chernova T, Sobel RA, Klemm M, Kuchroo VK, Freeman GJ, Sharpe AH (2004) PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc Natl Acad Sci USA 101(29):10691–10696.  https://doi.org/10.1073/pnas.0307252101 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Lee SY, Goverman JM (2013) The influence of T cell Ig mucin-3 signaling on central nervous system autoimmune disease is determined by the effector function of the pathogenic T cells. J Immunol 190(10):4991–4999.  https://doi.org/10.4049/jimmunol.1300083 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Levin SD, Taft DW, Brandt CS, Bucher C, Howard ED, Chadwick EM, Johnston J, Hammond A, Bontadelli K, Ardourel D, Hebb L, Wolf A, Bukowski TR, Rixon MW, Kuijper JL, Ostrander CD, West JW, Bilsborough J, Fox B, Gao Z, Xu W, Ramsdell F, Blazar BR, Lewis KE (2011) Vstm3 is a member of the CD28 family and an important modulator of T-cell function. Eur J Immunol 41(4):902–915.  https://doi.org/10.1002/eji.201041136 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Li P, Mao L, Liu X, Gan Y, Zheng J, Thomson AW, Gao Y, Chen J, Hu X (2014) Essential role of program death 1-ligand 1 in regulatory T-cell-afforded protection against blood-brain barrier damage after stroke. Stroke 45(3):857–864.  https://doi.org/10.1161/STROKEAHA.113.004100 CrossRefPubMedPubMedCentralGoogle Scholar
  107. Liang SC, Latchman YE, Buhlmann JE, Tomczak MF, Horwitz BH, Freeman GJ, Sharpe AH (2003) Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol 33(10):2706–2716.  https://doi.org/10.1002/eji.200324228 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Lincecum JM, Vieira FG, Wang MZ, Thompson K, De Zutter GS, Kidd J, Moreno A, Sanchez R, Carrion IJ, Levine BA, Al-Nakhala BM, Sullivan SM, Gill A, Perrin S (2010) From transcriptome analysis to therapeutic anti-CD40L treatment in the SOD1 model of amyotrophic lateral sclerosis. Nat Genet 42(5):392–399.  https://doi.org/10.1038/ng.557 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Lipp M, Brandt C, Dehghani F, Kwidzinski E, Bechmann I (2007) PD-L1 (B7-H1) regulation in zones of axonal degeneration. Neurosci Lett 425(3):156–161.  https://doi.org/10.1016/j.neulet.2007.07.053 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Liu Y, Teige I, Birnir B, Issazadeh-Navikas S (2006) Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE. Nat Med 12(5):518–525.  https://doi.org/10.1038/nm1402 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Liu Y, Carlsson R, Comabella M, Wang J, Kosicki M, Carrion B, Hasan M, Wu X, Montalban X, Dziegiel MH, Sellebjerg F, Sorensen PS, Helin K, Issazadeh-Navikas S (2014) FoxA1 directs the lineage and immunosuppressive properties of a novel regulatory T cell population in EAE and MS. Nat Med 20(3):272–282.  https://doi.org/10.1038/nm.3485 CrossRefPubMedPubMedCentralGoogle Scholar
  112. Liu G, Hu Y, Jin S, Jiang Q (2017a) Genetic variant rs763361 regulates multiple sclerosis CD226 gene expression. Proc Natl Acad Sci USA 114(6):E906–E907.  https://doi.org/10.1073/pnas.1618520114 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Liu Y, Marin A, Ejlerskov P, Rasmussen LM, Prinz M, Issazadeh-Navikas S (2017b) Neuronal IFN-beta-induced PI3K/Akt-FoxA1 signalling is essential for generation of FoxA1+Treg cells. Nat Commun 8:14709.  https://doi.org/10.1038/ncomms14709 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Lowther D, Ramanan S, DeBartolo D, Park C, Duan X, Hafler D, Pitt D (2015) The TIGIT/CD226/CD155 axis is differentially expressed in MS and glioblastoma: implications for autoimmunity and tumor immune escape. Neurology 84(14):Supplement P4.043Google Scholar
  115. Lozano E, Dominguez-Villar M, Kuchroo V, Hafler DA (2012) The TIGIT/CD226 axis regulates human T cell function. J Immunol 188(8):3869–3875.  https://doi.org/10.4049/jimmunol.1103627 CrossRefPubMedPubMedCentralGoogle Scholar
