Signal Transduction Via Co-stimulatory and Co-inhibitory Receptors

  • Shuhei OgawaEmail author
  • Ryo Abe
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1189)


T-cell receptor (TCR)-mediated antigen-specific stimulation is essential for initiating T-cell activation. However, signaling through the TCR alone is not sufficient for inducing an effective response. In addition to TCR-mediated signaling, signaling through antigen-independent co-stimulatory or co-inhibitory receptors is critically important not only for the full activation and functional differentiation of T cells but also for the termination and suppression of T-cell responses. Many studies have investigated the signaling pathways underlying the function of each molecular component. Co-stimulatory and co-inhibitory receptors have no kinase activity, but their cytoplasmic region contains unique functional motifs and potential phosphorylation sites. Engagement of co-stimulatory receptors leads to recruitment of specific binding partners, such as adaptor molecules, kinases, and phosphatases, via recognition of a specific motif. Consequently, each co-stimulatory receptor transduces a unique pattern of signaling pathways. This review focuses on our current understanding of the intracellular signaling pathways provided by co-stimulatory and co-inhibitory molecules, including B7:CD28 family members, immunoglobulin, and members of the tumor necrosis factor receptor superfamily.


Co-stimulatory receptor Co-inhibitory receptor Signal transduction B7:CD28 family members Ig superfamily members TNFR superfamily members 


  1. Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, Yagita H, Honjo T (1996) Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 8:765–772PubMedPubMedCentralGoogle Scholar
  2. Aggarwal BB (2003) Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3:745–756PubMedPubMedCentralGoogle Scholar
  3. Agrawal S, Marquet J, Freeman GJ, Tawab A, Bouteiller PL, Roth P, Bolton W, Ogg G, Boumsell L, Bensussan A (1999) Cutting edge: MHC class I triggering by a novel cell surface ligand costimulates proliferation of activated human T cells. J Immunol 162:1223–1226PubMedGoogle Scholar
  4. Aizawa S, Satoh H, Horie R, Ito K, Choi SH, Takeuchi H, Watanabe T (1996) Cloning and characterization of a cDNA for rat CD30 homolog and chromosomal assignment of the genomic gene. Gene 182:155–162PubMedCrossRefGoogle Scholar
  5. Aizawa S, Nakano H, Ishida T, Horie R, Nagai M, Ito K, Yagita H, Okumura K, Inoue J, Watanabe T (1997) Tumor necrosis factor receptor-associated factor (TRAF) 5 and TRAF2 are involved in CD30-mediated NFkappaB activation. J Biol Chem 272:2042–2045PubMedCrossRefGoogle Scholar
  6. Akiba H, Nakano H, Nishinaka S, Shindo M, Kobata T, Atsuta M, Morimoto C, Ware CF, Malinin NL, Wallach D, Yagita H, Okumura K (1998) CD27, a member of the tumor necrosis factor receptor superfamily, activates NF-kappaB and stress-activated protein kinase/c-Jun N-terminal kinase via TRAF2, TRAF5, and NF-kappaB-inducing kinase. J Biol Chem 273:13353–13358PubMedCrossRefGoogle Scholar
  7. Akiba H, Takeda K, Kojima Y, Usui Y, Harada N, Yamazaki T, Ma J, Tezuka K, Yagita H, Okumura K (2005) The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. J Immunol 175:2340–2348CrossRefGoogle Scholar
  8. Anderson AC, Anderson DE, Bregoli L, Hastings WD, Kassam N, Lei C, Chandwaskar R, Karman J, Su EW, Hirashima M, Bruce JN, Kane LP, Kuchroo VK, Hafler DA (2007) Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science 318:1141–1143PubMedCrossRefGoogle Scholar
  9. Arch RH, Thompson CB (1998) 4-1BB and Ox40 are members of a tumor necrosis factor (TNF)-nerve growth factor receptor subfamily that bind TNF receptor-associated factors and activate nuclear factor kappaB. Mol Cell Biol 18:558–565PubMedPubMedCentralCrossRefGoogle Scholar
  10. Aspalter RM, Eibl MM, Wolf HM (2003) Regulation of TCR-mediated T cell activation by TNF-RII. J Leukoc Biol 74:572–582PubMedCrossRefGoogle Scholar
  11. August A, Dupont B (1994) CD28 of T lymphocytes associates with phosphatidylinositol 3-kinase. Int Immunol 6:769–774PubMedCrossRefGoogle Scholar
  12. August A, Gibson S, Kawakami Y, Kawakami T, Mills GB, Dupont B (1994) CD28 is associated with and induces the immediate tyrosine phosphorylation and activation of the Tec family kinase ITK/EMT in the human Jurkat leukemic T-cell line. Proc Natl Acad Sci U S A 91:9347–9351PubMedPubMedCentralCrossRefGoogle Scholar
  13. Au-Yeung BB, Deindl S, Hsu LY, Palacios EH, Levin SE, Kuriyan J, Weiss A (2009) The structure, regulation, and function of ZAP-70. Immunol Rev 228:41–57CrossRefGoogle Scholar
  14. Bae J, Lee SJ, Park CG, Lee YS, Chun T (2014) Trafficking of LAG-3 to the surface on activated T cells via its cytoplasmic domain and protein kinase C signaling. J Immunol 193:3101–3112PubMedCrossRefGoogle Scholar
  15. Bansal-Pakala P, Halteman BS, Cheng MH, Croft M (2004) Costimulation of CD8 T cell responses by OX40. J Immunol 172:4821–4825PubMedCrossRefGoogle Scholar
  16. van Berkel ME, Schrijver EH, Hofhuis FM, Sharpe AH, Coyle AJ, Broeren CP, Tesselaar K, Oosterwegel MA (2005) ICOS contributes to T cell expansion in CTLA-4 deficient mice. J Immunol 175:182–188PubMedCrossRefGoogle Scholar
  17. Blanchet F, Cardona A, Letimier FA, Hershfield MS, Acuto O (2005) CD28 costimulatory signal induces protein arginine methylation in T cells. J Exp Med 202:371–377PubMedPubMedCentralCrossRefGoogle Scholar
  18. Blanchet F, Schurter BT, Acuto O (2006) Protein arginine methylation in lymphocyte signaling. Curr Opin Immunol 18:321–328PubMedCrossRefGoogle Scholar
  19. Boles KS, Vermi W, Facchetti F, Fuchs A, Wilson TJ, Diacovo TG, Cella M, Colonna M (2009) A novel molecular interaction for the adhesion of follicular CD4 T cells to follicular DC. Eur J Immunol 39:695–703PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bonsor DA, Gunther S, Beadenkopf R, Beckett D, Sundberg EJ (2015) Diverse oligomeric states of CEACAM IgV domains. Proc Natl Acad Sci U S A 112:13561–13566PubMedPubMedCentralCrossRefGoogle Scholar
  21. Boomer JS, Deppong CM, Shah DD, Bricker TL, Green JM (2014) Cutting edge: A double-mutant knockin of the CD28 YMNM and PYAP motifs reveals a critical role for the YMNM motif in regulation of T cell proliferation and Bcl-xL expression. J Immunol 192:3465–3469PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bottino C, Castriconi R, Pende D, Rivera P, Nanni M, Carnemolla B, Cantoni C, Grassi J, Marcenaro S, Reymond N, Vitale M, Moretta L, Lopez M, Moretta A (2003) Identification of PVR (CD155) and Nectin-2 (CD112) as cell surface ligands for the human DNAM-1 (CD226) activating molecule. J Exp Med 198:557–567PubMedPubMedCentralCrossRefGoogle Scholar
  23. Boucher LM, Marengere LE, Lu Y, Thukral S, Mak TW (1997) Binding sites of cytoplasmic effectors TRAF1, 2, and 3 on CD30 and other members of the TNF receptor superfamily. Biochem Biophys Res Commun 233:592–600PubMedCrossRefGoogle Scholar
  24. Bowen MA, Lee RK, Miragliotta G, Nam SY, Podack ER (1996) Structure and expression of murine CD30 and its role in cytokine production. J Immunol 156:442–449PubMedGoogle Scholar
  25. Bratanic N, Kovac J, Pohar K, Trebusak Podkrajsek K, Ihan A, Battelino T, Avbelj Stefanija M (2017) Multifocal gastric adenocarcinoma in a patient with LRBA deficiency. Orphanet J Rare Dis 12:131PubMedPubMedCentralCrossRefGoogle Scholar
  26. Bretscher P, Cohn M (1970) A theory of self-nonself discrimination. Science 169:1042–1049PubMedPubMedCentralCrossRefGoogle Scholar
  27. Butte MJ, Lee SJ, Jesneck J, Keir ME, Haining WN, Sharpe AH (2012) CD28 costimulation regulates genome-wide effects on alternative splicing. PLoS One 7:e40032PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cabal-Hierro L, Lazo PS (2012) Signal transduction by tumor necrosis factor receptors. Cell Signal 24:1297–1305PubMedCrossRefGoogle Scholar
  29. Cabal-Hierro L, Rodriguez M, Artime N, Iglesias J, Ugarte L, Prado MA, Lazo PS (2014) TRAF-mediated modulation of NF-κB AND JNK activation by TNFR2. Cell Signal 26:2658–2666PubMedCrossRefGoogle Scholar
  30. Cai G, Freeman GJ (2009) The CD160, BTLA, LIGHT/HVEM pathway: a bidirectional switch regulating T-cell activation. Immunol Rev 229:244–258PubMedPubMedCentralCrossRefGoogle Scholar
  31. Cai YC, Cefai D, Schneider H, Raab M, Nabavi N, Rudd CE (1995) Selective CD28pYMNM mutations implicate phosphatidylinositol 3-kinase in CD86-CD28-mediated costimulation. Immunity 3:417–426PubMedCrossRefGoogle Scholar
  32. Cai G, Anumanthan A, Brown JA, Greenfield EA, Zhu B, Freeman GJ (2008) CD160 inhibits activation of human CD4+ T cells through interaction with herpesvirus entry mediator. Nat Immunol 9:176–185PubMedCrossRefGoogle Scholar
  33. Cannons JL, Hoeflich KP, Woodgett JR, Watts TH (1999) Role of the stress kinase pathway in signaling via the T cell costimulatory receptor 4-1BB. J Immunol 163:2990–2998PubMedGoogle Scholar
  34. Cannons JL, Choi Y, Watts TH (2000) Role of TNF receptor-associated factor 2 and p38 mitogen-activated protein kinase activation during 4-1BB-dependent immune response. J Immunol 165:6193–6204PubMedCrossRefGoogle Scholar
  35. Cao E, Zang X, Ramagopal UA, Mukhopadhaya A, Fedorov A, Fedorov E, Zencheck WD, Lary JW, Cole JL, Deng H, Xiao H, Dilorenzo TP, Allison JP, Nathenson SG, Almo SC (2007) T cell immunoglobulin mucin-3 crystal structure reveals a galectin-9-independent ligand-binding surface. Immunity 26:311–321PubMedCrossRefGoogle Scholar
  36. Cederbom L, Hall H, Ivars F (2000) CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur J Immunol 30:1538–1543PubMedCrossRefGoogle Scholar
  37. Ceeraz S, Sergent PA, Plummer SF, Schned AR, Pechenick D, Burns CM, Noelle RJ (2017) VISTA deficiency accelerates the development of fatal murine lupus nephritis. Arthritis Rheumatol 69:814–825PubMedPubMedCentralCrossRefGoogle Scholar
  38. Chan CJ, Martinet L, Gilfillan S, Souza-Fonseca-Guimaraes F, Chow MT, Town L, Ritchie DS, Colonna M, Andrews DM, Smyth MJ (2014) The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions. Nat Immunol 15:431–438PubMedCrossRefGoogle Scholar
  39. Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O’sullivan D, Huang SC, van der Windt GJ, Blagih J, Qiu J, Weber JD, Pearce EJ, Jones RG, Pearce EL (2013) Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153:1239–1251PubMedPubMedCentralCrossRefGoogle Scholar
  40. Chang CH, Qiu J, O’sullivan D, Buck MD, Noguchi T, Curtis JD, Chen Q, Gindin M, Gubin MM, van der Windt GJ, Tonc E, Schreiber RD, Pearce EJ, Pearce EL (2015) Metabolic competition in the tumor microenvironment is a driver of Cancer progression. Cell 162:1229–1241PubMedPubMedCentralCrossRefGoogle Scholar
  41. Chattopadhyay K, Ramagopal UA, Mukhopadhaya A, Malashkevich VN, Dilorenzo TP, Brenowitz M, Nathenson SG, Almo SC (2007) Assembly and structural properties of glucocorticoid-induced TNF receptor ligand: implications for function. Proc Natl Acad Sci U S A 104:19452–19457PubMedPubMedCentralCrossRefGoogle Scholar
