Stimulatory and Inhibitory Co-signals in Autoimmunity

  • Taku OkazakiEmail author
  • Il-mi Okazaki
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1189)


Co-receptors cooperatively regulate the function of immune cells to optimize anti-infectious immunity while limiting autoimmunity by providing stimulatory and inhibitory co-signals. Among various co-receptors, those in the CD28/CTLA-4 family play fundamental roles in the regulation of lymphocytes by modulating the strength, quality, and/or duration of the antigen receptor signal. The development of the lethal lymphoproliferative disorder and various tissue-specific autoimmune diseases in mice deficient for CTLA-4 and PD-1, respectively, clearly demonstrates their pivotal roles in the development and the maintenance of immune tolerance. The recent success of immunotherapies targeting CTLA-4 and PD-1 in the treatment of various cancers highlights their critical roles in the regulation of cancer immunity in human. In addition, the development of multifarious autoimmune diseases as immune-related adverse events of anti-CTLA-4 and anti-PD-1/PD-L1 therapies and the successful clinical application of the CD28 blocking therapy using CTLA-4-Ig to the treatment of arthritis assure their crucial roles in the regulation of autoimmunity in human. Accumulating evidences in mice and humans indicate that genetic and environmental factors strikingly modify effects of the targeted inhibition and potentiation of co-signals. In this review, we summarize our current understanding of the roles of CD28, CTLA-4, and PD-1 in autoimmunity. Deeper understandings of the context-dependent and context-independent functions of co-signals are essential for the appropriate usage and the future development of innovative immunomodulatory therapies for a diverse array of diseases.


PD-1 CTLA-4 CD28 Animal model Cancer immunotherapy irAE SNV Strain Susceptibility Tolerance 


  1. Adams AB, Ford ML, Larsen CP (2016) Costimulation blockade in autoimmunity and transplantation: the CD28 pathway. J Immunol 197:2045–2050PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ansari MJ et al (2003) The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J Exp Med 198:63–69PubMedPubMedCentralCrossRefGoogle Scholar
  3. Araki M et al (2009) Genetic evidence that the differential expression of the ligand-independent isoform of CTLA-4 is the molecular basis of the Idd5.1 type 1 diabetes region in nonobese diabetic mice. J Immunol 183:5146–5157PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bachmann MF, Kohler G, Ecabert B, Mak TW, Kopf M (1999) Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J Immunol 163:1128–1131PubMedPubMedCentralGoogle Scholar
  5. Barroso-Sousa R, Ott PA, Hodi FS, Kaiser UB, Tolaney SM, Min L (2018) Endocrine dysfunction induced by immune checkpoint inhibitors: practical recommendations for diagnosis and clinical management. Cancer 124:1111–1121PubMedCrossRefGoogle Scholar
  6. Bertsias GK et al (2009) Genetic, immunologic, and immunohistochemical analysis of the programmed death 1/programmed death ligand 1 pathway in human systemic lupus erythematosus. Arthritis Rheum 60:207–218PubMedCrossRefGoogle Scholar
  7. Boike J, Dejulio T (2017) Severe esophagitis and gastritis from nivolumab therapy ACG case. Rep J 4:e57Google Scholar
  8. Brahmer JR et al (2010) Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 28:3167–3175PubMedPubMedCentralCrossRefGoogle Scholar