  116. Lozano E, Joller N, Cao Y, Kuchroo VK, Hafler DA (2013) The CD226/CD155 interaction regulates the proinflammatory (Th1/Th17)/anti-inflammatory (Th2) balance in humans. J Immunol 191(7):3673–3680.  https://doi.org/10.4049/jimmunol.1300945 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Luo XG, Zhang JJ, Zhang CD, Liu R, Zheng L, Wang XJ, Chen SD, Ding JQ (2010) Altered regulation of CD200 receptor in monocyte-derived macrophages from individuals with Parkinson’s disease. Neurochem Res 35(4):540–547.  https://doi.org/10.1007/s11064-009-0094-6 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Lyons JA, Zhao ML, Fritz RB (1999) Pathogenesis of acute passive murine encephalomyelitis II. Th1 phenotype of the inducing population is not sufficient to cause disease. J Neuroimmunol 93(1–2):26–36PubMedCrossRefPubMedCentralGoogle Scholar
  119. Lyons A, McQuillan K, Deighan BF, O’Reilly JA, Downer EJ, Murphy AC, Watson M, Piazza A, O’Connell F, Griffin R, Mills KH, Lynch MA (2009) Decreased neuronal CD200 expression in IL-4-deficient mice results in increased neuroinflammation in response to lipopolysaccharide. Brain Behav Immun 23(7):1020–1027.  https://doi.org/10.1016/j.bbi.2009.05.060 CrossRefPubMedPubMedCentralGoogle Scholar
  120. Magnus T, Schreiner B, Korn T, Jack C, Guo H, Antel J, Ifergan I, Chen L, Bischof F, Bar-Or A, Wiendl H (2005) Microglial expression of the B7 family member B7 homolog 1 confers strong immune inhibition: implications for immune responses and autoimmunity in the CNS. J Neurosci 25(10):2537–2546.  https://doi.org/10.1523/JNEUROSCI.4794-04.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Mao X, Ou MT, Karuppagounder SS, Kam TI, Yin X, Xiong Y, Ge P, Umanah GE, Brahmachari S, Shin JH, Kang HC, Zhang J, Xu J, Chen R, Park H, Andrabi SA, Kang SU, Goncalves RA, Liang Y, Zhang S, Qi C, Lam S, Keiler JA, Tyson J, Kim D, Panicker N, Yun SP, Workman CJ, Vignali DA, Dawson VL, Ko HS, Dawson TM (2016) Pathological alpha-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science 353(6307).  https://doi.org/10.1126/science.aah3374 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Mathias A, Perriard G, Canales M, Soneson C, Delorenzi M, Schluep M, Du Pasquier RA (2017) Increased ex vivo antigen presentation profile of B cells in multiple sclerosis. Mult Scler 23(6):802–809.  https://doi.org/10.1177/1352458516664210 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Meda L, Cassatella MA, Szendrei GI, Otvos L Jr, Baron P, Villalba M, Ferrari D, Rossi F (1995) Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374(6523):647–650.  https://doi.org/10.1038/374647a0 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Miyamoto K, Kingsley CI, Zhang X, Jabs C, Izikson L, Sobel RA, Weiner HL, Kuchroo VK, Sharpe AH (2005) The ICOS molecule plays a crucial role in the development of mucosal tolerance. J Immunol 175(11):7341–7347PubMedCrossRefPubMedCentralGoogle Scholar
  125. Mocali A, Cedrola S, Della Malva N, Bontempelli M, Mitidieri VA, Bavazzano A, Comolli R, Paoletti F, La Porta CA (2004) Increased plasma levels of soluble CD40, together with the decrease of TGF beta 1, as possible differential markers of Alzheimer disease. Exp Gerontol 39(10):1555–1561.  https://doi.org/10.1016/j.exger.2004.07.007 CrossRefPubMedPubMedCentralGoogle Scholar
  126. Monney L, Sabatos CA, Gaglia JL, Ryu A, Waldner H, Chernova T, Manning S, Greenfield EA, Coyle AJ, Sobel RA, Freeman GJ, Kuchroo VK (2002) Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415(6871):536–541.  https://doi.org/10.1038/415536a CrossRefPubMedGoogle Scholar