  42. Chattopadhyay K, Ramagopal UA, Brenowitz M, Nathenson SG, Almo SC (2008) Evolution of GITRL immune function: murine GITRL exhibits unique structural and biochemical properties within the TNF superfamily. Proc Natl Acad Sci U S A 105:635–640PubMedPubMedCentralCrossRefGoogle Scholar
  43. Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL (2004) SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol 173:945–954PubMedPubMedCentralCrossRefGoogle Scholar
  44. Chemnitz JM, Lanfranco AR, Braunstein I, Riley JL (2006) B and T lymphocyte attenuator-mediated signal transduction provides a potent inhibitory signal to primary human CD4 T cells that can be initiated by multiple phosphotyrosine motifs. J Immunol 176:6603–6614PubMedCrossRefGoogle Scholar
  45. Chen CY, Del Gatto-Konczak F, Wu Z, Karin M (1998) Stabilization of interleukin-2 mRNA by the c-Jun NH2-terminal kinase pathway. Science 280:1945–1949PubMedCrossRefGoogle Scholar
  46. Cheng G, Yu A, Dee MJ, Malek TR (2013) IL-2R signaling is essential for functional maturation of regulatory T cells during thymic development. J Immunol 190:1567–1575PubMedPubMedCentralCrossRefGoogle Scholar
  47. Cheung TC, Steinberg MW, Oborne LM, Macauley MG, Fukuyama S, Sanjo H, D’souza C, Norris PS, Pfeffer K, Murphy KM, Kronenberg M, Spear PG, Ware CF (2009) Unconventional ligand activation of herpesvirus entry mediator signals cell survival. Proc Natl Acad Sci U S A 106:6244–6249PubMedPubMedCentralCrossRefGoogle Scholar
  48. Chiba S, Baghdadi M, Akiba H, Yoshiyama H, Kinoshita I, Dosaka-Akita H, Fujioka Y, Ohba Y, Gorman JV, Colgan JD, Hirashima M, Uede T, Takaoka A, Yagita H, Jinushi M (2012) Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Immunol 13:832–842PubMedPubMedCentralCrossRefGoogle Scholar
  49. Chinnaiyan AM, O’rourke K, Yu GL, Lyons RH, Garg M, Duan DR, Xing L, Gentz R, Ni J, Dixit VM (1996) Signal transduction by DR3, a death domain-containing receptor related to TNFR-1 and CD95. Science 274:990–992PubMedCrossRefGoogle Scholar
  50. Choi YS, Kageyama R, Eto D, Escobar TC, Johnston RJ, Monticelli L, Lao C, Crotty S (2011) ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6. Immunity 34:932–946PubMedPubMedCentralCrossRefGoogle Scholar
  51. Chuang E, Fisher TS, Morgan RW, Robbins MD, Duerr JM, Vander Heiden MG, Gardner JP, Hambor JE, Neveu MJ, Thompson CB (2000) The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 13:313–322CrossRefPubMedPubMedCentralGoogle Scholar
  52. Chung JY, Park YC, Ye H, Wu H (2002) All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci 115:679–688PubMedGoogle Scholar
  53. Cobbold SP, Waldmann H (2013) Regulatory cells and transplantation tolerance. Cold Spring Harb Perspect Med 3PubMedPubMedCentralCrossRefGoogle Scholar
  54. Coudronniere N, Villalba M, Englund N, Altman A (2000) NF-kappa B activation induced by T cell receptor/CD28 costimulation is mediated by protein kinase C-theta. Proc Natl Acad Sci U S A 97:3394–3399PubMedPubMedCentralGoogle Scholar
  55. Da Rocha Dias S, Rudd CE (2001) CTLA-4 blockade of antigen-induced cell death. Blood 97:1134–1137PubMedCrossRefGoogle Scholar
  56. D’addio F, Ueno T, Clarkson M, Zhu B, Vergani A, Freeman GJ, Sayegh MH, Ansari MJ, Fiorina P, Habicht A (2013) CD160Ig fusion protein targets a novel costimulatory pathway and prolongs allograft survival. PLoS One 8:e60391PubMedPubMedCentralCrossRefGoogle Scholar
  57. Dekruyff RH, Bu X, Ballesteros A, Santiago C, Chim YL, Lee HH, Karisola P, Pichavant M, Kaplan GG, Umetsu DT, Freeman GJ, Casasnovas JM (2010) T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. J Immunol 184:1918–1930PubMedPubMedCentralCrossRefGoogle Scholar
  58. DEL Rio ML, Bravo Moral AM, Fernandez-Renedo C, Buhler L, Perez-Simon JA, Chaloin O, Alvarez Nogal R, Fernandez-Caso M, Rodriguez-Barbosa JI (2017) Modulation of cytotoxic responses by targeting CD160 prolongs skin graft survival across major histocompatibility class I barrier. Transl Res 181(83–95):e3Google Scholar
  59. Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen ZJ (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103:351–361PubMedCrossRefGoogle Scholar
  60. Ding Y, Han R, Jiang W, Xiao J, Liu H, Chen X, Li X, Hao J (2016) Programmed death ligand 1 plays a Neuroprotective role in experimental autoimmune neuritis by controlling peripheral nervous system inflammation of rats. J Immunol 197:3831–3840PubMedCrossRefGoogle Scholar
  61. Dobbins J, Gagnon E, Godec J, Pyrdol J, Vignali DA, Sharpe AH, Wucherpfennig KW (2016) Binding of the cytoplasmic domain of CD28 to the plasma membrane inhibits Lck recruitment and signaling. Sci Signal 9:ra75PubMedPubMedCentralCrossRefGoogle Scholar
  62. Dodson LF, Boomer JS, Deppong CM, Shah DD, Sim J, Bricker TL, Russell JH, Green JM (2009) Targeted knock-in mice expressing mutations of CD28 reveal an essential pathway for costimulation. Mol Cell Biol 29:3710–3721PubMedPubMedCentralCrossRefGoogle Scholar
  63. Dong H, Zhu G, Tamada K, Chen L (1999) B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 5:1365–1369PubMedPubMedCentralCrossRefGoogle Scholar
  64. Duckett CS, Thompson CB (1997) CD30-dependent degradation of TRAF2: implications for negative regulation of TRAF signaling and the control of cell survival. Genes Dev 11:2810–2821PubMedPubMedCentralCrossRefGoogle Scholar
  65. Duckett CS, Gedrich RW, Gilfillan MC, Thompson CB (1997) Induction of nuclear factor kappaB by the CD30 receptor is mediated by TRAF1 and TRAF2. Mol Cell Biol 17:1535–1542PubMedPubMedCentralCrossRefGoogle Scholar
  66. Ellis TM, Simms PE, Slivnick DJ, Jack HM, Fisher RI (1993) CD30 is a signal-transducing molecule that defines a subset of human activated CD45RO+ T cells. J Immunol 151:2380–2389PubMedGoogle Scholar
  67. Esparza EM, Arch RH (2004) TRAF4 functions as an intermediate of GITR-induced NF-kappaB activation. Cell Mol Life Sci 61:3087–3092PubMedCrossRefGoogle Scholar
  68. Esparza EM, Arch RH (2005) Glucocorticoid-induced TNF receptor, a costimulatory receptor on naive and activated T cells, uses TNF receptor-associated factor 2 in a novel fashion as an inhibitor of NF-kappa B activation. J Immunol 174:7875–7882PubMedCrossRefGoogle Scholar
  69. Esparza EM, Lindsten T, Stockhausen JM, Arch RH (2006) Tumor necrosis factor receptor (TNFR)-associated factor 5 is a critical intermediate of costimulatory signaling pathways triggered by glucocorticoid-induced TNFR in T cells. J Biol Chem 281:8559–8564PubMedCrossRefGoogle Scholar
  70. Faustman D, Davis M (2010) TNF receptor 2 pathway: drug target for autoimmune diseases. Nat Rev Drug Discov 9:482–493PubMedCrossRefGoogle Scholar
  71. Fife BT, Pauken KE, Eagar TN, Obu T, Wu J, Tang Q, Azuma M, Krummel MF, Bluestone JA (2009) Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol 10:1185–1192PubMedPubMedCentralCrossRefGoogle Scholar
  72. Flies DB, Wang S, Xu H, Chen L (2011) Cutting edge: A monoclonal antibody specific for the programmed death-1 homolog prevents graft-versus-host disease in mouse models. J Immunol 187:1537–1541PubMedPubMedCentralCrossRefGoogle Scholar
  73. Flies DB, Han X, Higuchi T, Zheng L, Sun J, Ye JJ, Chen L (2014) Coinhibitory receptor PD-1H preferentially suppresses CD4(+) T cell-mediated immunity. J Clin Invest 124:1966–1975PubMedPubMedCentralCrossRefGoogle Scholar
  74. Fos C, Salles A, Lang V, Carrette F, Audebert S, Pastor S, Ghiotto M, Olive D, Bismuth G, Nunes JA (2008) ICOS ligation recruits the p50alpha PI3K regulatory subunit to the immunological synapse. J Immunol 181:1969–1977CrossRefGoogle Scholar
  75. Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, Sharpe AH (2009) PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 206:3015–3029PubMedPubMedCentralCrossRefGoogle Scholar
  76. Fraser JD, Irving BA, Crabtree GR, Weiss A (1991) Regulation of interleukin-2 gene enhancer activity by the T cell accessory molecule CD28. Science 251:313–316PubMedCrossRefGoogle Scholar
  77. Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, Elstrom RL, June CH, Thompson CB (2002) The CD28 signaling pathway regulates glucose metabolism. Immunity 16:769–777CrossRefGoogle Scholar
  78. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L, Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034PubMedPubMedCentralCrossRefGoogle Scholar
  79. Friend LD, Shah DD, Deppong C, Lin J, Bricker TL, Juehne TI, Rose CM, Green JM (2006) A dose-dependent requirement for the proline motif of CD28 in cellular and humoral immunity revealed by a targeted knockin mutant. J Exp Med 203:2121–2133PubMedPubMedCentralCrossRefGoogle Scholar
  80. Gavrieli M, Murphy KM (2006) Association of Grb-2 and PI3K p85 with phosphotyrosile peptides derived from BTLA. Biochem Biophys Res Commun 345:1440–1445PubMedCrossRefGoogle Scholar
  81. Gedrich RW, Gilfillan MC, Duckett CS, van Dongen JL, Thompson CB (1996) CD30 contains two binding sites with different specificities for members of the tumor necrosis factor receptor-associated factor family of signal transducing proteins. J Biol Chem 271:12852–12858PubMedCrossRefGoogle Scholar
  82. Giardino Torchia ML, Munitic I, Castro E, Herz J, Mcgavern DB, Ashwell JD (2015) -IAP ubiquitin protein ligase activity is required for 4-1BB signaling and CD8(+) memory T-cell survival. Eur J Immunol 45:2672–2682PubMedCrossRefGoogle Scholar
  83. Gigoux M, Shang J, Pak Y, Xu M, Choe J, Mak TW, Suh WK (2009) Inducible costimulator promotes helper T-cell differentiation through phosphoinositide 3-kinase. Proc Natl Acad Sci U S A 106:20371–20376PubMedPubMedCentralCrossRefGoogle Scholar
  84. Gilfillan S, Chan CJ, Cella M, Haynes NM, Rapaport AS, Boles KS, Andrews DM, Smyth MJ, Colonna M (2008) DNAM-1 promotes activation of cytotoxic lymphocytes by nonprofessional antigen-presenting cells and tumors. J Exp Med 205:2965–2973PubMedPubMedCentralCrossRefGoogle Scholar
  85. Gill S, June CH (2015) Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies. Immunol Rev 263:68–89PubMedCrossRefGoogle Scholar
  86. Giustiniani J, Marie-Cardine A, Bensussan A (2007) A soluble form of the MHC class I-specific CD160 receptor is released from human activated NK lymphocytes and inhibits cell-mediated cytotoxicity. J Immunol 178:1293–1300PubMedCrossRefGoogle Scholar
  87. Giustiniani J, Bensussan A, Marie-Cardine A (2009) Identification and characterization of a transmembrane isoform of CD160 (CD160-TM), a unique activating receptor selectively expressed upon human NK cell activation. J Immunol 182:63–71PubMedPubMedCentralCrossRefGoogle Scholar
  88. Gogishvili T, Luhder F, Goebbels S, Beer-Hammer S, Pfeffer K, Hunig T (2013) Cell-intrinsic and -extrinsic control of Treg-cell homeostasis and function revealed by induced CD28 deletion. Eur J Immunol 43:188–193PubMedCrossRefGoogle Scholar