  9. Callahan MK, Postow MA, Wolchok JD (2016) Targeting T cell co-receptors for cancer therapy. Immunity 44:1069–1078PubMedCrossRefGoogle Scholar
  10. Cappelli LC et al (2017) Inflammatory arthritis and sicca syndrome induced by nivolumab and ipilimumab. Ann Rheum Dis 76:43–50PubMedPubMedCentralCrossRefGoogle Scholar
  11. Carter LL et al (2007) PD-1/PD-L1, but not PD-1/PD-L2, interactions regulate the severity of experimental autoimmune encephalomyelitis. J Neuroimmunol 182:124–134PubMedCrossRefGoogle Scholar
  12. Cheng TY et al (2006) Association of T-cell regulatory gene polymorphisms with susceptibility to gastric mucosa-associated lymphoid tissue lymphoma. J Clin Oncol 24:3483–3489PubMedCrossRefGoogle Scholar
  13. Collins AV et al (2002) The interaction properties of costimulatory molecules revisited. Immunity 17:201–210CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cooper JD et al (2007) The candidate genes TAF5L, TCF7, PDCD1, IL6 and ICAM1 cannot be excluded from having effects in type 1 diabetes. BMC Med Genet 8:71PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cukier P, Santini FC, Scaranti M, Hoff AO (2017) Endocrine side effects of cancer immunotherapy. Endocr Relat Cancer 24:T331–T347PubMedCrossRefGoogle Scholar
  16. Curiel TJ et al (2003) Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 9:562–567PubMedCrossRefGoogle Scholar
  17. Cutolo M, Nadler SG (2013) Advances in CTLA-4-Ig-mediated modulation of inflammatory cell and immune response activation in rheumatoid arthritisx. Nat Med 9:562–567Google Scholar
  18. de Maleissye MF, Nicolas G, Saiag P (2016) Pembrolizumab-induced demyelinating polyradiculoneuropathy. N Engl J Med 375:296–297PubMedCrossRefGoogle Scholar
  19. Deng J et al (2017) Association of a PDCD1 polymorphism with sympathetic ophthalmia in Han Chinese. Invest Ophthalmol Vis Sci 58:4218–4222PubMedCrossRefGoogle Scholar
  20. Dong H et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dong H, Zhu G, Tamada K, Flies DB, van Deursen JM, Chen L (2004) B7-H1 determines accumulation and deletion of intrahepatic CD8(+) T lymphocytes. Immunity 20:327–336PubMedPubMedCentralCrossRefGoogle Scholar
  22. Erfani N, Razmkhah M, Talei AR, Pezeshki AM, Doroudchi M, Monabati A, Ghaderi A (2006) Cytotoxic T lymphocyte antigen-4 promoter variants in breast cancer. Cancer Genet Cytogenet 165:114–120PubMedCrossRefGoogle Scholar
  23. Garassino MC et al (2018) Durvalumab as third-line or later treatment for advanced non-small-cell lung cancer (ATLANTIC): an open-label, single-arm, phase 2 study. Lancet Oncol 19:521–536PubMedCrossRefGoogle Scholar
  24. Ghaderi A (2011) CTLA4 gene variants in autoimmunity and cancer: a comparative review. Iran J Immunol 8:127–149PubMedGoogle Scholar
  25. Goser S et al (2006) Cardiac troponin I but not cardiac troponin T induces severe autoimmune inflammation in the myocardium. Circulation 114:1693–1702PubMedCrossRefGoogle Scholar
  26. Haikal A, Borba E, Khaja T, Doolittle G, Schmidt P (2018) Nivolumab-induced new-onset seronegative rheumatoid arthritis in a patient with advanced metastatic melanoma: A case report and literature review. Avicenna J Med 8:34–36PubMedPubMedCentralCrossRefGoogle Scholar