  127. Okuno T, Nakatsuji Y, Kumanogoh A, Koguchi K, Moriya M, Fujimura H, Kikutani H, Sakoda S (2004) Induction of cyclooxygenase-2 in reactive glial cells by the CD40 pathway: relevance to amyotrophic lateral sclerosis. J Neurochem 91(2):404–412.  https://doi.org/10.1111/j.1471-4159.2004.02727.x CrossRefPubMedPubMedCentralGoogle Scholar
  128. Oliveira-dos-Santos AJ, Ho A, Tada Y, Lafaille JJ, Tonegawa S, Mak TW, Penninger JM (1999) CD28 costimulation is crucial for the development of spontaneous autoimmune encephalomyelitis. J Immunol 162(8):4490–4495PubMedPubMedCentralGoogle Scholar
  129. Ortler S, Leder C, Mittelbronn M, Zozulya AL, Knolle PA, Chen L, Kroner A, Wiendl H (2008) B7-H1 restricts neuroantigen-specific T cell responses and confines inflammatory CNS damage: implications for the lesion pathogenesis of multiple sclerosis. Eur J Immunol 38(6):1734–1744.  https://doi.org/10.1002/eji.200738071 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Paterson AM, Lovitch SB, Sage PT, Juneja VR, Lee Y, Trombley JD, Arancibia-Carcamo CV, Sobel RA, Rudensky AY, Kuchroo VK, Freeman GJ, Sharpe AH (2015) Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity. J Exp Med 212(10):1603–1621.  https://doi.org/10.1084/jem.20141030 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Pekny M, Pekna M, Messing A, Steinhauser C, Lee JM, Parpura V, Hol EM, Sofroniew MV, Verkhratsky A (2016) Astrocytes: a central element in neurological diseases. Acta Neuropathol 131(3):323–345.  https://doi.org/10.1007/s00401-015-1513-1 CrossRefPubMedGoogle Scholar
  132. Perrin PJ, Maldonado JH, Davis TA, June CH, Racke MK (1996) CTLA-4 blockade enhances clinical disease and cytokine production during experimental allergic encephalomyelitis. J Immunol 157(4):1333–1336PubMedPubMedCentralGoogle Scholar
  133. Perrin PJ, June CH, Maldonado JH, Ratts RB, Racke MK (1999) Blockade of CD28 during in vitro activation of encephalitogenic T cells or after disease onset ameliorates experimental autoimmune encephalomyelitis. J Immunol 163(3):1704–1710PubMedGoogle Scholar
  134. Perry VH (2016) Microglia. Microbiol Spectr 4(3).  https://doi.org/10.1128/microbiolspec.MCHD-0003-2015
  135. Piedavent-Salomon M, Willing A, Engler JB, Steinbach K, Bauer S, Eggert B, Ufer F, Kursawe N, Wehrmann S, Jager J, Reinhardt S, Friese MA (2015) Multiple sclerosis associated genetic variants of CD226 impair regulatory T cell function. Brain 138(Pt 11):3263–3274.  https://doi.org/10.1093/brain/awv256 CrossRefPubMedGoogle Scholar
  136. Pittet CL, Newcombe J, Antel JP, Arbour N (2011) The majority of infiltrating CD8 T lymphocytes in multiple sclerosis lesions is insensitive to enhanced PD-L1 levels on CNS cells. Glia 59(5):841–856.  https://doi.org/10.1002/glia.21158 CrossRefPubMedGoogle Scholar
  137. Ponomarev ED, Shriver LP, Dittel BN (2006) CD40 expression by microglial cells is required for their completion of a two-step activation process during central nervous system autoimmune inflammation. J Immunol 176(3):1402–1410PubMedCrossRefGoogle Scholar
  138. Puentes F, Malaspina A, van Noort JM, Amor S (2016) Non-neuronal cells in ALS: role of glial, immune cells and blood-CNS barriers. Brain Pathol 26(2):248–257.  https://doi.org/10.1111/bpa.12352 CrossRefPubMedGoogle Scholar
  139. Qin J, Xing J, Liu R, Chen B, Chen Y, Zhuang X (2017) Association between CD40 rs1883832 and immune-related diseases susceptibility: a meta-analysis. Oncotarget.  https://doi.org/10.18632/oncotarget.18704
  140. Rangachari M, Zhu C, Sakuishi K, Xiao S, Karman J, Chen A, Angin M, Wakeham A, Greenfield EA, Sobel RA, Okada H, McKinnon PJ, Mak TW, Addo MM, Anderson AC, Kuchroo VK (2012) Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion. Nat Med 18(9):1394–1400.  https://doi.org/10.1038/nm.2871 CrossRefPubMedPubMedCentralGoogle Scholar
  141. Ransohoff RM, El Khoury J (2015) Microglia in health and disease. Cold Spring Harb Perspect Biol 8(1):a020560.  https://doi.org/10.1101/cshperspect.a020560 CrossRefPubMedGoogle Scholar