  89. Gonzalez LC, Loyet KM, Calemine-Fenaux J, Chauhan V, Wranik B, Ouyang W, Eaton DL (2005) A coreceptor interaction between the CD28 and TNF receptor family members B and T lymphocyte attenuator and herpesvirus entry mediator. Proc Natl Acad Sci U S A 102:1116–1121PubMedPubMedCentralCrossRefGoogle Scholar
  90. Gout S, Morin C, Houle F, Huot J (2006) Death receptor-3, a new E-Selectin counter-receptor that confers migration and survival advantages to colon carcinoma cells by triggering p38 and ERK MAPK activation. Cancer Res 66:9117–9124PubMedCrossRefGoogle Scholar
  91. Gramaglia I, Jember A, Pippig SD, Weinberg AD, Killeen N, Croft M (2000) The OX40 costimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion. J Immunol 165:3043–3050PubMedCrossRefGoogle Scholar
  92. Granger SW, Butrovich KD, Houshmand P, Edwards WR, Ware CF (2001) Genomic characterization of LIGHT reveals linkage to an immune response locus on chromosome 19p13.3 and distinct isoforms generated by alternate splicing or proteolysis. J Immunol 167:5122–5128PubMedCrossRefGoogle Scholar
  93. Gravestein LA, Amsen D, Boes M, Calvo CR, Kruisbeek AM, Borst J (1998) The TNF receptor family member CD27 signals to Jun N-terminal kinase via Traf-2. Eur J Immunol 28:2208–2216PubMedCrossRefGoogle Scholar
  94. Grell M, Douni E, Wajant H, Lohden M, Clauss M, Maxeiner B, Georgopoulos S, Lesslauer W, Kollias G, Pfizenmaier K, Scheurich P (1995) The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 83:793–802PubMedCrossRefGoogle Scholar
  95. Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F, Falorni A, Candeloro P, Belladonna ML, Bianchi R, Fioretti MC, Puccetti P (2002) CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 3:1097–1101PubMedPubMedCentralCrossRefGoogle Scholar
  96. Guo F, Iclozan C, Suh WK, Anasetti C, Yu XZ (2008) CD28 controls differentiation of regulatory T cells from naive CD4 T cells. J Immunol 181:2285–2291PubMedPubMedCentralCrossRefGoogle Scholar
  97. Gurney AL, Marsters SA, Huang RM, Pitti RM, Mark DT, Baldwin DT, Gray AM, Dowd AD, Brush AD, Heldens AD, Schow AD, Goddard AD, Wood WI, Baker KP, Godowski PJ, Ashkenazi A (1999) Identification of a new member of the tumor necrosis factor family and its receptor, a human ortholog of mouse GITR. Curr Biol 9:215–218PubMedCrossRefGoogle Scholar
  98. Harada Y, Tanabe E, Watanabe R, Weiss BD, Matsumoto A, Ariga H, Koiwai O, Fukui Y, Kubo M, June CH, Abe R (2001a) Novel role of phosphatidylinositol 3-kinase in CD28-mediated costimulation. J Biol Chem 276:9003–9008PubMedCrossRefGoogle Scholar
  99. Harada Y, Tokushima M, Matsumoto Y, Ogawa S, Otsuka M, Hayashi K, Weiss BD, June CH, Abe R (2001b) Critical requirement for the membrane-proximal cytosolic tyrosine residue for CD28-mediated costimulation in vivo. J Immunol 166:3797–3803PubMedCrossRefGoogle Scholar
  100. Hayashi K, Altman A (2006) Filamin A is required for T cell activation mediated by protein kinase C-theta. J Immunol 177:1721–1728PubMedCrossRefGoogle Scholar
  101. Hendriks J, Gravestein LA, Tesselaar K, van Lier RA, Schumacher TN, Borst J (2000) CD27 is required for generation and long-term maintenance of T cell immunity. Nat Immunol 1:433–440PubMedCrossRefGoogle Scholar
  102. Higo K, Ikura T, Oda M, Morii H, Takahashi J, Abe R, Ito N (2013) High resolution crystal structure of the Grb2 SH2 domain with a phosphopeptide derived from CD28. PLoS One 8:e74482PubMedPubMedCentralCrossRefGoogle Scholar
  103. Higo K, Oda M, Morii H, Takahashi J, Harada Y, Ogawa S, Abe R (2014) Quantitative analysis by surface plasmon resonance of CD28 interaction with cytoplasmic adaptor molecules Grb2, gads and p85 PI3K. Immunol Investig 43:278–291CrossRefGoogle Scholar
  104. Hintzen RQ, de Jong R, Lens SM, van Lier RA (1994a) CD27: marker and mediator of T-cell activation? Immunol Today 15:307–311PubMedCrossRefGoogle Scholar
  105. Hintzen RQ, Lens SM, Koopman G, Pals ST, Spits H, van Lier RA (1994b) CD70 represents the human ligand for CD27. Int Immunol 6:477–480PubMedCrossRefGoogle Scholar
  106. Hofinger E, Sticht H (2005) Multiple modes of interaction between Lck and CD28. J Immunol 174:3839–3840PubMedCrossRefGoogle Scholar
  107. Holdorf AD, Green JM, Levin SD, Denny MF, Straus DB, Link V, Changelian PS, Allen PM, Shaw AS (1999) Proline residues in CD28 and the Src homology (SH)3 domain of Lck are required for T cell costimulation. J Exp Med 190:375–384PubMedPubMedCentralCrossRefGoogle Scholar
  108. Holdorf AD, Lee KH, Burack WR, Allen PM, Shaw AS (2002) Regulation of Lck activity by CD4 and CD28 in the immunological synapse. Nat Immunol 3:259–264PubMedCrossRefGoogle Scholar
  109. Hombach AA, Kofler D, Hombach A, Rappl G, Abken H (2007) Effective proliferation of human regulatory T cells requires a strong costimulatory CD28 signal that cannot be substituted by IL-2. J Immunol 179:7924–7931PubMedCrossRefGoogle Scholar
  110. Horie R, Aizawa S, Nagai M, Ito K, Higashihara M, Ishida T, Inoue J, Watanabe T (1998) A novel domain in the CD30 cytoplasmic tail mediates NFkappaB activation. Int Immunol 10:203–210PubMedCrossRefGoogle Scholar
  111. Hou TZ, Verma N, Wanders J, Kennedy A, Soskic B, Janman D, Halliday N, Rowshanravan B, Worth A, Qasim W, Baxendale H, Stauss H, Seneviratne S, Neth O, Olbrich P, Hambleton S, Arkwright PD, Burns SO, Walker LS, Sansom DM (2017) Identifying functional defects in patients with immune dysregulation due to LRBA and CTLA-4 mutations. Blood 129:1458–1468PubMedPubMedCentralCrossRefGoogle Scholar
  112. Hsu H, Solovyev I, Colombero A, Elliott R, Kelley M, Boyle WJ (1997) ATAR, a novel tumor necrosis factor receptor family member, signals through TRAF2 and TRAF5. J Biol Chem 272:13471–13474PubMedCrossRefPubMedCentralGoogle Scholar
  113. Hu H, Rudd CE, Schneider H (2001) Src kinases Fyn and Lck facilitate the accumulation of phosphorylated CTLA-4 and its association with PI-3 kinase in intracellular compartments of T-cells. Biochem Biophys Res Commun 288:573–578PubMedCrossRefPubMedCentralGoogle Scholar
  114. Huang YH, Zhu C, Kondo Y, Anderson AC, Gandhi A, Russell A, Dougan SK, Petersen BS, Melum E, Pertel T, Clayton KL, Raab M, Chen Q, Beauchemin N, Yazaki PJ, Pyzik M, Ostrowski MA, Glickman JN, Rudd CE, Ploegh HL, Franke A, Petsko GA, Kuchroo VK, Blumberg RS (2015) CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 517:386–390PubMedPubMedCentralCrossRefGoogle Scholar
  115. Huang YH, Zhu C, Kondo Y, Anderson AC, Gandhi A, Russell A, Dougan SK, Petersen BS, Melum E, Pertel T, Clayton KL, Raab M, Chen Q, Beauchemin N, Yazaki PJ, Pyzik M, Ostrowski MA, Glickman JN, Rudd CE, Ploegh HL, Franke A, Petsko GA, Kuchroo VK, Blumberg RS (2016) Corrigendum: CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 536:359PubMedPubMedCentralCrossRefGoogle Scholar
  116. Huard B, Mastrangeli R, Prigent P, Bruniquel D, Donini S, El-Tayar N, Maigret B, Dreano M, Triebel F (1997) Characterization of the major histocompatibility complex class II binding site on LAG-3 protein. Proc Natl Acad Sci U S A 94:5744–5749PubMedPubMedCentralCrossRefGoogle Scholar
  117. Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA, Sasmal DK, Huang J, Kim JM, Mellman I, Vale RD (2017) T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355:1428–1433PubMedPubMedCentralCrossRefGoogle Scholar
  118. Humphreys IR, Loewendorf A, de Trez C, Schneider K, Benedict CA, Munks MW, Ware CF, Croft M (2007) OX40 costimulation promotes persistence of cytomegalovirus-specific CD8 T cells: A CD4-dependent mechanism. J Immunol 179:2195–2202PubMedCrossRefGoogle Scholar
  119. Hurchla MA, Sedy JR, Gavrieli M, Drake CG, Murphy TL, Murphy KM (2005) B and T lymphocyte attenuator exhibits structural and expression polymorphisms and is highly induced in anergic CD4+ T cells. J Immunol 174:3377–3385CrossRefPubMedGoogle Scholar
  120. Hutchcroft JE, Bierer BE (1994) Activation-dependent phosphorylation of the T-lymphocyte surface receptor CD28 and associated proteins. Proc Natl Acad Sci U S A 91:3260–3264PubMedPubMedCentralCrossRefGoogle Scholar
  121. Iguchi-Manaka A, Kai H, Yamashita Y, Shibata K, Tahara-Hanaoka S, Honda S, Yasui T, Kikutani H, Shibuya K, Shibuya A (2008) Accelerated tumor growth in mice deficient in DNAM-1 receptor. J Exp Med 205:2959–2964PubMedPubMedCentralCrossRefGoogle Scholar
  122. Inaba S, Numoto N, Ogawa S, Morii H, Ikura T, Abe R, Ito N, Oda M (2017) Crystal structures and thermodynamic analysis reveal distinct mechanisms of CD28 Phosphopeptide binding to the Src homology 2 (SH2) domains of three adaptor proteins. J Biol Chem 292:1052–1060PubMedCrossRefGoogle Scholar
  123. Iouzalen N, Andreae S, Hannier S, Triebel F (2001) LAP, a lymphocyte activation gene-3 (LAG-3)-associated protein that binds to a repeated EP motif in the intracellular region of LAG-3, may participate in the down-regulation of the CD3/TCR activation pathway. Eur J Immunol 31:2885–2891PubMedCrossRefGoogle Scholar
  124. Ishida Y, Agata Y, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11:3887–3895PubMedPubMedCentralCrossRefGoogle Scholar
  125. Ishikawa C, Senba M, Mori N (2015) Induction of IkappaB-zeta by Epstein-Barr virus latent membrane protein-1 and CD30. Int J Oncol 47:2197–2207PubMedCrossRefGoogle Scholar
  126. Isomura I, Palmer S, Grumont RJ, Bunting K, Hoyne G, Wilkinson N, Banerjee A, Proietto A, Gugasyan R, Wu L, Mcnally A, Steptoe RJ, Thomas R, Shannon MF, Gerondakis S (2009) -Rel is required for the development of thymic Foxp3+ CD4 regulatory T cells. J Exp Med 206:3001–3014PubMedPubMedCentralCrossRefGoogle Scholar
  127. Jain N, Miu B, Jiang JK, Mckinstry KK, Prince A, Swain SL, Greiner DL, Thomas CJ, Sanderson MJ, Berg LJ, Kang J (2013) CD28 and ITK signals regulate autoreactive T cell trafficking. Nat Med 19:1632–1637PubMedPubMedCentralCrossRefGoogle Scholar
  128. Jang IK, Lee ZH, Kim YJ, Kim SH, Kwon BS (1998) Human 4-1BB (CD137) signals are mediated by TRAF2 and activate nuclear factor-kappa B. Biochem Biophys Res Commun 242:613–620PubMedCrossRefGoogle Scholar
  129. Jin W, Zhou XF, Yu J, Cheng X, Sun SC (2009) Regulation of Th17 cell differentiation and EAE induction by MAP3K NIK. Blood 113:6603–6610PubMedPubMedCentralCrossRefGoogle Scholar
  130. Joller N, Lozano E, Burkett PR, Patel B, Xiao S, Zhu C, Xia J, Tan TG, Sefik E, Yajnik V, Sharpe AH, Quintana FJ, Mathis D, Benoist C, Hafler DA, Kuchroo VK (2014) Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity 40:569–581PubMedPubMedCentralCrossRefGoogle Scholar
  131. June CH, Ledbetter JA, Gillespie MM, Lindsten T, Thompson CB (1987) T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression. Mol Cell Biol 7:4472–4481PubMedPubMedCentralCrossRefGoogle Scholar
  132. Kallikourdis M, Trovato AE, Roselli G, Muscolini M, Porciello N, Tuosto L, Viola A (2016) Phosphatidylinositol 4-phosphate 5-kinase beta controls recruitment of lipid rafts into the immunological synapse. J Immunol 196:1955–1963PubMedCrossRefGoogle Scholar