  27. Hamel KM, Cao Y, Wang Y, Rodeghero R, Kobezda T, Chen L, Finnegan A (2010) B7-H1 expression on non-B and non-T cells promotes distinct effects on T- and B-cell responses in autoimmune arthritis. Eur J Immunol 40:3117–3127PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hayashi M, Kouki T, Takasu N, Sunagawa S, Komiya I (2008) Association of an A/C single nucleotide polymorphism in programmed cell death-ligand 1 gene with Graves’ disease in Japanese patients. Eur J Endocrinol 158:817–822PubMedCrossRefGoogle Scholar
  29. Hegab MM et al (2016) CD28 and PTPN22 are associated with susceptibility to rheumatoid arthritis in Egyptians. Hum Immunol 77:522–526PubMedCrossRefGoogle Scholar
  30. Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723PubMedPubMedCentralCrossRefGoogle Scholar
  31. Hu L et al (2010) CTLA-4 gene polymorphism +49 A/G contributes to genetic susceptibility to two infection-related cancers-hepatocellular carcinoma and cervical cancer. Hum Immunol 71:888–891PubMedCrossRefPubMedCentralGoogle Scholar
  32. Hua Z et al (2011) PD-1 polymorphisms are associated with sporadic breast cancer in Chinese Han population of Northeast China. Breast Cancer Res Treat 129:195–201PubMedCrossRefPubMedCentralGoogle Scholar
  33. Huang CH et al (2011) Effects of genetic polymorphisms of programmed cell death 1 and its ligands on the development of ankylosing spondylitis. Rheumatology (Oxford) 50:1809–1813CrossRefGoogle Scholar
  34. Hughes J, Vudattu N, Sznol M, Gettinger S, Kluger H, Lupsa B, Herold KC (2015) Precipitation of autoimmune diabetes with anti-PD-1 immunotherapy. Diabetes Care 38:e55–e57PubMedPubMedCentralCrossRefGoogle Scholar
  35. Hui E et al. (2017) T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition Science 355:1428-1433PubMedPubMedCentralCrossRefGoogle Scholar
  36. Ikeuchi K, Okuma Y, Tabata T (2016) Immune-related pancreatitis secondary to nivolumab in a patient with recurrent lung adenocarcinoma: A case report. Lung Cancer 99:148–150PubMedCrossRefPubMedCentralGoogle Scholar
  37. Ise W et al (2010) CTLA-4 suppresses the pathogenicity of self antigen-specific T cells by cell-intrinsic and cell-extrinsic mechanisms. Nat Immunol 11:129–135PubMedCrossRefPubMedCentralGoogle Scholar
  38. Ishida Y, Agata Y, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. Embo J 11:3887–3895PubMedPubMedCentralCrossRefGoogle Scholar
  39. Ishizaki Y et al (2010) PD1 as a common candidate susceptibility gene of subacute sclerosing panencephalitis. Hum Genet 127:411–419PubMedCrossRefPubMedCentralGoogle Scholar
  40. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A 99:12293–12297PubMedPubMedCentralCrossRefGoogle Scholar
  41. Iwama S, De Remigis A, Callahan MK, Slovin SF, Wolchok JD, Caturegli P (2014) Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody. Sci Transl Med 6:230ra245CrossRefGoogle Scholar
  42. Jiang F et al (2009) Identification of QTLs that modify peripheral neuropathy in NOD.H2b-Pdcd1−/− mice. Int Immunol 21:499–509PubMedCrossRefGoogle Scholar
  43. Kang YK et al (2017) Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 390:2461–2471PubMedCrossRefGoogle Scholar
  44. Kasamatsu T et al (2018) PDCD1 and CTLA4 polymorphisms affect the susceptibility to, and clinical features of, chronic immune thrombocytopenia. Br J Haematol 180:705–714PubMedCrossRefGoogle Scholar
  45. Kataoka K et al (2016) Aberrant PD-L1 expression through 3’-UTR disruption in multiple cancers. Nature 534:402–406PubMedCrossRefGoogle Scholar
  46. Kaufman HL et al (2018) Updated efficacy of avelumab in patients with previously treated metastatic Merkel cell carcinoma after >/=1 year of follow-up: JAVELIN Merkel 200, a phase 2 clinical trial. J Immunother Cancer 6:7PubMedPubMedCentralCrossRefGoogle Scholar