  142. Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145.  https://doi.org/10.1146/annurev.immunol.021908.132528 CrossRefPubMedPubMedCentralGoogle Scholar
  143. Ransohoff RM, Hafler DA, Lucchinetti CF (2015) Multiple sclerosis-a quiet revolution. Nat Rev Neurol 11(3):134–142.  https://doi.org/10.1038/nrneurol.2015.14 CrossRefPubMedPubMedCentralGoogle Scholar
  144. Ren X, Akiyoshi K, Vandenbark AA, Hurn PD, Offner H (2011) Programmed death-1 pathway limits central nervous system inflammation and neurologic deficits in murine experimental stroke. Stroke 42(9):2578–2583.  https://doi.org/10.1161/STROKEAHA.111.613182 CrossRefPubMedPubMedCentralGoogle Scholar
  145. Rifa’i M, Kawamoto Y, Nakashima I, Suzuki H (2004) Essential roles of CD8+CD122+ regulatory T cells in the maintenance of T cell homeostasis. J Exp Med 200(9):1123–1134.  https://doi.org/10.1084/jem.20040395 CrossRefPubMedPubMedCentralGoogle Scholar
  146. Rojo JM, Pini E, Ojeda G, Bello R, Dong C, Flavell RA, Dianzani U, Portoles P (2008) CD4+ICOS+ T lymphocytes inhibit T cell activation ‘in vitro’ and attenuate autoimmune encephalitis ‘in vivo’. Int Immunol 20(4):577–589.  https://doi.org/10.1093/intimm/dxn016 CrossRefPubMedPubMedCentralGoogle Scholar
  147. Romme Christensen J, Bornsen L, Ratzer R, Piehl F, Khademi M, Olsson T, Sorensen PS, Sellebjerg F (2013) Systemic inflammation in progressive multiple sclerosis involves follicular T-helper, Th17- and activated B-cells and correlates with progression. PLoS One 8(3):e57820.  https://doi.org/10.1371/journal.pone.0057820 CrossRefPubMedPubMedCentralGoogle Scholar
  148. Rottman JB, Smith T, Tonra JR, Ganley K, Bloom T, Silva R, Pierce B, Gutierrez-Ramos JC, Ozkaynak E, Coyle AJ (2001) The costimulatory molecule ICOS plays an important role in the immunopathogenesis of EAE. Nat Immunol 2(7):605–611.  https://doi.org/10.1038/89750 CrossRefPubMedGoogle Scholar
  149. Ruperto N, Lovell DJ, Quartier P, Paz E, Rubio-Perez N, Silva CA, Abud-Mendoza C, Burgos-Vargas R, Gerloni V, Melo-Gomes JA, Saad-Magalhaes C, Sztajnbok F, Goldenstein-Schainberg C, Scheinberg M, Penades IC, Fischbach M, Orozco J, Hashkes PJ, Hom C, Jung L, Lepore L, Oliveira S, Wallace CA, Sigal LH, Block AJ, Covucci A, Martini A, Giannini EH, Paediatric Rheumatology ITO, Pediatric Rheumatology Collaborative Study G (2008) Abatacept in children with juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled withdrawal trial. Lancet 372(9636):383–391.  https://doi.org/10.1016/S0140-6736(08)60998-8 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Sabatos CA, Chakravarti S, Cha E, Schubart A, Sanchez-Fueyo A, Zheng XX, Coyle AJ, Strom TB, Freeman GJ, Kuchroo VK (2003) Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nat Immunol 4(11):1102–1110.  https://doi.org/10.1038/ni988 CrossRefPubMedGoogle Scholar
  151. Sage PT, Paterson AM, Lovitch SB, Sharpe AH (2014) The coinhibitory receptor CTLA-4 controls B cell responses by modulating T follicular helper, T follicular regulatory, and T regulatory cells. Immunity 41(6):1026–1039.  https://doi.org/10.1016/j.immuni.2014.12.005 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Salama AD, Chitnis T, Imitola J, Ansari MJ, Akiba H, Tushima F, Azuma M, Yagita H, Sayegh MH, Khoury SJ (2003) Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J Exp Med 198(1):71–78.  https://doi.org/10.1084/jem.20022119 CrossRefPubMedPubMedCentralGoogle Scholar
  153. Saresella M, Calabrese E, Marventano I, Piancone F, Gatti A, Calvo MG, Nemni R, Clerici M (2010) PD1 negative and PD1 positive CD4+ T regulatory cells in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 21(3):927–938.  https://doi.org/10.3233/JAD-2010-091696 CrossRefPubMedGoogle Scholar