  133. Kamphorst AO, Wieland A, Nasti T, Yang S, Zhang R, Barber DL, Konieczny BT, Daugherty CZ, Koenig L, Yu K, Sica GL, Sharpe AH, Freeman GJ, Blazar BR, Turka LA, Owonikoko TK, Pillai RN, Ramalingam SS, Araki K, Ahmed R (2017) Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 355:1423–1427PubMedPubMedCentralCrossRefGoogle Scholar
  134. Kawalekar OU, O’connor RS, Fraietta JA, Guo L, Mcgettigan SE, Posey AD Jr, Patel PR, Guedan S, Scholler J, Keith B, Snyder NW, Blair IA, Milone MC, June CH (2016) Distinct signaling of Coreceptors regulates specific metabolism pathways and impacts memory development in CAR T cells. Immunity 44:380–390PubMedCrossRefGoogle Scholar
  135. Kawamata S, Hori T, Imura A, Takaori-Kondo A, Uchiyama T (1998) Activation of OX40 signal transduction pathways leads to tumor necrosis factor receptor-associated factor (TRAF) 2- and TRAF5-mediated NF-kappaB activation. J Biol Chem 273:5808–5814PubMedCrossRefGoogle Scholar
  136. Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA, Koulmanda M, Freeman GJ, Sayegh MH, Sharpe AH (2006) Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med 203:883–895PubMedPubMedCentralCrossRefGoogle Scholar
  137. Kim EY, Teh HS (2001) TNF type 2 receptor (p75) lowers the threshold of T cell activation. J Immunol 167:6812–6820PubMedCrossRefPubMedCentralGoogle Scholar
  138. Kim EY, Teh HS (2004) Critical role of TNF receptor type-2 (p75) as a costimulator for IL-2 induction and T cell survival: a functional link to CD28. J Immunol 173:4500–4509PubMedCrossRefGoogle Scholar
  139. Kim HH, Tharayil M, Rudd CE (1998) Growth factor receptor-bound protein 2 SH2/SH3 domain binding to CD28 and its role in co-signaling. J Biol Chem 273:296–301PubMedCrossRefGoogle Scholar
  140. Kim JD, Choi BK, Bae JS, Lee UH, Han IS, Lee HW, Youn BS, Vinay DS, Kwon BS (2003a) Cloning and characterization of GITR ligand. Genes Immun 4:564–569PubMedCrossRefPubMedCentralGoogle Scholar
  141. Kim MY, Gaspal FM, Wiggett HE, Mcconnell FM, Gulbranson-Judge A, Raykundalia C, Walker LS, Goodall MD, Lane PJ (2003b) CD4(+)CD3(−) accessory cells costimulate primed CD4 T cells through OX40 and CD30 at sites where T cells collaborate with B cells. Immunity 18:643–654PubMedCrossRefPubMedCentralGoogle Scholar
  142. Kim EY, Priatel JJ, Teh SJ, Teh HS (2006) TNF receptor type 2 (p75) functions as a costimulator for antigen-driven T cell responses in vivo. J Immunol 176:1026–1035PubMedCrossRefPubMedCentralGoogle Scholar
  143. Kim IK, Kim BS, Koh CH, Seok JW, Park JS, Shin KS, Bae EA, Lee GE, Jeon H, Cho J, Jung Y, Han D, Kwon BS, Lee HY, Chung Y, Kang CY (2015) Glucocorticoid-induced tumor necrosis factor receptor-related protein co-stimulation facilitates tumor regression by inducing IL-9-producing helper T cells. Nat Med 21:1010–1017PubMedCrossRefPubMedCentralGoogle Scholar
  144. King PD, Sadra A, Teng JM, Xiao-Rong L, Han A, Selvakumar A, August A, Dupont B (1997) Analysis of CD28 cytoplasmic tail tyrosine residues as regulators and substrates for the protein tyrosine kinases, EMT and LCK. J Immunol 158:580–590PubMedPubMedCentralGoogle Scholar
  145. Klein Geltink RI, O’sullivan D, Corrado M, Bremser A, Buck MD, Buescher JM, Firat E, Zhu X, Niedermann G, Caputa G, Kelly B, Warthorst U, Rensing-Ehl A, Kyle RL, Vandersarren L, Curtis JD, Patterson AE, Lawless S, Grzes K, Qiu J, Sanin DE, Kretz O, Huber TB, Janssens S, Lambrecht BN, Rambold AS, Pearce EJ, Pearce EL (2017) Mitochondrial priming by CD28. CellGoogle Scholar
  146. Kong KF, Yokosuka T, Canonigo-Balancio AJ, Isakov N, Saito T, Altman A (2011) A motif in the V3 domain of the kinase PKC-theta determines its localization in the immunological synapse and functions in T cells via association with CD28. Nat Immunol 12:1105–1112PubMedPubMedCentralCrossRefGoogle Scholar
  147. Kong KF, Fu G, Zhang Y, Yokosuka T, Casas J, Canonigo-Balancio AJ, Becart S, Kim G, Yates JR 3rd, Kronenberg M, Saito T, Gascoigne NR, Altman A (2014) Protein kinase C-eta controls CTLA-4-mediated regulatory T cell function. Nat Immunol 15:465–472PubMedPubMedCentralCrossRefGoogle Scholar
  148. Kouo T, Huang L, Pucsek AB, Cao M, Solt S, Armstrong T, Jaffee E (2015) Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of Plasmacytoid dendritic cells. Cancer Immunol Res 3:412–423PubMedPubMedCentralCrossRefGoogle Scholar
  149. Kurtulus S, Sakuishi K, Ngiow SF, Joller N, Tan DJ, Teng MW, Smyth MJ, Kuchroo VK, Anderson AC (2015) TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest 125:4053–4062PubMedPubMedCentralCrossRefGoogle Scholar
  150. Kwon BS, Tan KB, Ni J, Oh KO, Lee ZH, Kim KK, Kim YJ, Wang S, Gentz R, Yu GL, Harrop J, Lyn SD, Silverman C, Porter TG, Truneh A, Young PR (1997) A newly identified member of the tumor necrosis factor receptor superfamily with a wide tissue distribution and involvement in lymphocyte activation. J Biol Chem 272:14272–14276PubMedCrossRefGoogle Scholar
  151. Kwon B, Yu KY, Ni J, Yu GL, Jang IK, Kim YJ, Xing L, Liu D, Wang SX, Kwon BS (1999) Identification of a novel activation-inducible protein of the tumor necrosis factor receptor superfamily and its ligand. J Biol Chem 274:6056–6061PubMedCrossRefGoogle Scholar
  152. Lakshmikanth T, Burke S, Ali TH, Kimpfler S, Ursini F, Ruggeri L, Capanni M, Umansky V, Paschen A, Sucker A, Pende D, Groh V, Biassoni R, Hoglund P, Kato M, Shibuya K, Schadendorf D, Anichini A, Ferrone S, Velardi A, Karre K, Shibuya A, Carbone E, Colucci F (2009) NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. J Clin Invest 119:1251–1263PubMedPubMedCentralCrossRefGoogle Scholar
  153. Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, Iwai Y, Long AJ, Brown JA, Nunes R, Greenfield EA, Bourque K, Boussiotis VA, Carter LL, Carreno BM, Malenkovich N, Nishimura H, Okazaki T, Honjo T, Sharpe AH, Freeman GJ (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268PubMedPubMedCentralCrossRefGoogle Scholar
  154. Leavenworth JW, Verbinnen B, Yin J, Huang H, Cantor H (2015) A p85alpha-osteopontin axis couples the receptor ICOS to sustained Bcl-6 expression by follicular helper and regulatory T cells. Nat Immunol 16:96–106PubMedCrossRefPubMedCentralGoogle Scholar
  155. Lee SY, Lee SY, Kandala G, Liou ML, Liou HC, Choi Y (1996) CD30/TNF receptor-associated factor interaction: NF-kappa B activation and binding specificity. Proc Natl Acad Sci U S A 93:9699–9703PubMedPubMedCentralCrossRefGoogle Scholar
  156. Lee SY, Lee SY, Choi Y (1997) TRAF-interacting protein (TRIP): a novel component of the tumor necrosis factor receptor (TNFR)- and CD30-TRAF signaling complexes that inhibits TRAF2-mediated NF-kappaB activation. J Exp Med 185:1275–1285PubMedPubMedCentralCrossRefGoogle Scholar
  157. Lee KM, Chuang E, Griffin M, Khattri R, Hong DK, Zhang W, Straus D, Samelson LE, Thompson CB, Bluestone JA (1998) Molecular basis of T cell inactivation by CTLA-4. Science 282:2263–2266PubMedPubMedCentralCrossRefGoogle Scholar
  158. Lee HW, Park SJ, Choi BK, Kim HH, Nam KO, Kwon BS (2002) 4-1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1. J Immunol 169:4882–4888CrossRefGoogle Scholar
  159. Lee J, Su EW, Zhu C, Hainline S, Phuah J, Moroco JA, Smithgall TE, Kuchroo VK, Kane LP (2011) Phosphotyrosine-dependent coupling of Tim-3 to T-cell receptor signaling pathways. Mol Cell Biol 31:3963–3974PubMedPubMedCentralCrossRefGoogle Scholar
  160. Lens SM, Baars PA, Hooibrink B, van Oers MH, van Lier RA (1997) Antigen-presenting cell-derived signals determine expression levels of CD70 on primed T cells. Immunology 90:38–45PubMedPubMedCentralCrossRefGoogle Scholar
  161. Li CR, Berg LJ (2005) Itk is not essential for CD28 signaling in naive T cells. J Immunol 174:4475–4479PubMedCrossRefPubMedCentralGoogle Scholar
  162. Li N, Wang Y, Forbes K, Vignali KM, Heale BS, Saftig P, Hartmann D, Black RA, Rossi JJ, Blobel CP, Dempsey PJ, Workman CJ, Vignali DA (2007) Metalloproteases regulate T-cell proliferation and effector function via LAG-3. EMBO J 26:494–504PubMedPubMedCentralCrossRefGoogle Scholar
  163. Li M, Xia P, Du Y, Liu S, Huang G, Chen J, Zhang H, Hou N, Cheng X, Zhou L, Li P, Yang X, Fan Z (2014) T-cell immunoglobulin and ITIM domain (TIGIT) receptor/poliovirus receptor (PVR) ligand engagement suppresses interferon-gamma production of natural killer cells via beta-arrestin 2-mediated negative signaling. J Biol Chem 289:17647–17657PubMedPubMedCentralCrossRefGoogle Scholar
  164. Liang Y, Cucchetti M, Roncagalli R, Yokosuka T, Malzac A, Bertosio E, Imbert J, Nijman IJ, Suchanek M, Saito T, Wulfing C, Malissen B, Malissen M (2013) The lymphoid lineage-specific actin-uncapping protein Rltpr is essential for costimulation via CD28 and the development of regulatory T cells. Nat Immunol 14:858–866CrossRefGoogle Scholar
  165. Lin X, O’mahony A, Mu Y, Geleziunas R, Greene WC (2000) Protein kinase C-theta participates in NF-kappaB activation induced by CD3-CD28 costimulation through selective activation of IkappaB kinase beta. Mol Cell Biol 20:2933–2940PubMedPubMedCentralCrossRefGoogle Scholar
  166. Lindstein T, June CH, Ledbetter JA, Stella G, Thompson CB (1989) Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway. Science 244:339–343PubMedPubMedCentralCrossRefGoogle Scholar
  167. Lines JL, Pantazi E, Mak J, Sempere LF, Wang L, O’connell S, Ceeraz S, Suriawinata AA, Yan S, Ernstoff MS, Noelle R (2014) VISTA is an immune checkpoint molecule for human T cells. Cancer Res 74:1924–1932PubMedPubMedCentralCrossRefGoogle Scholar
  168. Lio CW, Dodson LF, Deppong CM, Hsieh CS, Green JM (2010) CD28 facilitates the generation of Foxp3(−) cytokine responsive regulatory T cell precursors. J Immunol 184:6007–6013PubMedPubMedCentralCrossRefGoogle Scholar
  169. Liu FT, Giustiniani J, Farren T, Jia L, Bensussan A, Gribben JG, Agrawal SG (2010) CD160 signaling mediates PI3K-dependent survival and growth signals in chronic lymphocytic leukemia. Blood 115:3079–3088PubMedPubMedCentralCrossRefGoogle Scholar
  170. Liu S, Zhang H, Li M, Hu D, Li C, Ge B, Jin B, Fan Z (2013) Recruitment of Grb2 and SHIP1 by the ITT-like motif of TIGIT suppresses granule polarization and cytotoxicity of NK cells. Cell Death Differ 20:456–464PubMedCrossRefPubMedCentralGoogle Scholar
  171. Liu J, Yuan Y, Chen W, Putra J, Suriawinata AA, Schenk AD, Miller HE, Guleria I, Barth RJ, Huang YH, Wang L (2015) Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. Proc Natl Acad Sci U S A 112:6682–6687PubMedPubMedCentralCrossRefGoogle Scholar
  172. Lo B, Zhang K, Lu W, Zheng L, Zhang Q, Kanellopoulou C, Zhang Y, Liu Z, Fritz JM, Marsh R, Husami A, Kissell D, Nortman S, Chaturvedi V, Haines H, Young LR, Mo J, Filipovich AH, Bleesing JJ, Mustillo P, Stephens M, Rueda CM, Chougnet CA, Hoebe K, Mcelwee J, Hughes JD, Karakoc-Aydiner E, Matthews HF, Price S, Su HC, Rao VK, Lenardo MJ, Jordan MB (2015) AUTOIMMUNE DISEASE. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science 349:436–440CrossRefGoogle Scholar