  47. Keir ME et al (2006) Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 203:883–895PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kido M et al (2008) Fatal autoimmune hepatitis induced by concurrent loss of naturally arising regulatory T cells and PD-1-mediated signaling. Gastroenterology 135:1333–1343PubMedCrossRefGoogle Scholar
  49. Klocke K, Sakaguchi S, Holmdahl R, Wing K (2016) Induction of autoimmune disease by deletion of CTLA-4 in mice in adulthood. Proc Natl Acad Sci U S A 113:E2383–E2392PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kremer JM et al (2003) Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA4Ig. N Engl J Med 349:1907–1915PubMedCrossRefGoogle Scholar
  51. Kuehn HS et al (2014) Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 345:1623–1627PubMedPubMedCentralCrossRefGoogle Scholar
  52. Larkin J et al (2017) Neurologic serious adverse events associated with Nivolumab plus Ipilimumab or Nivolumab alone in advanced melanoma, including a case series of encephalitis. Oncologist 22:709–718PubMedPubMedCentralCrossRefGoogle Scholar
  53. Latchman YE et al (2004) PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc Natl Acad Sci U S A 101:10691–10696PubMedPubMedCentralCrossRefGoogle Scholar
  54. Laurent L et al (2017) Prevention of lupus nephritis development in NZB/NZW mice by selective blockade of CD28. Eur J Immunol 47:1368–1376PubMedCrossRefGoogle Scholar
  55. Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–1736PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lenschow DJ et al (1996) CD28/B7 regulation of Th1 and Th2 subsets in the development of autoimmune diabetes. Immunity 5:285–293PubMedCrossRefGoogle Scholar
  57. Liang B, Gee RJ, Kashgarian MJ, Sharpe AH, Mamula MJ (1999) B7 costimulation in the development of lupus: autoimmunity arises either in the absence of B7.1/B7.2 or in the presence of anti-b7.1/B7.2 blocking antibodies. J Immunol 163:2322–2329PubMedGoogle Scholar
  58. Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA (1991) CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 174:561–569PubMedPubMedCentralCrossRefGoogle Scholar
  59. Liu J et al (2015) Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. Proc Natl Acad Sci U S A 112:6682–6687PubMedPubMedCentralCrossRefGoogle Scholar
  60. Lucas JA, Menke J, Rabacal WA, Schoen FJ, Sharpe AH, Kelley VR (2008) Programmed death ligand 1 regulates a critical checkpoint for autoimmune myocarditis and pneumonitis in MRL mice. J Immunol 181:2513–2521PubMedPubMedCentralCrossRefGoogle Scholar
  61. Luhder F, Chambers C, Allison JP, Benoist C, Mathis D (2000) Pinpointing when T cell costimulatory receptor CTLA-4 must be engaged to dampen diabetogenic T cells. Proc Natl Acad Sci U S A 97:12204–12209PubMedPubMedCentralCrossRefGoogle Scholar
  62. Maruhashi T, Okazaki IM, Sugiura D, Takahashi S, Maeda TK, Shimizu K, Okazaki T (2018) LAG-3 inhibits the activation of CD4(+) T cells that recognize stable pMHCII through its conformation-dependent recognition of pMHCII. Nat Immunol 19:1415–1426PubMedCrossRefGoogle Scholar
  63. Masteller EL, Chuang E, Mullen AC, Reiner SL, Thompson CB (2000) Structural analysis of CTLA-4 function in vivo. J Immunol 164:5319–5327PubMedCrossRefGoogle Scholar