  154. Saresella M, Calabrese E, Marventano I, Piancone F, Gatti A, Farina E, Alberoni M, Clerici M (2012) A potential role for the PD1/PD-L1 pathway in the neuroinflammation of Alzheimer’s disease. Neurobiol Aging 33(3):624 e611–622. doi: https://doi.org/10.1016/j.neurobiolaging.2011.03.004 CrossRefGoogle Scholar
  155. Saresella M, Piancone F, Marventano I, La Rosa F, Tortorella P, Caputo D, Rovaris M, Clerici M (2014) A role for the TIM-3/GAL-9/BAT3 pathway in determining the clinical phenotype of multiple sclerosis. FASEB J 28(11):5000–5009.  https://doi.org/10.1096/fj.14-258194 CrossRefPubMedPubMedCentralGoogle Scholar
  156. Sau D, De Biasi S, Vitellaro-Zuccarello L, Riso P, Guarnieri S, Porrini M, Simeoni S, Crippa V, Onesto E, Palazzolo I, Rusmini P, Bolzoni E, Bendotti C, Poletti A (2007) Mutation of SOD1 in ALS: a gain of a loss of function. Hum Mol Genet 16(13):1604–1618.  https://doi.org/10.1093/hmg/ddm110 CrossRefPubMedGoogle Scholar
  157. Schaub M, Issazadeh S, Stadlbauer TH, Peach R, Sayegh MH, Khoury SJ (1999) Costimulatory signal blockade in murine relapsing experimental autoimmune encephalomyelitis. J Neuroimmunol 96(2):158–166PubMedCrossRefPubMedCentralGoogle Scholar
  158. Schreiner B, Bailey SL, Shin T, Chen L, Miller SD (2008) PD-1 ligands expressed on myeloid-derived APC in the CNS regulate T-cell responses in EAE. Eur J Immunol 38(10):2706–2717.  https://doi.org/10.1002/eji.200838137 CrossRefPubMedPubMedCentralGoogle Scholar
  159. Sierro S, Romero P, Speiser DE (2011) The CD4-like molecule LAG-3, biology and therapeutic applications. Expert Opin Ther Targets 15(1):91–101.  https://doi.org/10.1517/14712598.2011.540563 CrossRefPubMedPubMedCentralGoogle Scholar
  160. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119(1):7–35.  https://doi.org/10.1007/s00401-009-0619-8 CrossRefPubMedPubMedCentralGoogle Scholar
  161. Sporici RA, Beswick RL, von Allmen C, Rumbley CA, Hayden-Ledbetter M, Ledbetter JA, Perrin PJ (2001) ICOS ligand costimulation is required for T-cell encephalitogenicity. Clin Immunol 100(3):277–288.  https://doi.org/10.1006/clim.2001.5074 CrossRefPubMedPubMedCentralGoogle Scholar
  162. Sreedharan J, Brown RH Jr (2013) Amyotrophic lateral sclerosis: problems and prospects. Ann Neurol 74(3):309–316.  https://doi.org/10.1002/ana.24012 CrossRefPubMedPubMedCentralGoogle Scholar
  163. Stanietsky N, Simic H, Arapovic J, Toporik A, Levy O, Novik A, Levine Z, Beiman M, Dassa L, Achdout H, Stern-Ginossar N, Tsukerman P, Jonjic S, Mandelboim O (2009) The interaction of TIGIT with PVR and PVRL2 inhibits human NK cell cytotoxicity. Proc Natl Acad Sci USA 106(42):17858–17863.  https://doi.org/10.1073/pnas.0903474106 CrossRefPubMedPubMedCentralGoogle Scholar
  164. Sulzer D, Alcalay RN, Garretti F, Cote L, Kanter E, Agin-Liebes J, Liong C, McMurtrey C, Hildebrand WH, Mao X, Dawson VL, Dawson TM, Oseroff C, Pham J, Sidney J, Dillon MB, Carpenter C, Weiskopf D, Phillips E, Mallal S, Peters B, Frazier A, Lindestam Arlehamn CS, Sette A (2017) T cells from patients with Parkinson’s disease recognize alpha-synuclein peptides. Nature 546(7660):656–661.  https://doi.org/10.1038/nature22815 CrossRefPubMedPubMedCentralGoogle Scholar
  165. Sung YH, Kim SC, Hong HP, Park CY, Shin MS, Kim CJ, Seo JH, Kim DY, Kim DJ, Cho HJ (2012) Treadmill exercise ameliorates dopaminergic neuronal loss through suppressing microglial activation in Parkinson’s disease mice. Life Sci 91(25-26):1309–1316.  https://doi.org/10.1016/j.lfs.2012.10.003 CrossRefPubMedGoogle Scholar
  166. Tan J, Town T, Paris D, Mori T, Suo Z, Crawford F, Mattson MP, Flavell RA, Mullan M (1999a) Microglial activation resulting from CD40-CD40L interaction after beta-amyloid stimulation. Science 286(5448):2352–2355PubMedCrossRefGoogle Scholar