  173. Long M, Park SG, Strickland I, Hayden MS, Ghosh S (2009) Nuclear factor-kappaB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor. Immunity 31:921–931CrossRefGoogle Scholar
  174. Long SA, Cerosaletti K, Bollyky PL, Tatum M, Shilling H, Zhang S, Zhang ZY, Pihoker C, Sanda S, Greenbaum C, Buckner JH (2010) Defects in IL-2R signaling contribute to diminished maintenance of FOXP3 expression in CD4(+)CD25(+) regulatory T-cells of type 1 diabetic subjects. Diabetes 59:407–415PubMedCrossRefPubMedCentralGoogle Scholar
  175. Lopez-Herrera G, Tampella G, Pan-Hammarstrom Q, Herholz P, Trujillo-Vargas CM, Phadwal K, Simon AK, Moutschen M, Etzioni A, Mory A, Srugo I, Melamed D, Hultenby K, Liu C, Baronio M, Vitali M, Philippet P, Dideberg V, Aghamohammadi A, Rezaei N, Enright V, Du L, Salzer U, Eibel H, Pfeifer D, Veelken H, Stauss H, Lougaris V, Plebani A, Gertz EM, Schaffer AA, Hammarstrom L, Grimbacher B (2012) Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. Am J Hum Genet 90:986–1001PubMedPubMedCentralCrossRefGoogle Scholar
  176. Loyet KM, Ouyang W, Eaton DL, Stults JT (2005) Proteomic profiling of surface proteins on Th1 and Th2 cells. J Proteome Res 4:400–409PubMedCrossRefGoogle Scholar
  177. Madireddi S, Eun SY, Mehta AK, Birta A, Zajonc DM, Niki T, Hirashima M, Podack ER, Schreiber TH, Croft M (2017) Regulatory T cell-mediated suppression of inflammation induced by DR3 signaling is dependent on Galectin-9. J Immunol 199:2721–2728PubMedPubMedCentralCrossRefGoogle Scholar
  178. Maeda M, Carpenito C, Russell RC, Dasanjh J, Veinotte LL, Ohta H, Yamamura T, Tan R, Takei F (2005) Murine CD160, Ig-like receptor on NK cells and NKT cells, recognizes classical and nonclassical MHC class I and regulates NK cell activation. J Immunol 175:4426–4432PubMedCrossRefGoogle Scholar
  179. Magri G, Muntasell A, Romo N, Saez-Borderias A, Pende D, Geraghty DE, Hengel H, Angulo A, Moretta A, Lopez-Botet M (2011) NKp46 and DNAM-1 NK-cell receptors drive the response to human cytomegalovirus-infected myeloid dendritic cells overcoming viral immune evasion strategies. Blood 117:848–856PubMedCrossRefGoogle Scholar
  180. Maiza H, Leca G, Mansur IG, Schiavon V, Boumsell L, Bensussan A (1993) A novel 80-kD cell surface structure identifies human circulating lymphocytes with natural killer activity. J Exp Med 178:1121–1126PubMedCrossRefGoogle Scholar
  181. Mao X, Ou MT, Karuppagounder SS, Kam TI, Yin X, Xiong Y, Ge P, Umanah GE, Brahmachari S, Shin JH, Kang HC, Zhang J, Xu J, Chen R, Park H, Andrabi SA, Kang SU, Goncalves RA, Liang Y, Zhang S, Qi C, Lam S, Keiler JA, Tyson J, Kim D, Panicker N, Yun SP, Workman CJ, Vignali DA, Dawson VL, Ko HS, Dawson TM (2016) Pathological alpha-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science 353Google Scholar
  182. Marengere LE, Waterhouse P, Duncan GS, Mittrucker HW, Feng GS, Mak TW (1996) Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science 272:1170–1173PubMedPubMedCentralCrossRefGoogle Scholar
  183. Marsters SA, Ayres TM, Skubatch M, Gray CL, Rothe M, Ashkenazi A (1997) Herpesvirus entry mediator, a member of the tumor necrosis factor receptor (TNFR) family, interacts with members of the TNFR-associated factor family and activates the transcription factors NF-kappaB and AP-1. J Biol Chem 272:14029–14032PubMedCrossRefGoogle Scholar
  184. Mauri DN, Ebner R, Montgomery RI, Kochel KD, Cheung TC, YU GL, Ruben S, Murphy M, Eisenberg RJ, Cohen GH, Spear PG, Ware CF (1998) LIGHT, a new member of the TNF superfamily, and lymphotoxin alpha are ligands for herpesvirus entry mediator. Immunity 8:21–30PubMedCrossRefGoogle Scholar
  185. Mchugh RS, Whitters MJ, Piccirillo CA, Young DA, Shevach EM, Collins M, Byrne MC (2002) CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16:311–323PubMedCrossRefGoogle Scholar
  186. Mead KI, Zheng Y, Manzotti CN, Perry LC, Liu MK, Burke F, Powner DJ, Wakelam MJ, Sansom DM (2005) Exocytosis of CTLA-4 is dependent on phospholipase D and ADP ribosylation factor-1 and stimulated during activation of regulatory T cells. J Immunol 174:4803–4811PubMedCrossRefGoogle Scholar
  187. Meyer D, Seth S, Albrecht J, Maier MK, DU Pasquier L, Ravens I, Dreyer L, Burger R, Gramatzki M, Schwinzer R, Kremmer E, Foerster R, Bernhardt G (2009) CD96 interaction with CD155 via its first Ig-like domain is modulated by alternative splicing or mutations in distal Ig-like domains. J Biol Chem 284:2235–2244PubMedCrossRefGoogle Scholar
  188. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, Maciver NJ, Mason EF, Sullivan SA, Nichols AG, Rathmell JC (2011) Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 186:3299–3303PubMedPubMedCentralCrossRefGoogle Scholar
  189. Migone TS, Zhang J, Luo X, Zhuang L, Chen C, Hu B, Hong JS, Perry JW, Chen SF, Zhou JX, Cho YH, Ullrich S, Kanakaraj P, Carrell J, Boyd E, Olsen HS, Hu G, Pukac L, Liu D, Ni J, Kim S, Gentz R, Feng P, Moore PA, Ruben SM, Wei P (2002) TL1A is a TNF-like ligand for DR3 and TR6/DcR3 and functions as a T cell costimulator. Immunity 16:479–492PubMedCrossRefGoogle Scholar
  190. Mir SS, Richter BW, Duckett CS (2000) Differential effects of CD30 activation in anaplastic large cell lymphoma and Hodgkin disease cells. Blood 96:4307–4312PubMedCrossRefGoogle Scholar
  191. Moll M, Kuylenstierna C, Gonzalez VD, Andersson SK, Bosnjak L, Sonnerborg A, Quigley MF, Sandberg JK (2009) Severe functional impairment and elevated PD-1 expression in CD1d-restricted NKT cells retained during chronic HIV-1 infection. Eur J Immunol 39:902–911PubMedPubMedCentralCrossRefGoogle Scholar
  192. Montgomery RI, Warner MS, Lum BJ, Spear PG (1996) Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 87:427–436PubMedCrossRefGoogle Scholar
  193. Mousavi SF, Soroosh P, Takahashi T, Yoshikai Y, Shen H, Lefrancois L, Borst J, Sugamura K, Ishii N (2008) OX40 costimulatory signals potentiate the memory commitment of effector CD8+ T cells. J Immunol 181:5990–6001PubMedPubMedCentralCrossRefGoogle Scholar
  194. Murata K, Ishii N, Takano H, Miura S, Ndhlovu LC, Nose M, Noda T, Sugamura K (2000) Impairment of antigen-presenting cell function in mice lacking expression of OX40 ligand. J Exp Med 191:365–374PubMedPubMedCentralCrossRefGoogle Scholar
  195. Muscolini M, Sajeva A, Caristi S, Tuosto L (2011) A novel association between filamin A and NF-kappaB inducing kinase couples CD28 to inhibitor of NF-kappaB kinase alpha and NF-kappaB activation. Immunol Lett 136:203–212PubMedCrossRefGoogle Scholar
  196. Muscolini M, Camperio C, Porciello N, Caristi S, Capuano C, Viola A, Galandrini R, Tuosto L (2015) Phosphatidylinositol 4-phosphate 5-kinase alpha and Vav1 mutual cooperation in CD28-mediated actin remodeling and signaling functions. J Immunol 194:1323–1333PubMedCrossRefGoogle Scholar
  197. Nabekura T, Shibuya K, Takenaka E, Kai H, Shibata K, Yamashita Y, Harada K, Tahara-Hanaoka S, Honda S, Shibuya A (2010) Critical role of DNAX accessory molecule-1 (DNAM-1) in the development of acute graft-versus-host disease in mice. Proc Natl Acad Sci U S A 107:18593–18598PubMedPubMedCentralCrossRefGoogle Scholar
  198. Nabekura T, Kanaya M, Shibuya A, Fu G, Gascoigne NR, Lanier LL (2014) Costimulatory molecule DNAM-1 is essential for optimal differentiation of memory natural killer cells during mouse cytomegalovirus infection. Immunity 40:225–234PubMedPubMedCentralCrossRefGoogle Scholar
  199. Nakano H, Sakon S, Koseki H, Takemori T, Tada K, Matsumoto M, Munechika E, Sakai T, Shirasawa T, Akiba H, Kobata T, Santee SM, Ware CF, Rennert PD, Taniguchi M, Yagita H, Okumura K (1999) Targeted disruption of Traf5 gene causes defects in CD40- and CD27-mediated lymphocyte activation. Proc Natl Acad Sci U S A 96:9803–9808PubMedPubMedCentralCrossRefGoogle Scholar
  200. Nakayama M, Akiba H, Takeda K, Kojima Y, Hashiguchi M, Azuma M, Yagita H, Okumura K (2009) Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood 113:3821–3830PubMedCrossRefGoogle Scholar
  201. Nam KO, Kang H, Shin SM, Cho KH, Kwon B, Kwon BS, Kim SJ, Lee HW (2005) Cross-linking of 4-1BB activates TCR-signaling pathways in CD8+ T lymphocytes. J Immunol 174:1898–1905PubMedCrossRefGoogle Scholar
  202. Nikolova M, Marie-Cardine A, Boumsell L, Bensussan A (2002) BY55/CD160 acts as a co-receptor in TCR signal transduction of a human circulating cytotoxic effector T lymphocyte subset lacking CD28 expression. Int Immunol 14:445–451PubMedCrossRefGoogle Scholar
  203. Nocentini G, Giunchi L, Ronchetti S, Krausz LT, Bartoli A, Moraca R, Migliorati G, Riccardi C (1997) A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis. Proc Natl Acad Sci U S A 94:6216–6221PubMedPubMedCentralCrossRefGoogle Scholar
  204. Nurieva R, Thomas S, Nguyen T, Martin-Orozco N, Wang Y, Kaja MK, Yu XZ, Dong C (2006) T-cell tolerance or function is determined by combinatorial costimulatory signals. EMBO J 25:2623–2633PubMedPubMedCentralCrossRefGoogle Scholar
  205. Oaks MK, Hallett KM, Penwell RT, Stauber EC, Warren SJ, Tector AJ (2000) A native soluble form of CTLA-4. Cell Immunol 201:144–153PubMedCrossRefGoogle Scholar
  206. Odegard JM, Marks BR, Diplacido LD, Poholek AC, Kono DH, Dong C, Flavell RA, Craft J (2008) ICOS-dependent extrafollicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity. J Exp Med 205:2873–2886PubMedPubMedCentralCrossRefGoogle Scholar
  207. Oderup C, Cederbom L, Makowska A, Cilio CM, Ivars F (2006) Cytotoxic T lymphocyte antigen-4-dependent down-modulation of costimulatory molecules on dendritic cells in CD4+ CD25+ regulatory T-cell-mediated suppression. Immunology 118:240–249PubMedPubMedCentralCrossRefGoogle Scholar
  208. Ogawa S, Watanabe M, Sakurai Y, Inutake Y, Watanabe S, Tai X, Abe R (2013) CD28 signaling in primary CD4(+) T cells: identification of both tyrosine phosphorylation-dependent and phosphorylation-independent pathways. Int Immunol 25:671–681PubMedCrossRefGoogle Scholar
  209. Okazaki T, Maeda A, Nishimura H, Kurosaki T, Honjo T (2001) PD-1 immunoreceptor inhibits B cell receptor-mediated signaling by recruiting src homology 2-domain-containing tyrosine phosphatase 2 to phosphotyrosine. Proc Natl Acad Sci U S A 98:13866–13871PubMedPubMedCentralCrossRefGoogle Scholar
  210. Okkenhaug K, Rottapel R (1998) Grb2 forms an inducible protein complex with CD28 through a Src homology 3 domain-proline interaction. J Biol Chem 273:21194–21202PubMedCrossRefGoogle Scholar
  211. Okkenhaug K, Wu L, Garza KM, La Rose J, Khoo W, Odermatt B, Mak TW, Ohashi PS, Rottapel R (2001) A point mutation in CD28 distinguishes proliferative signals from survival signals. Nat Immunol 2:325–332PubMedCrossRefGoogle Scholar
  212. Otsuki N, Kamimura Y, Hashiguchi M, Azuma M (2006) Expression and function of the B and T lymphocyte attenuator (BTLA/CD272) on human T cells. Biochem Biophys Res Commun 344:1121–1127PubMedCrossRefGoogle Scholar