  64. Meng Q, Liu X, Yang P, Hou S, Du L, Zhou H, Kijlstra A (2009) PDCD1 genes may protect against extraocular manifestations in Chinese Han patients with Vogt-Koyanagi-Harada syndrome. Mol Vis 15:386–392PubMedPubMedCentralGoogle Scholar
  65. Menke J et al (2007) Programmed death 1 ligand (PD-L) 1 and PD-L2 limit autoimmune kidney disease: distinct roles. J Immunol 179:7466–7477PubMedCrossRefGoogle Scholar
  66. Michot JM et al (2016) Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer 54:139–148PubMedPubMedCentralCrossRefGoogle Scholar
  67. Mitchell AL et al. (2009) Programmed death ligand 1 (PD-L1) gene variants contribute to autoimmune Addison’s disease and Graves’ disease susceptibility J Clin Endocrinol Metab 94:5139-5145CrossRefGoogle Scholar
  68. Mizuno R, Sugiura D, Shimizu K, Maruhashi T, Watada M, Okazaki I-m, Okazaki T (2019) PD-1 primarily targets TCR signal in the inhibition of functional T cell activation. Front Immunol 10:630. eCollection 2019
  69. Mojtahedi Z, Mohmedi M, Rahimifar S, Erfani N, Hosseini SV, Ghaderi A (2012) Programmed death-1 gene polymorphism (PD-1.5 C/T) is associated with colon cancer. Gene 508:229–232PubMedCrossRefGoogle Scholar
  70. Naidoo J et al (2015) Toxicities of the anti-PD-1 and anti-PD-L1 immune checkpoint antibodies. Ann Oncol 26:2375–2391PubMedPubMedCentralGoogle Scholar
  71. Nimmerjahn F, Ravetch JV (2008) Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 8:34–47PubMedCrossRefGoogle Scholar
  72. Nishikawa K, Linsley PS, Collins AB, Stamenkovic I, McCluskey RT, Andres G (1994) Effect of CTLA-4 chimeric protein on rat autoimmune anti-glomerular basement membrane glomerulonephritis. Eur J Immunol 24:1249–1254PubMedCrossRefGoogle Scholar
  73. Nishimura H, Nose M, Hiai H, Minato N, Honjo T (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11:141–151PubMedPubMedCentralCrossRefGoogle Scholar
  74. Nishimura H et al (2001) Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291:319–322CrossRefPubMedPubMedCentralGoogle Scholar
  75. Okamura H, Okazaki I-m, Shimizu K, Maruhashi T, Sugiura D, Mizuno R, Okazaki T (2019) PD-1 aborts the activation trajectory of autoreactive CD8+ T cells to prohibit their acquisition of effector functions. J Autoimmun:102296. [Epub ahead of print]CrossRefGoogle Scholar
  76. Okazaki T, Honjo T (2007) PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 19:813–824PubMedCrossRefPubMedCentralGoogle Scholar
  77. Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T (2001) PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci U S A 98:13866–13871PubMedPubMedCentralCrossRefGoogle Scholar
  78. Okazaki T et al (2003) Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med 9:1477–1483PubMedCrossRefGoogle Scholar
  79. Okazaki T, Otaka Y, Wang J, Hiai H, Takai T, Ravetch JV, Honjo T (2005) Hydronephrosis associated with antiurothelial and antinuclear autoantibodies in BALB/c-Fcgr2b−/-Pdcd1−/− mice. J Exp Med 202:1643–1648PubMedPubMedCentralCrossRefGoogle Scholar
  80. Okazaki T et al (2011) PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice. J Exp Med 208:395–407PubMedPubMedCentralCrossRefGoogle Scholar
  81. Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T (2013) A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol 14:1212–1218PubMedCrossRefPubMedCentralGoogle Scholar
  82. Oosterwegel MA, Mandelbrot DA, Boyd SD, Lorsbach RB, Jarrett DY, Abbas AK, Sharpe AH (1999) The role of CTLA-4 in regulating Th2 differentiation. J Immunol 163:2634–2639PubMedGoogle Scholar