  167. Tan J, Town T, Paris D, Placzek A, Parker T, Crawford F, Yu H, Humphrey J, Mullan M (1999b) Activation of microglial cells by the CD40 pathway: relevance to multiple sclerosis. J Neuroimmunol 97(1–2):77–85PubMedCrossRefGoogle Scholar
  168. Taylor A, Verhagen J, Akdis CA, Akdis M (2004) T regulatory cells in allergy and health: a question of allergen specificity and balance. Int Arch Allergy Immunol 135(1):73–82.  https://doi.org/10.1159/000080523 CrossRefPubMedGoogle Scholar
  169. Teleshova N, Bao W, Kivisäkk P, Özenci V, Mustafa M, Link H (2000) Elevated CD40 ligand expressing blood T-cell levels in multiple sclerosis are reversed by interferon-beta treatment. Scand J Immunol 51(3):312–320PubMedCrossRefGoogle Scholar
  170. Togo T, Akiyama H, Kondo H, Ikeda K, Kato M, Iseki E, Kosaka K (2000) Expression of CD40 in the brain of Alzheimer’s disease and other neurological diseases. Brain Res 885(1):117–121PubMedCrossRefGoogle Scholar
  171. Townsend KP, Town T, Mori T, Lue LF, Shytle D, Sanberg PR, Morgan D, Fernandez F, Flavell RA, Tan J (2005) CD40 signaling regulates innate and adaptive activation of microglia in response to amyloid beta-peptide. Eur J Immunol 35(3):901–910.  https://doi.org/10.1002/eji.200425585 CrossRefPubMedGoogle Scholar
  172. Trabattoni D, Saresella M, Pacei M, Marventano I, Mendozzi L, Rovaris M, Caputo D, Borelli M, Clerici M (2009) Costimulatory pathways in multiple sclerosis: distinctive expression of PD-1 and PD-L1 in patients with different patterns of disease. J Immunol 183(8):4984–4993.  https://doi.org/10.4049/jimmunol.0901038 CrossRefPubMedGoogle Scholar
  173. Verhagen J, Gabrysova L, Minaee S, Sabatos CA, Anderson G, Sharpe AH, Wraith DC (2009) Enhanced selection of FoxP3+ T-regulatory cells protects CTLA-4-deficient mice from CNS autoimmune disease. Proc Natl Acad Sci USA 106(9):3306–3311.  https://doi.org/10.1073/pnas.0803186106 CrossRefPubMedGoogle Scholar
  174. Viglietta V, Bourcier K, Buckle GJ, Healy B, Weiner HL, Hafler DA, Egorova S, Guttmann CR, Rusche JR, Khoury SJ (2008) CTLA4Ig treatment in patients with multiple sclerosis: an open-label, phase 1 clinical trial. Neurology 71(12):917–924.  https://doi.org/10.1212/01.wnl.0000325915.00112.61 CrossRefPubMedGoogle Scholar
  175. Vincenti F, Larsen C, Durrbach A, Wekerle T, Nashan B, Blancho G, Lang P, Grinyo J, Halloran PF, Solez K, Hagerty D, Levy E, Zhou W, Natarajan K, Charpentier B, Belatacept Study G (2005) Costimulation blockade with belatacept in renal transplantation. N Engl J Med 353(8):770–781.  https://doi.org/10.1056/NEJMoa050085 CrossRefPubMedGoogle Scholar
  176. Vogel DY, Vereyken EJ, Glim JE, Heijnen PD, Moeton M, van der Valk P, Amor S, Teunissen CE, van Horssen J, Dijkstra CD (2013) Macrophages in inflammatory multiple sclerosis lesions have an intermediate activation status. J Neuroinflammation 10:35.  https://doi.org/10.1186/1742-2094-10-35 CrossRefPubMedPubMedCentralGoogle Scholar
  177. Waid DM, Schreiner T, Vaitaitis G, Carter JR, Corboy JR, Wagner DH Jr (2014) Defining a new biomarker for the autoimmune component of Multiple Sclerosis: Th40 cells. J Neuroimmunol 270(1-2):75–85.  https://doi.org/10.1016/j.jneuroim.2014.03.009 CrossRefPubMedPubMedCentralGoogle Scholar
  178. Walker DG, Lue LF (2013) Understanding the neurobiology of CD200 and the CD200 receptor: a therapeutic target for controlling inflammation in human brains? Future Neurol 8(3).  https://doi.org/10.2217/fnl.13.14 CrossRefGoogle Scholar
  179. Walker DG, Dalsing-Hernandez JE, Campbell NA, Lue LF (2009) Decreased expression of CD200 and CD200 receptor in Alzheimer’s disease: a potential mechanism leading to chronic inflammation. Exp Neurol 215(1):5–19.  https://doi.org/10.1016/j.expneurol.2008.09.003 CrossRefPubMedGoogle Scholar