  213. Pagan AJ, Pepper M, Chu HH, Green JM, Jenkins MK (2012) CD28 promotes CD4+ T cell clonal expansion during infection independently of its YMNM and PYAP motifs. J Immunol 189:2909–2917PubMedPubMedCentralCrossRefGoogle Scholar
  214. Pages F, Ragueneau M, Rottapel R, Truneh A, Nunes J, Imbert J, Olive D (1994) Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling. Nature 369:327–329CrossRefGoogle Scholar
  215. Pakala SV, Bansal-Pakala P, Halteman BS, Croft M (2004) Prevention of diabetes in NOD mice at a late stage by targeting OX40/OX40 ligand interactions. Eur J Immunol 34:3039–3046PubMedCrossRefGoogle Scholar
  216. Park YC, Burkitt V, Villa AR, Tong L, Wu H (1999) Structural basis for self-association and receptor recognition of human TRAF2. Nature 398:533–538PubMedCrossRefGoogle Scholar
  217. Parry RV, Rumbley CA, Vandenberghe LH, June CH, Riley JL (2003) CD28 and inducible costimulatory protein Src homology 2 binding domains show distinct regulation of phosphatidylinositol 3-kinase, Bcl-xL, and IL-2 expression in primary human CD4 T lymphocytes. J Immunol 171:166–174PubMedCrossRefGoogle Scholar
  218. Parry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, Linsley PS, Thompson CB, Riley JL (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25:9543–9553PubMedPubMedCentralCrossRefGoogle Scholar
  219. Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis VA (2012) Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci Signal 5:ra46PubMedPubMedCentralCrossRefGoogle Scholar
  220. Patsoukis N, Li L, Sari D, Petkova V, Boussiotis VA (2013) PD-1 increases PTEN phosphatase activity while decreasing PTEN protein stability by inhibiting casein kinase 2. Mol Cell Biol 33:3091–3098PubMedPubMedCentralCrossRefGoogle Scholar
  221. Patsoukis N, Bardhan K, Chatterjee P, Sari D, Liu B, Bell LN, Karoly ED, Freeman GJ, Petkova V, Seth P, Li L, Boussiotis VA (2015) PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat Commun 6:6692PubMedPubMedCentralCrossRefGoogle Scholar
  222. Pedros C, Zhang Y, Hu JK, Choi YS, Canonigo-Balancio AJ, Yates JR 3rd, Altman A, Crotty S, Kong KF (2016) A TRAF-like motif of the inducible costimulator ICOS controls development of germinal center TFH cells via the kinase TBK1. Nat Immunol 17:825–833PubMedPubMedCentralCrossRefGoogle Scholar
  223. Pei Y, Zhu P, Dang Y, Wu J, Yang X, Wan B, Liu JO, Yi Q, Yu L (2008) Nuclear export of NF90 to stabilize IL-2 mRNA is mediated by AKT-dependent phosphorylation at Ser647 in response to CD28 costimulation. J Immunol 180:222–229PubMedCrossRefGoogle Scholar
  224. Pobezinskaya YL, Choksi S, Morgan MJ, Cao X, Liu ZG (2011) The adaptor protein TRADD is essential for TNF-like ligand 1A/death receptor 3 signaling. J Immunol 186:5212–5216PubMedPubMedCentralCrossRefGoogle Scholar
  225. Porquet N, Poirier A, Houle F, Pin AL, Gout S, Tremblay PL, Paquet ER, Klinck R, Auger FA, Huot J (2011) Survival advantages conferred to colon cancer cells by E-selectin-induced activation of the PI3K-NFkappaB survival axis downstream of death receptor-3. BMC Cancer 11:285PubMedPubMedCentralCrossRefGoogle Scholar
  226. Prasad KV, Cai YC, Raab M, Duckworth B, Cantley L, Shoelson SE, Rudd CE (1994) T-cell antigen CD28 interacts with the lipid kinase phosphatidylinositol 3-kinase by a cytoplasmic Tyr(P)-met-Xaa-met motif. Proc Natl Acad Sci U S A 91:2834–2838PubMedPubMedCentralCrossRefGoogle Scholar
  227. Prasad KV, Ao Z, Yoon Y, Wu MX, Rizk M, Jacquot S, Schlossman SF (1997) CD27, a member of the tumor necrosis factor receptor family, induces apoptosis and binds to Siva, a proapoptotic protein. Proc Natl Acad Sci U S A 94:6346–6351PubMedPubMedCentralCrossRefGoogle Scholar
  228. del Prete G, de Carli M, Almerigogna F, Daniel CK, D’elios MM, Zancuoghi G, Vinante F, Pizzolo G, Romagnani S (1995) Preferential expression of CD30 by human CD4+ T cells producing Th2-type cytokines. FASEB J 9:81–86PubMedCrossRefGoogle Scholar
  229. Py B, Slomianny C, Auberger P, Petit PX, Benichou S (2004) Siva-1 and an alternative splice form lacking the death domain, Siva-2, similarly induce apoptosis in T lymphocytes via a caspase-dependent mitochondrial pathway. J Immunol 172:4008–4017PubMedCrossRefGoogle Scholar
  230. Quigley M, Pereyra F, Nilsson B, Porichis F, Fonseca C, Eichbaum Q, Julg B, Jesneck JL, Brosnahan K, Imam S, Russell K, Toth I, Piechocka-Trocha A, Dolfi D, Angelosanto J, Crawford A, Shin H, Kwon DS, Zupkosky J, Francisco L, Freeman GJ, Wherry EJ, Kaufmann DE, Walker BD, Ebert B, Haining WN (2010) Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF. Nat Med 16:1147–1151PubMedPubMedCentralCrossRefGoogle Scholar
  231. Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, Schmidt EM, Baker J, Jeffery LE, Kaur S, Briggs Z, Hou TZ, Futter CE, Anderson G, Walker LS, Sansom DM (2011) Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332:600–603PubMedPubMedCentralCrossRefGoogle Scholar
  232. Raab M, Cai YC, Bunnell SC, Heyeck SD, Berg LJ, Rudd CE (1995) p56Lck and p59Fyn regulate CD28 binding to phosphatidylinositol 3-kinase, growth factor receptor-bound protein GRB-2, and T cell-specific protein-tyrosine kinase ITK: implications for T-cell costimulation. Proc Natl Acad Sci U S A 92:8891–8895PubMedPubMedCentralCrossRefGoogle Scholar
  233. Rabot M, EL Costa H, Polgar B, Marie-Cardine A, Aguerre-Girr M, Barakonyi A, Valitutti S, Bensussan A, LE Bouteiller P (2007) CD160-activating NK cell effector functions depend on the phosphatidylinositol 3-kinase recruitment. Int Immunol 19:401–409PubMedCrossRefPubMedCentralGoogle Scholar
  234. Rangachari M, Zhu C, Sakuishi K, Xiao S, Karman J, Chen A, Angin M, Wakeham A, Greenfield EA, Sobel RA, Okada H, Mckinnon PJ, Mak TW, Addo MM, Anderson AC, Kuchroo VK (2012) Bat3 promotes T cell responses and autoimmunity by repressing Tim-3-mediated cell death and exhaustion. Nat Med 18:1394–1400PubMedPubMedCentralCrossRefGoogle Scholar
  235. Ritthipichai K, Haymaker C, Martinez-Paniagua M, Aschenbrenner A, Yi X, Zhang M, Kale C, Hailemichael Y, Overwijk WW, Vence L, Roszik J, Varadarajan N, Nurieva R, Radvanyi LG, Hwu P, Bernatchez C (2017) Multifaceted role of BTLA in the control of CD8+ T cell fate after antigen encounter. Clin Cancer ResGoogle Scholar
  236. Rodriguez M, Cabal-Hierro L, Carcedo MT, Iglesias JM, Artime N, Darnay BG, Lazo PS (2011) NF-kappaB signal triggering and termination by tumor necrosis factor receptor 2. J Biol Chem 286:22814–22824PubMedPubMedCentralCrossRefGoogle Scholar
  237. Rogers PR, Song J, Gramaglia I, Killeen N, Croft M (2001) OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity 15:445–455PubMedCrossRefPubMedCentralGoogle Scholar
  238. Roncagalli R, Cucchetti M, Jarmuzynski N, Gregoire C, Bergot E, Audebert S, Baudelet E, Menoita MG, Joachim A, Durand S, Suchanek M, Fiore F, Zhang L, Liang Y, Camoin L, Malissen M, Malissen B (2016) The scaffolding function of the RLTPR protein explains its essential role for CD28 co-stimulation in mouse and human T cells. J Exp Med 213:2437–2457PubMedPubMedCentralCrossRefGoogle Scholar
  239. Ronchetti S, Nocentini G, Bianchini R, Krausz LT, Migliorati G, Riccardi C (2007) Glucocorticoid-induced TNFR-related protein lowers the threshold of CD28 costimulation in CD8+ T cells. J Immunol 179:5916–5926PubMedCrossRefGoogle Scholar
  240. Rothe M, Pan MG, Henzel WJ, Ayres TM, Goeddel DV (1995) The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell 83:1243–1252PubMedCrossRefPubMedCentralGoogle Scholar
  241. Ruan Q, Kameswaran V, Tone Y, Li L, Liou HC, Greene MI, Tone M, Chen YH (2009) Development of Foxp3(+) regulatory t cells is driven by the c-Rel enhanceosome. Immunity 31:932–940PubMedPubMedCentralCrossRefGoogle Scholar
  242. Sabatos CA, Chakravarti S, Cha E, Schubart A, Sanchez-Fueyo A, Zheng XX, Coyle AJ, Strom TB, Freeman GJ, Kuchroo VK (2003) Interaction of Tim-3 and Tim-3 ligand regulates T helper type 1 responses and induction of peripheral tolerance. Nat Immunol 4:1102–1110PubMedCrossRefGoogle Scholar
  243. Sabbagh L, Pulle G, Liu Y, Tsitsikov EN, Watts TH (2008) ERK-dependent Bim modulation downstream of the 4-1BB-TRAF1 signaling axis is a critical mediator of CD8 T cell survival in vivo. J Immunol 180:8093–8101PubMedCrossRefGoogle Scholar
  244. Sabbagh L, Andreeva D, Laramee GD, Oussa NA, Lew D, Bisson N, Soumounou Y, Pawson T, Watts TH (2013) Leukocyte-specific protein 1 links TNF receptor-associated factor 1 to survival signaling downstream of 4-1BB in T cells. J Leukoc Biol 93:713–721PubMedCrossRefGoogle Scholar
  245. Sadra A, Cinek T, Arellano JL, Shi J, Truitt KE, Imboden JB (1999) Identification of tyrosine phosphorylation sites in the CD28 cytoplasmic domain and their role in the costimulation of Jurkat T cells. J Immunol 162:1966–1973PubMedGoogle Scholar
  246. Sanchez-Fueyo A, Tian J, Picarella D, Domenig C, Zheng XX, Sabatos CA, Manlongat N, Bender O, Kamradt T, Kuchroo VK, Gutierrez-Ramos JC, Coyle AJ, Strom TB (2003) Tim-3 inhibits T helper type 1-mediated auto- and alloimmune responses and promotes immunological tolerance. Nat Immunol 4:1093–1101PubMedCrossRefGoogle Scholar
  247. Sanchez-Lockhart M, Miller J (2006) Engagement of CD28 outside of the immunological synapse results in up-regulation of IL-2 mRNA stability but not IL-2 transcription. J Immunol 176:4778–4784PubMedCrossRefGoogle Scholar
  248. Sanchez-Lockhart M, Marin E, Graf B, Abe R, Harada Y, Sedwick CE, Miller J (2004) Cutting edge: CD28-mediated transcriptional and posttranscriptional regulation of IL-2 expression are controlled through different signaling pathways. J Immunol 173:7120–7124PubMedCrossRefGoogle Scholar
  249. Saoulli K, Lee SY, Cannons JL, Yeh WC, Santana A, Goldstein MD, Bangia N, Debenedette MA, Mak TW, Choi Y, Watts TH (1998) CD28-independent, TRAF2-dependent costimulation of resting T cells by 4-1BB ligand. J Exp Med 187:1849–1862PubMedPubMedCentralCrossRefGoogle Scholar
  250. Sarmento OF, Svingen PA, Xiong Y, Sun Z, Bamidele AO, Mathison AJ, Smyrk TC, Nair AA, Gonzalez MM, Sagstetter MR, Baheti S, Mcgovern DP, Friton JJ, Papadakis KA, Gautam G, Xavier RJ, Urrutia RA, Faubion WA (2017) The role of the histone Methyltransferase enhancer of Zeste homolog 2 (EZH2) in the Pathobiological mechanisms underlying inflammatory bowel disease (IBD). J Biol Chem 292:706–722PubMedPubMedCentralCrossRefGoogle Scholar
  251. Saunders PA, Hendrycks VR, Lidinsky WA, Woods ML (2005) PD-L2:PD-1 involvement in T cell proliferation, cytokine production, and integrin-mediated adhesion. Eur J Immunol 35:3561–3569PubMedCrossRefGoogle Scholar
  252. Schneider H, Rudd CE (2008) CD28 and Grb-2, relative to gads or Grap, preferentially co-operate with Vav1 in the activation of NFAT/AP-1 transcription. Biochem Biophys Res Commun 369:616–621PubMedPubMedCentralCrossRefGoogle Scholar