  83. Parry RV et al (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25:9543–9553PubMedPubMedCentralCrossRefGoogle Scholar
  84. Paterson AM et al (2015) Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity. J Exp Med 212:1603–1621PubMedPubMedCentralCrossRefGoogle Scholar
  85. Pawlak-Adamska E et al (2017) PD-1 gene polymorphic variation is linked with first symptom of disease and severity of relapsing-remitting form of MS. J Neuroimmunol 305:115–127PubMedCrossRefGoogle Scholar
  86. Perrin PJ et al (1995) Role of B7:CD28/CTLA-4 in the induction of chronic relapsing experimental allergic encephalomyelitis. J Immunol 154:1481–1490PubMedGoogle Scholar
  87. Phan GQ et al (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A 100:8372–8377PubMedPubMedCentralCrossRefGoogle Scholar
  88. Pizarro C, Garcia-Diaz DF, Codner E, Salas-Perez F, Carrasco E, Perez-Bravo F (2014) PD-L1 gene polymorphisms and low serum level of PD-L1 protein are associated to type 1 diabetes in Chile. Diabetes Metab Res Rev 30:761–766PubMedCrossRefGoogle Scholar
  89. Prokunina L et al (2002) A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 32:666–669PubMedCrossRefGoogle Scholar
  90. Rajasalu T et al (2010) Deficiency in B7-H1 (PD-L1)/PD-1 coinhibition triggers pancreatic beta-cell destruction by insulin-specific, murine CD8 T-cells. Diabetes 59:1966–1973PubMedPubMedCentralCrossRefGoogle Scholar
  91. Raptopoulou AP et al (2010) The programmed death 1/programmed death ligand 1 inhibitory pathway is up-regulated in rheumatoid synovium and regulates peripheral T cell responses in human and murine arthritis. Arthritis Rheum 62:1870–1880PubMedGoogle Scholar
  92. Robert C et al (2015) Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 372:2521–2532PubMedPubMedCentralCrossRefGoogle Scholar
  93. Romo-Tena J, Gomez-Martin D, Alcocer-Varela J (2013) CTLA-4 and autoimmunity: new insights into the dual regulator of tolerance. Autoimmun Rev 12:1171–1176PubMedCrossRefGoogle Scholar
  94. Salama AD et al (2003) Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J Exp Med 198:71–78PubMedPubMedCentralCrossRefGoogle Scholar
  95. Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A, Bluestone JA (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12:431–440PubMedCrossRefGoogle Scholar
  96. Salomon B et al (2001) Development of spontaneous autoimmune peripheral polyneuropathy in B7-2-deficient NOD mice. J Exp Med 194:677–684PubMedPubMedCentralCrossRefGoogle Scholar
  97. Schildberg FA, Klein SR, Freeman GJ, Sharpe AH (2016) Coinhibitory pathways in the B7-CD28 ligand-receptor family. Immunity 44:955–972PubMedPubMedCentralCrossRefGoogle Scholar
  98. Schubert D et al (2014) Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med 20:1410–1416PubMedPubMedCentralCrossRefGoogle Scholar
  99. Shahinian A et al (1993) Differential T cell costimulatory requirements in CD28-deficient mice. Science 261:609–612PubMedCrossRefGoogle Scholar
  100. Shimatani K, Yoshimoto T, Doi Y, Sonoda T, Yamamoto S, Kanematsu A (2018) Two cases of nonbacterial cystitis associated with nivolumab, the anti-programmed-death-receptor-1 inhibitor. Urol Case Rep 17:97–99PubMedPubMedCentralCrossRefGoogle Scholar
  101. Stumpf M, Zhou X, Bluestone JA (2013) The B7-independent isoform of CTLA-4 functions to regulate autoimmune diabetes. J Immunol 190:961–969PubMedPubMedCentralCrossRefGoogle Scholar
  102. Suchard SJ et al (2013) A monovalent anti-human CD28 domain antibody antagonist: preclinical efficacy and safety. J Immunol 191:4599–4610PubMedCrossRefGoogle Scholar