  180. Walker DG, Lue LF, Tang TM, Adler CH, Caviness JN, Sabbagh MN, Serrano GE, Sue LI, Beach TG (2017) Changes in CD200 and intercellular adhesion molecule-1 (ICAM-1) levels in brains of Lewy body disorder cases are associated with amounts of Alzheimer’s pathology not alpha-synuclein pathology. Neurobiol Aging 54:175–186.  https://doi.org/10.1016/j.neurobiolaging.2017.03.007 CrossRefPubMedPubMedCentralGoogle Scholar
  181. Wang C, Li Y, Proctor TM, Vandenbark AA, Offner H (2010) Down-modulation of programmed death 1 alters regulatory T cells and promotes experimental autoimmune encephalomyelitis. J Neurosci Res 88(1):7–15.  https://doi.org/10.1002/jnr.22181 CrossRefPubMedPubMedCentralGoogle Scholar
  182. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H, Mak TW (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270(5238):985–988PubMedPubMedCentralCrossRefGoogle Scholar
  183. Weber JS, Kahler KC, Hauschild A (2012) Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol 30(21):2691–2697.  https://doi.org/10.1200/JCO.2012.41.6750 CrossRefPubMedPubMedCentralGoogle Scholar
  184. Wei R, Jonakait GM (1999) Neurotrophins and the anti-inflammatory agents interleukin-4 (IL-4), IL-10, IL-11 and transforming growth factor-beta1 (TGF-beta1) down-regulate T cell costimulatory molecules B7 and CD40 on cultured rat microglia. J Neuroimmunol 95(1-2):8–18PubMedCrossRefGoogle Scholar
  185. Weiner HL, da Cunha AP, Quintana F, Wu H (2011) Oral tolerance. Immunol Rev 241(1):241–259.  https://doi.org/10.1111/j.1600-065X.2011.01017.x CrossRefPubMedPubMedCentralGoogle Scholar
  186. Wiesemann E, Deb M, Trebst C, Hemmer B, Stangel M, Windhagen A (2008) Effects of interferon-beta on co-signaling molecules: upregulation of CD40, CD86 and PD-L2 on monocytes in relation to clinical response to interferon-beta treatment in patients with multiple sclerosis. Mult Scler 14(2):166–176.  https://doi.org/10.1177/1352458507081342 CrossRefPubMedGoogle Scholar
  187. Wikenheiser DJ, Stumhofer JS (2016) ICOS Co-Stimulation: Friend or Foe? Front Immunol 7:304.  https://doi.org/10.3389/fimmu.2016.00304 CrossRefPubMedPubMedCentralGoogle Scholar
  188. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322(5899):271–275.  https://doi.org/10.1126/science.1160062 CrossRefGoogle Scholar
  189. Wing JB, Ise W, Kurosaki T, Sakaguchi S (2014) Regulatory T cells control antigen-specific expansion of Tfh cell number and humoral immune responses via the coreceptor CTLA-4. Immunity 41(6):1013–1025.  https://doi.org/10.1016/j.immuni.2014.12.006 CrossRefPubMedGoogle Scholar
  190. Workman CJ, Rice DS, Dugger KJ, Kurschner C, Vignali DA (2002) Phenotypic analysis of the murine CD4-related glycoprotein, CD223 (LAG-3). Eur J Immunol 32(8):2255–2263.  https://doi.org/10.1002/1521-4141(200208)32:8<2255::AID-IMMU2255>3.0.CO;2-A CrossRefPubMedGoogle Scholar
  191. Xie X, Luo X, Liu N, Li X, Lou F, Zheng Y, Ren Y (2017) Monocytes, microglia, and CD200-CD200R1 signaling are essential in the transmission of inflammation from the periphery to the central nervous system. J Neurochem 141(2):222–235.  https://doi.org/10.1111/jnc.13972 CrossRefPubMedGoogle Scholar
  192. Yamazaki T, Akiba H, Iwai H, Matsuda H, Aoki M, Tanno Y, Shin T, Tsuchiya H, Pardoll DM, Okumura K, Azuma M, Yagita H (2002) Expression of programmed death 1 ligands by murine T cells and APC. J Immunol 169(10):5538–5545PubMedPubMedCentralCrossRefGoogle Scholar
  193. Yanaba K, Bouaziz JD, Haas KM, Poe JC, Fujimoto M, Tedder TF (2008) A regulatory B cell subset with a unique CD1dhiCD5+ phenotype controls T cell-dependent inflammatory responses. Immunity 28(5):639–650.  https://doi.org/10.1016/j.immuni.2008.03.017 CrossRefPubMedGoogle Scholar
  194. Yang L, Anderson DE, Kuchroo J, Hafler DA (2008) Lack of TIM-3 immunoregulation in multiple sclerosis. J Immunol 180(7):4409–4414PubMedCrossRefGoogle Scholar