  253. Schneider H, Martin M, Agarraberes FA, Yin L, Rapoport I, Kirchhausen T, Rudd CE (1999) Cytolytic T lymphocyte-associated antigen-4 and the TCR zeta/CD3 complex, but not CD28, interact with clathrin adaptor complexes AP-1 and AP-2. J Immunol 163:1868–1879Google Scholar
  254. Schneider H, Valk E, Leung R, Rudd CE (2008) CTLA-4 activation of phosphatidylinositol 3-kinase (PI 3-K) and protein kinase B (PKB/AKT) sustains T-cell anergy without cell death. PLoS One 3:e3842PubMedPubMedCentralCrossRefGoogle Scholar
  255. Schober T, Magg T, Laschinger M, Rohlfs M, Linhares ND, Puchalka J, Weisser T, Fehlner K, Mautner J, Walz C, Hussein K, Jaeger G, Kammer B, Schmid I, Bahia M, Pena SD, Behrends U, Belohradsky BH, Klein C, Hauck F (2017) A human immunodeficiency syndrome caused by mutations in CARMIL2. Nat Commun 8:14209PubMedPubMedCentralCrossRefGoogle Scholar
  256. Schreiber TH, Wolf D, Tsai MS, Chirinos J, Deyev VV, Gonzalez L, Malek TR, Levy RB, Podack ER (2010) Therapeutic Treg expansion in mice by TNFRSF25 prevents allergic lung inflammation. J Clin Invest 120:3629–3640PubMedPubMedCentralCrossRefGoogle Scholar
  257. Sedy JR, Gavrieli M, Potter KG, Hurchla MA, Lindsley RC, Hildner K, Scheu S, Pfeffer K, Ware CF, Murphy TL, Murphy KM (2005) B and T lymphocyte attenuator regulates T cell activation through interaction with herpesvirus entry mediator. Nat Immunol 6:90–98PubMedPubMedCentralCrossRefGoogle Scholar
  258. Sedy JR, Bjordahl RL, Bekiaris V, Macauley MG, Ware BC, Norris PS, Lurain NS, Benedict CA, Ware CF (2013) CD160 activation by herpesvirus entry mediator augments inflammatory cytokine production and cytolytic function by NK cells. J Immunol 191:828–836PubMedPubMedCentralCrossRefGoogle Scholar
  259. Semple K, Nguyen A, Yu Y, Wang H, Anasetti C, Yu XZ (2011) Strong CD28 costimulation suppresses induction of regulatory T cells from naive precursors through Lck signaling. Blood 117:3096–3103PubMedPubMedCentralCrossRefGoogle Scholar
  260. Seth S, Maier MK, Qiu Q, Ravens I, Kremmer E, Forster R, Bernhardt G (2007) The murine pan T cell marker CD96 is an adhesion receptor for CD155 and nectin-1. Biochem Biophys Res Commun 364:959–965PubMedCrossRefPubMedCentralGoogle Scholar
  261. Shapiro VS, Truitt KE, Imboden JB, Weiss A (1997) CD28 mediates transcriptional upregulation of the interleukin-2 (IL-2) promoter through a composite element containing the CD28RE and NF-IL-2B AP-1 sites. Mol Cell Biol 17:4051–4058PubMedPubMedCentralCrossRefGoogle Scholar
  262. Sheppard KA, Fitz LJ, Lee JM, Benander C, George JA, Wooters J, Qiu Y, Jussif JM, Carter LL, Wood CR, Chaudhary D (2004) PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett 574:37–41PubMedPubMedCentralCrossRefGoogle Scholar
  263. Shi CS, Kehrl JH (2003) Tumor necrosis factor (TNF)-induced germinal center kinase-related (GCKR) and stress-activated protein kinase (SAPK) activation depends upon the E2/E3 complex Ubc13-Uev1A/TNF receptor-associated factor 2 (TRAF2). J Biol Chem 278:15429–15434PubMedCrossRefPubMedCentralGoogle Scholar
  264. Shibuya A, Campbell D, Hannum C, Yssel H, Franz-Bacon K, Mcclanahan T, Kitamura T, Nicholl J, Sutherland GR, Lanier LL, Phillips JH (1996) DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity 4:573–581PubMedCrossRefPubMedCentralGoogle Scholar
  265. Shibuya A, Lanier LL, Phillips JH (1998) Protein kinase C is involved in the regulation of both signaling and adhesion mediated by DNAX accessory molecule-1 receptor. J Immunol 161:1671–1676PubMedPubMedCentralGoogle Scholar
  266. Shibuya K, Lanier LL, Phillips JH, Ochs HD, Shimizu K, Nakayama E, Nakauchi H, Shibuya A (1999) Physical and functional association of LFA-1 with DNAM-1 adhesion molecule. Immunity 11:615–623PubMedCrossRefPubMedCentralGoogle Scholar
  267. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S (2002) Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3:135–142CrossRefPubMedPubMedCentralGoogle Scholar
  268. Shinohara T, Taniwaki M, Ishida Y, Kawaichi M, Honjo T (1994) Structure and chromosomal localization of the human PD-1 gene (PDCD1). Genomics 23:704–706PubMedCrossRefPubMedCentralGoogle Scholar
  269. Shirakawa J, Wang Y, Tahara-Hanaoka S, Honda S, Shibuya K, Shibuya A (2006) LFA-1-dependent lipid raft recruitment of DNAM-1 (CD226) in CD4+ T cell. Int Immunol 18:951–957PubMedCrossRefPubMedCentralGoogle Scholar
  270. Shui JW, Larange A, Kim G, Vela JL, Zahner S, Cheroutre H, Kronenberg M (2012) HVEM signalling at mucosal barriers provides host defence against pathogenic bacteria. Nature 488:222–225PubMedPubMedCentralCrossRefGoogle Scholar
  271. Smith CA, Gruss HJ, Davis T, Anderson D, Farrah T, Baker E, Sutherland GR, Brannan CI, Copeland NG, Jenkins NA et al (1993) CD30 antigen, a marker for Hodgkin’s lymphoma, is a receptor whose ligand defines an emerging family of cytokines with homology to TNF. Cell 73:1349–1360PubMedCrossRefGoogle Scholar
  272. Snell LM, Mcpherson AJ, Lin GH, Sakaguchi S, Pandolfi PP, Riccardi C, Watts TH (2010) CD8 T cell-intrinsic GITR is required for T cell clonal expansion and mouse survival following severe influenza infection. J Immunol 185:7223–7234PubMedCrossRefGoogle Scholar
  273. So T, Choi H, Croft M (2011a) OX40 complexes with phosphoinositide 3-kinase and protein kinase B (PKB) to augment TCR-dependent PKB signaling. J Immunol 186:3547–3555PubMedPubMedCentralCrossRefGoogle Scholar
  274. So T, Soroosh P, Eun SY, Altman A, Croft M (2011b) Antigen-independent signalosome of CARMA1, PKCtheta, and TNF receptor-associated factor 2 (TRAF2) determines NF-kappaB signaling in T cells. Proc Natl Acad Sci U S A 108:2903–2908PubMedPubMedCentralCrossRefGoogle Scholar
  275. Soligo M, Camperio C, Caristi S, Scotta C, DEL Porto P, Costanzo A, Mantel PY, Schmidt-Weber CB, Piccolella E (2011) CD28 costimulation regulates FOXP3 in a RelA/NF-kappaB-dependent mechanism. Eur J Immunol 41:503–513PubMedCrossRefPubMedCentralGoogle Scholar
  276. Song J, Salek-Ardakani S, Rogers PR, Cheng M, van Parijs L, Croft M (2004) The costimulation-regulated duration of PKB activation controls T cell longevity. Nat Immunol 5:150–158PubMedCrossRefPubMedCentralGoogle Scholar
  277. Song J, So T, Croft M (2008) Activation of NF-kappaB1 by OX40 contributes to antigen-driven T cell expansion and survival. J Immunol 180:7240–7248PubMedPubMedCentralCrossRefGoogle Scholar
  278. Soroosh P, Ine S, Sugamura K, Ishii N (2007) Differential requirements for OX40 signals on generation of effector and central memory CD4+ T cells. J Immunol 179:5014–5023PubMedCrossRefPubMedCentralGoogle Scholar
  279. Soroosh P, Doherty TA, So T, Mehta AK, Khorram N, Norris PS, Scheu S, Pfeffer K, Ware C, Croft M (2011) Herpesvirus entry mediator (TNFRSF14) regulates the persistence of T helper memory cell populations. J Exp Med 208:797–809PubMedPubMedCentralCrossRefGoogle Scholar
  280. Sorte HS, Osnes LT, Fevang B, Aukrust P, Erichsen HC, Backe PH, Abrahamsen TG, Kittang OB, Overland T, Jhangiani SN, Muzny DM, Vigeland MD, Samarakoon P, Gambin T, Akdemir ZH, Gibbs RA, Rodningen OK, Lyle R, Lupski JR, Stray-Pedersen A (2016) A potential founder variant in CARMIL2/RLTPR in three Norwegian families with warts, molluscum contagiosum, and T-cell dysfunction. Mol Genet Genomic Med 4:604–616PubMedPubMedCentralCrossRefGoogle Scholar
  281. Spinicelli S, Nocentini G, Ronchetti S, Krausz LT, Bianchini R, Riccardi C (2002) GITR interacts with the pro-apoptotic protein Siva and induces apoptosis. Cell Death Differ 9:1382–1384PubMedCrossRefPubMedCentralGoogle Scholar
  282. Stanietsky N, Rovis TL, Glasner A, Seidel E, Tsukerman P, Yamin R, Enk J, Jonjic S, Mandelboim O (2013) Mouse TIGIT inhibits NK-cell cytotoxicity upon interaction with PVR. Eur J Immunol 43:2138–2150PubMedPubMedCentralCrossRefGoogle Scholar
  283. Stein PH, Fraser JD, Weiss A (1994) The cytoplasmic domain of CD28 is both necessary and sufficient for costimulation of interleukin-2 secretion and association with phosphatidylinositol 3′-kinase. Mol Cell Biol 14:3392–3402PubMedPubMedCentralCrossRefGoogle Scholar
  284. Steinberg MW, Cheung TC, Ware CF (2011) The signaling networks of the herpesvirus entry mediator (TNFRSF14) in immune regulation. Immunol Rev 244:169–187PubMedPubMedCentralCrossRefGoogle Scholar
  285. Stephens GL, Mchugh RS, Whitters MJ, Young DA, Luxenberg D, Carreno BM, Collins M, Shevach EM (2004) Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells. J Immunol 173:5008–5020PubMedCrossRefPubMedCentralGoogle Scholar
  286. Stumpf M, Zhou X, Chikuma S, Bluestone JA (2014) Tyrosine 201 of the cytoplasmic tail of CTLA-4 critically affects T regulatory cell suppressive function. Eur J Immunol 44:1737–1746PubMedPubMedCentralCrossRefGoogle Scholar
  287. Tai X, Cowan M, Feigenbaum L, Singer A (2005) CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol 6:152–162PubMedCrossRefPubMedCentralGoogle Scholar
  288. Tai X, van Laethem F, Sharpe AH, Singer A (2007) Induction of autoimmune disease in CTLA-4−/− mice depends on a specific CD28 motif that is required for in vivo costimulation. Proc Natl Acad Sci U S A 104:13756–13761PubMedPubMedCentralCrossRefGoogle Scholar
  289. Takeda K, Harada Y, Watanabe R, Inutake Y, Ogawa S, Onuki K, Kagaya S, Tanabe K, Kishimoto H, Abe R (2008) CD28 stimulation triggers NF-kappaB activation through the CARMA1-PKCtheta-Grb2/gads axis. Int Immunol 20:1507–1515PubMedCrossRefPubMedCentralGoogle Scholar
  290. Tang Q, Henriksen KJ, Boden EK, Tooley AJ, Ye J, Subudhi SK, Zheng XX, Strom TB, Bluestone JA (2003) Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J Immunol 171:3348–3352PubMedCrossRefPubMedCentralGoogle Scholar
  291. Tang ZS, Hao YH, Zhang EJ, Xu CL, Zhou Y, Zheng X, Yang DL (2016) CD28 family of receptors on T cells in chronic HBV infection: expression characteristics, clinical significance and correlations with PD-1 blockade. Mol Med Rep 14:1107–1116PubMedPubMedCentralCrossRefGoogle Scholar
  292. Tavano R, Contento RL, Baranda SJ, Soligo M, Tuosto L, Manes S, Viola A (2006) CD28 interaction with filamin-A controls lipid raft accumulation at the T-cell immunological synapse. Nat Cell Biol 8:1270–1276CrossRefGoogle Scholar
  293. Teft WA, Chau TA, Madrenas J (2009) Structure-function analysis of the CTLA-4 interaction with PP2A. BMC Immunol 10:23PubMedPubMedCentralCrossRefGoogle Scholar
  294. Tesselaar K, Xiao Y, Arens R, van Schijndel GM, Schuurhuis DH, Mebius RE, Borst J, van Lier RA (2003) Expression of the murine CD27 ligand CD70 in vitro and in vivo. J Immunol 170:33–40PubMedCrossRefPubMedCentralGoogle Scholar
  295. Thaker YR, Schneider H, Rudd CE (2015) TCR and CD28 activate the transcription factor NF-kappaB in T-cells via distinct adaptor signaling complexes. Immunol Lett 163:113–119PubMedPubMedCentralCrossRefGoogle Scholar
  296. Thomas RM, Gao L, Wells AD (2005) Signals from CD28 induce stable epigenetic modification of the IL-2 promoter. J Immunol 174:4639–4646CrossRefGoogle Scholar