  103. Sugino Y et al (2012) BALB/c-Fcgr2bPdcd1 mouse expressing anti-urothelial antibody is a novel model of autoimmune cystitis. Sci Rep 2:317PubMedPubMedCentralCrossRefGoogle Scholar
  104. Tabares P et al (2014) Human regulatory T cells are selectively activated by low-dose application of the CD28 superagonist TGN1412/TAB08. Eur J Immunol 44:1225–1236PubMedCrossRefGoogle Scholar
  105. Tada Y et al (1999) Role of the costimulatory molecule CD28 in the development of lupus in MRL/lpr mice. J Immunol 163:3153–3159PubMedGoogle Scholar
  106. Takahashi S et al (2005) In vivo overexpression of CTLA-4 suppresses lymphoproliferative diseases and thymic negative selection. Eur J Immunol 35:399–407PubMedCrossRefGoogle Scholar
  107. Takahashi Y et al (2013) Genetic variations of immunoregulatory genes associated with Rasmussen syndrome. Epilepsy Res 107:238–243PubMedCrossRefGoogle Scholar
  108. Tanasilovic S, Popadic S, Medenica L, Popadic D (2017) Pemphigus vulgaris and pemphigus foliaceus determined by CD86 and CTLA4 polymorphisms. Clin Dermatol 35:236–241PubMedCrossRefGoogle Scholar
  109. Tang Q et al (2003) Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J Immunol 171:3348–3352PubMedCrossRefPubMedCentralGoogle Scholar
  110. Tarrio ML, Grabie N, Bu DX, Sharpe AH, Lichtman AH (2012) PD-1 protects against inflammation and myocyte damage in T cell-mediated myocarditis. J Immunol 188:4876–4884PubMedPubMedCentralCrossRefGoogle Scholar
  111. Tivol EA, Gorski J (2002) Re-establishing peripheral tolerance in the absence of CTLA-4: complementation by wild-type T cells points to an indirect role for CTLA-4. J Immunol 169:1852–1858PubMedCrossRefGoogle Scholar
  112. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3:541–547PubMedPubMedCentralCrossRefGoogle Scholar
  113. Tjarnlund A et al (2018) Abatacept in the treatment of adult dermatomyositis and polymyositis: a randomised, phase IIb treatment delayed-start trial. Ann Rheum Dis 77:55–62PubMedCrossRefGoogle Scholar
  114. Topalian SL et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454PubMedPubMedCentralCrossRefGoogle Scholar
  115. Tyrsin D, Chuvpilo S, Matskevich A, Nemenov D, Romer PS, Tabares P, Hunig T (2016) From TGN1412 to TAB08: the return of CD28 superagonist therapy to clinical development for the treatment of rheumatoid arthritis. Clin Exp Rheumatol 34:45–48PubMedGoogle Scholar
  116. Ueda H et al (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506–511CrossRefGoogle Scholar
  117. Varricchi G et al (2017) Cardiotoxicity of immune checkpoint inhibitors. ESMO Open 2:e000247PubMedPubMedCentralCrossRefGoogle Scholar
  118. Vijayakrishnan L et al (2004) An autoimmune disease-associated CTLA-4 splice variant lacking the B7 binding domain signals negatively in T cells. Immunity 20:563–575CrossRefGoogle Scholar
  119. Vincenti F et al (2016) Belatacept and long-term outcomes in kidney transplantation. N Engl J Med 374:333–343PubMedCrossRefGoogle Scholar
  120. Wagner M et al (2015) Polymorphisms in CD28, CTLA-4, CD80 and CD86 genes may influence the risk of multiple sclerosis and its age of onset. J Neuroimmunol 288:79–86PubMedCrossRefGoogle Scholar
  121. Walker LS, Sansom DM (2015) Confusing signals: recent progress in CTLA-4 biology. Trends Immunol 36:63–70PubMedPubMedCentralCrossRefGoogle Scholar