  195. Yilmaz G, Arumugam TV, Stokes KY, Granger DN (2006) Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 113(17):2105–2112.  https://doi.org/10.1161/CIRCULATIONAHA.105.593046 CrossRefPubMedGoogle Scholar
  196. Yoshida H, Imaizumi T, Kumagai M, Kimura K, Satoh C, Hanada N, Fujimoto K, Nishi N, Tanji K, Matsumiya T, Mori F, Cui XF, Tamo W, Shibata T, Takanashi S, Okumura K, Nakamura T, Wakabayashi K, Hirashima M, Sato Y, Satoh K (2001) Interleukin-1beta stimulates galectin-9 expression in human astrocytes. Neuroreport 12(17):3755–3758PubMedCrossRefGoogle Scholar
  197. Yoshizaki A, Miyagaki T, DiLillo DJ, Matsushita T, Horikawa M, Kountikov EI, Spolski R, Poe JC, Leonard WJ, Tedder TF (2012) Regulatory B cells control T-cell autoimmunity through IL-21-dependent cognate interactions. Nature 491(7423):264–268.  https://doi.org/10.1038/nature11501 CrossRefPubMedPubMedCentralGoogle Scholar
  198. Yu S, Liu YP, Liu YH, Jiao SS, Liu L, Wang YJ, Fu WL (2016) Diagnostic utility of VEGF and soluble CD40L levels in serum of Alzheimer’s patients. Clin Chim Acta 453:154–159.  https://doi.org/10.1016/j.cca.2015.12.018 CrossRefPubMedGoogle Scholar
  199. Zeinstra E, Wilczak N, De Keyser J (2003) Reactive astrocytes in chronic active lesions of multiple sclerosis express co-stimulatory molecules B7-1 and B7-2. J Neuroimmunol 135(1–2):166–171PubMedCrossRefGoogle Scholar
  200. Zhang Q, Vignali DA (2016) Co-stimulatory and co-inhibitory pathways in autoimmunity. Immunity 44(5):1034–1051.  https://doi.org/10.1016/j.immuni.2016.04.017 CrossRefPubMedPubMedCentralGoogle Scholar
  201. Zhang W, Wang T, Pei Z, Miller DS, Wu X, Block ML, Wilson B, Zhang W, Zhou Y, Hong JS, Zhang J (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 19(6):533–542.  https://doi.org/10.1096/fj.04-2751com CrossRefPubMedGoogle Scholar
  202. Zhang S, Wang XJ, Tian LP, Pan J, Lu GQ, Zhang YJ, Ding JQ, Chen SD (2011) CD200-CD200R dysfunction exacerbates microglial activation and dopaminergic neurodegeneration in a rat model of Parkinson’s disease. J Neuroinflammation 8:154.  https://doi.org/10.1186/1742-2094-8-154 CrossRefPubMedPubMedCentralGoogle Scholar
  203. Zhang W, Huang W, Jing F (2013) Contribution of blood platelets to vascular pathology in Alzheimer’s disease. J Blood Med 4:141–147.  https://doi.org/10.2147/JBM.S45071 CrossRefPubMedPubMedCentralGoogle Scholar
  204. Zhang R, Zeng H, Zhang Y, Chen K, Zhang C, Song C, Fang L, Xu Z, Yang K, Jin B, Wang Q, Chen L (2016) CD226 ligation protects against EAE by promoting IL-10 expression via regulation of CD4+ T cell differentiation. Oncotarget 7(15):19251–19264.  https://doi.org/10.18632/oncotarget.7834 CrossRefPubMedPubMedCentralGoogle Scholar
  205. Zhao S, Li F, Leak RK, Chen J, Hu X (2014) Regulation of neuroinflammation through programed death-1/programed death ligand signaling in neurological disorders. Front Cell Neurosci 8:271.  https://doi.org/10.3389/fncel.2014.00271 CrossRefPubMedPubMedCentralGoogle Scholar
  206. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, Zheng XX, Strom TB, Kuchroo VK (2005) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6(12):1245–1252.  https://doi.org/10.1038/ni1271 CrossRefPubMedPubMedCentralGoogle Scholar
  207. Zhu B, Guleria I, Khosroshahi A, Chitnis T, Imitola J, Azuma M, Yagita H, Sayegh MH, Khoury SJ (2006) Differential role of programmed death-ligand 1 [corrected] and programmed death-ligand 2 [corrected] in regulating the susceptibility and chronic progression of experimental autoimmune encephalomyelitis. J Immunol 176(6):3480–3489PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Abou Haidar Neuroscience Institute and Nehme and Therese Tohme Multiple Sclerosis Center, Faculty of MedicineAmerican University of Beirut Medical CenterBeirutLebanon

Personalised recommendations