  122. Wang J, Yoshida T, Nakaki F, Hiai H, Okazaki T, Honjo T (2005) Establishment of NOD-Pdcd1−/− mice as an efficient animal model of type I diabetes. Proc Natl Acad Sci U S A 102:11823–11828PubMedPubMedCentralCrossRefGoogle Scholar
  123. Wang J et al (2010) PD-1 deficiency results in the development of fatal myocarditis in MRL mice. Int Immunol 22:443–452PubMedCrossRefGoogle Scholar
  124. Wang G, Hu P, Yang J, Shen G, Wu X (2011) The effects of PDL-Ig on collagen-induced arthritis. Rheumatol Int 31:513–519PubMedCrossRefGoogle Scholar
  125. Waterhouse P et al (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985–988PubMedPubMedCentralCrossRefGoogle Scholar
  126. Wing K et al (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322:271–275CrossRefGoogle Scholar
  127. Wing K, Yamaguchi T, Sakaguchi S (2011) Cell-autonomous and -non-autonomous roles of CTLA-4 in immune regulation. Trends Immunol 32:428–433PubMedCrossRefPubMedCentralGoogle Scholar
  128. Woo SR et al (2012) Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 72:917–927PubMedCrossRefGoogle Scholar
  129. Yanagawa T, Hidaka Y, Guimaraes V, Soliman M, DeGroot LJ (1995) CTLA-4 gene polymorphism associated with Graves’ disease in a Caucasian population. J Clin Endocrinol Metab 80:41–45PubMedGoogle Scholar
  130. Yang Q, Liu Y, Liu D, Zhang Y, Mu K (2011) Association of polymorphisms in the programmed cell death 1 (PD-1) and PD-1 ligand genes with ankylosing spondylitis in a Chinese population. Clin Exp Rheumatol 29:13–18PubMedGoogle Scholar
  131. Yang Z et al (2015) Integrated pharmacokinetic/pharmacodynamic analysis for determining the minimal anticipated biological effect level of a novel anti-CD28 receptor antagonist BMS-931699. J Pharmacol Exp Ther 355:506–515PubMedCrossRefGoogle Scholar
  132. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T (2012) Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 209:1201–1217PubMedPubMedCentralCrossRefGoogle Scholar
  133. Yoshida T, Jiang F, Honjo T, Okazaki T (2008) PD-1 deficiency reveals various tissue-specific autoimmunity by H-2b and dose-dependent requirement of H-2g7 for diabetes in NOD mice. Proc Natl Acad Sci U S A 105:3533–3538PubMedPubMedCentralCrossRefGoogle Scholar
  134. Yu Y et al (2016) Single-cell RNA-seq identifies a PD-1(hi) ILC progenitor and defines its development pathway. Nature 539:102–106PubMedCrossRefGoogle Scholar
  135. Zamani MR, Asbagh FA, Massoud AH, Salmaninejad A, Massoud A, Rezaei N (2015) Association between a PD-1 gene polymorphism and antisperm antibody-related infertility in Iranian men. J Assist Reprod Genet 32:103–106PubMedCrossRefGoogle Scholar
  136. Zhang Q, Vignali DA (2016) Co-stimulatory and co-inhibitory pathways in autoimmunity. Immunity 44:1034–1051PubMedPubMedCentralCrossRefGoogle Scholar
  137. Zhong X, Tumang JR, Gao W, Bai C, Rothstein TL (2007) PD-L2 expression extends beyond dendritic cells/macrophages to B1 cells enriched for V(H)11/V(H)12 and phosphatidylcholine binding. Eur J Immunol 37:2405–2410PubMedCrossRefPubMedCentralGoogle Scholar
  138. Zhu B et al (2006) Differential role of programmed death-ligand 1 [corrected] and programmed death-ligand 2 [corrected] in regulating the susceptibility and chronic progression of experimental autoimmune encephalomyelitis. J Immunol 176:3480–3489PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Division of Immune Regulation, Institute of Advanced Medical SciencesTokushima UniversityTokushimaJapan

Personalised recommendations