  297. Thompson CB, Lindsten T, Ledbetter JA, Kunkel SL, Young HA, Emerson SG, Leiden JM, June CH (1989) CD28 activation pathway regulates the production of multiple T-cell-derived lymphokines/cytokines. Proc Natl Acad Sci U S A 86:1333–1337PubMedPubMedCentralCrossRefGoogle Scholar
  298. Tian R, Wang H, Gish GD, Petsalaki E, Pasculescu A, Shi Y, Mollenauer M, Bagshaw RD, Yosef N, Hunter T, Gingras AC, Weiss A, Pawson T (2015) Combinatorial proteomic analysis of intercellular signaling applied to the CD28 T-cell costimulatory receptor. Proc Natl Acad Sci U S A 112:E1594–E1603PubMedPubMedCentralCrossRefGoogle Scholar
  299. Tone M, Tone Y, Adams E, Yates SF, Frewin MR, Cobbold SP, Waldmann H (2003) Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells. Proc Natl Acad Sci U S A 100:15059–15064PubMedPubMedCentralCrossRefGoogle Scholar
  300. Tseng SY, Otsuji M, Gorski K, Huang X, Slansky JE, Pai SI, Shalabi A, Shin T, Pardoll DM, Tsuchiya H (2001) B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med 193:839–846PubMedPubMedCentralCrossRefGoogle Scholar
  301. Tsujimura K, Obata Y, Matsudaira Y, Nishida K, Akatsuka Y, Ito Y, Demachi-Okamura A, Kuzushima K, Takahashi T (2006) Characterization of murine CD160+ CD8+ T lymphocytes. Immunol Lett 106:48–56PubMedCrossRefGoogle Scholar
  302. Tu TC, Brown NK, Kim TJ, Wroblewska J, Yang X, Guo X, Lee SH, Kumar V, Lee KM, Fu YX (2015) CD160 is essential for NK-mediated IFN-gamma production. J Exp Med 212:415–429PubMedPubMedCentralCrossRefGoogle Scholar
  303. Valk E, Leung R, Kang H, Kaneko K, Rudd CE, Schneider H (2006) T cell receptor-interacting molecule acts as a chaperone to modulate surface expression of the CTLA-4 coreceptor. Immunity 25:807–821CrossRefGoogle Scholar
  304. Vang KB, Yang J, Pagan AJ, Li LX, Wang J, Green JM, Beg AA, Farrar MA (2010) Cutting edge: CD28 and c-Rel-dependent pathways initiate regulatory T cell development. J Immunol 184:4074–4077PubMedPubMedCentralCrossRefGoogle Scholar
  305. Verhoeven DH, de Hooge AS, Mooiman EC, Santos SJ, Ten Dam MM, Gelderblom H, Melief CJ, Hogendoorn PC, Egeler RM, van Tol MJ, Schilham MW, Lankester AC (2008) NK cells recognize and lyse Ewing sarcoma cells through NKG2D and DNAM-1 receptor dependent pathways. Mol Immunol 45:3917–3925PubMedCrossRefGoogle Scholar
  306. Vigano S, Banga R, Bellanger F, Pellaton C, Farina A, Comte D, Harari A, Perreau M (2014) CD160-associated CD8 T-cell functional impairment is independent of PD-1 expression. PLoS Pathog 10:e1004380PubMedPubMedCentralCrossRefGoogle Scholar
  307. Viola A, Schroeder S, Sakakibara Y, Lanzavecchia A (1999) T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283:680–682PubMedCrossRefGoogle Scholar
  308. Wang PL, O’farrell S, Clayberger C, Krensky AM (1992) Identification and molecular cloning of tactile. A novel human T cell activation antigen that is a member of the Ig gene superfamily. J Immunol 148:2600–2608PubMedGoogle Scholar
  309. Wang L, Rubinstein R, Lines JL, Wasiuk A, Ahonen C, Guo Y, Lu LF, Gondek D, Wang Y, Fava RA, Fiser A, Almo S, Noelle RJ (2011) VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J Exp Med 208:577–592PubMedPubMedCentralCrossRefGoogle Scholar
  310. Wang L, Liu Y, Beier UH, Han R, Bhatti TR, Akimova T, Hancock WW (2013) Foxp3+ T-regulatory cells require DNA methyltransferase 1 expression to prevent development of lethal autoimmunity. Blood 121:3631–3639PubMedPubMedCentralCrossRefGoogle Scholar
  311. Wang L, le Mercier I, Putra J, Chen W, Liu J, Schenk AD, Nowak EC, Suriawinata AA, Li J, Noelle RJ (2014) Disruption of the immune-checkpoint VISTA gene imparts a proinflammatory phenotype with predisposition to the development of autoimmunity. Proc Natl Acad Sci U S A 111:14846–14851PubMedPubMedCentralCrossRefGoogle Scholar
  312. Wang XD, Gong Y, Chen ZL, Gong BN, Xie JJ, Zhong CQ, Wang QL, Diao LH, Xu A, Han J, Altman A, Li Y (2015) TCR-induced sumoylation of the kinase PKC-theta controls T cell synapse organization and T cell activation. Nat Immunol 16:1195–1203PubMedCrossRefGoogle Scholar
  313. Wang Y, Ma CS, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S, Payne K, Crestani E, Roncagalli R, Belkadi A, Kerner G, Lorenzo L, Deswarte C, Chrabieh M, Patin E, Vincent QB, Muller-Fleckenstein I, Fleckenstein B, Ailal F, Quintana-Murci L, Fraitag S, Alyanakian MA, Leruez-Ville M, Picard C, Puel A, Bustamante J, Boisson-Dupuis S, Malissen M, Malissen B, Abel L, Hovnanian A, Notarangelo LD, Jouanguy E, Tangye SG, Beziat V, Casanova JL (2016) Dual T cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR mutations. J Exp Med 213:2413–2435PubMedPubMedCentralCrossRefGoogle Scholar
  314. Ware CF, Sedy JR (2011) TNF superfamily networks: bidirectional and interference pathways of the herpesvirus entry mediator (TNFSF14). Curr Opin Immunol 23:627–631PubMedPubMedCentralCrossRefGoogle Scholar
  315. Watanabe N, Gavrieli M, Sedy JR, Yang J, Fallarino F, Loftin SK, Hurchla MA, Zimmerman N, Sim J, Zang X, Murphy TL, Russell JH, Allison JP, Murphy KM (2003) BTLA is a lymphocyte inhibitory receptor with similarities to CTLA-4 and PD-1. Nat Immunol 4:670–679PubMedPubMedCentralCrossRefGoogle Scholar
  316. Watanabe R, Harada Y, Takeda K, Takahashi J, Ohnuki K, Ogawa S, Ohgai D, Kaibara N, Koiwai O, Tanabe K, Toma H, Sugamura K, Abe R (2006) Grb2 and gads exhibit different interactions with CD28 and play distinct roles in CD28-mediated costimulation. J Immunol 177:1085–1091CrossRefGoogle Scholar
  317. Wei F, Zhong S, Ma Z, Kong H, Medvec A, Ahmed R, Freeman GJ, Krogsgaard M, Riley JL (2013) Strength of PD-1 signaling differentially affects T-cell effector functions. Proc Natl Acad Sci U S A 110:E2480–E2489PubMedPubMedCentralCrossRefGoogle Scholar
  318. Wen L, Zhuang L, Luo X, Wei P (2003) TL1A-induced NF-kappaB activation and c-IAP2 production prevent DR3-mediated apoptosis in TF-1 cells. J Biol Chem 278:39251–39258PubMedCrossRefGoogle Scholar
  319. van de Weyer PS, Muehlfeit M, Klose C, Bonventre JV, Walz G, Kuehn EW (2006) A highly conserved tyrosine of Tim-3 is phosphorylated upon stimulation by its ligand galectin-9. Biochem Biophys Res Commun 351:571–576PubMedCrossRefGoogle Scholar
  320. Whitbeck JC, Peng C, Lou H, Xu R, Willis SH, Ponce De Leon M, Peng T, Nicola AV, Montgomery RI, Warner MS, Soulika AM, Spruce LA, Moore WT, Lambris JD, Spear PG, Cohen GH, Eisenberg RJ (1997) Glycoprotein D of herpes simplex virus (HSV) binds directly to HVEM, a member of the tumor necrosis factor receptor superfamily and a mediator of HSV entry. J Virol 71:6083–6093PubMedPubMedCentralGoogle Scholar
  321. Wicovsky A, Henkler F, Salzmann S, Scheurich P, Kneitz C, Wajant H (2009) Tumor necrosis factor receptor-associated factor-1 enhances proinflammatory TNF receptor-2 signaling and modifies TNFR1-TNFR2 cooperation. Oncogene 28:1769–1781PubMedCrossRefGoogle Scholar
  322. Workman CJ, Vignali DA (2003) The CD4-related molecule, LAG-3 (CD223), regulates the expansion of activated T cells. Eur J Immunol 33:970–979PubMedCrossRefGoogle Scholar
  323. Workman CJ, Dugger KJ, Vignali DA (2002) Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3. J Immunol 169:5392–5395CrossRefGoogle Scholar
  324. Wright CW, Duckett CS (2009) The aryl hydrocarbon nuclear translocator alters CD30-mediated NF-kappaB-dependent transcription. Science 323:251–255PubMedPubMedCentralCrossRefGoogle Scholar
  325. Wright CW, Rumble JM, Duckett CS (2007) CD30 activates both the canonical and alternative NF-kappaB pathways in anaplastic large cell lymphoma cells. J Biol Chem 282:10252–10262PubMedCrossRefGoogle Scholar
  326. Xiao X, Balasubramanian S, Liu W, Chu X, Wang H, Taparowsky EJ, Fu YX, Choi Y, Walsh MC, Li XC (2012) OX40 signaling favors the induction of T(H)9 cells and airway inflammation. Nat Immunol 13:981–990PubMedPubMedCentralCrossRefGoogle Scholar
  327. Xu F, Liu J, Liu D, Liu B, Wang M, Hu Z, Du X, Tang L, He F (2014) LSECtin expressed on melanoma cells promotes tumor progression by inhibiting antitumor T-cell responses. Cancer Res 74:3418–3428PubMedCrossRefGoogle Scholar
  328. Yamamoto H, Kishimoto T, Minamoto S (1998) NF-kappaB activation in CD27 signaling: involvement of TNF receptor-associated factors in its signaling and identification of functional region of CD27. J Immunol 161:4753–4759PubMedGoogle Scholar
  329. Yamazaki T, Akiba H, Iwai H, Matsuda H, Aoki M, Tanno Y, Shin T, Tsuchiya H, Pardoll DM, Okumura K, Azuma M, Yagita H (2002) Expression of programmed death 1 ligands by murine T cells and APC. J Immunol 169:5538–5545PubMedPubMedCentralCrossRefGoogle Scholar
  330. Yang R, Qu C, Zhou Y, Konkel JE, Shi S, Liu Y, Chen C, Liu S, Liu D, Chen Y, Zandi E, Chen W, Zhou Y, Shi S (2015) Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 Demethylation to drive regulatory T cell differentiation and maintain immune homeostasis. Immunity 43:251–263PubMedPubMedCentralCrossRefGoogle Scholar
  331. Yang L, Qiao G, Hassan Y, Li Z, Zhang X, Kong H, Zeng W, Yin F, Zhang J (2016) Program Death-1 suppresses autoimmune arthritis by inhibiting Th17 response. Arch Immunol Ther Exp 64:417–423CrossRefGoogle Scholar
  332. Yang W, Pan W, Chen S, Trendel N, Jiang S, Xiao F, Xue M, Wu W, Peng Z, Li X, Ji H, Liu X, Jiang H, Wang H, Shen H, Dushek O, Li H, Xu C (2017) Dynamic regulation of CD28 conformation and signaling by charged lipids and ions. Nat Struct Mol BiolGoogle Scholar
  333. Ye H, Park YC, Kreishman M, Kieff E, Wu H (1999) The structural basis for the recognition of diverse receptor sequences by TRAF2. Mol Cell 4:321–330PubMedCrossRefGoogle Scholar
  334. Ye H, Arron JR, Lamothe B, Cirilli M, Kobayashi T, Shevde NK, Segal D, Dzivenu OK, Vologodskaia M, Yim M, Du K, Singh S, Pike JW, Darnay BG, Choi Y, Wu H (2002) Distinct molecular mechanism for initiating TRAF6 signalling. Nature 418:443–447PubMedCrossRefGoogle Scholar
  335. Yokosuka T, Kobayashi W, Sakata-Sogawa K, Takamatsu M, Hashimoto-Tane A, Dustin ML, Tokunaga M, Saito T (2008) Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C theta translocation. Immunity 29:589–601PubMedPubMedCentralCrossRefGoogle Scholar
  336. Yokosuka T, Kobayashi W, Takamatsu M, Sakata-Sogawa K, Zeng H, Hashimoto-Tane A, Yagita H, Tokunaga M, Saito T (2010) Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T cell activation. Immunity 33:326–339PubMedCrossRefGoogle Scholar
  337. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T (2012) Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 209:1201–1217PubMedPubMedCentralCrossRefGoogle Scholar
  338. Yoon KW, Byun S, Kwon E, Hwang SY, Chu K, Hiraki M, Jo SH, Weins A, Hakroush S, Cebulla A, Sykes DB, Greka A, Mundel P, Fisher DE, Mandinova A, Lee SW (2015) Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science 349:1261669PubMedPubMedCentralCrossRefGoogle Scholar
  339. Yu X, Harden K, Gonzalez LC, Francesco M, Chiang E, Irving B, Tom I, Ivelja S, Refino CJ, Clark H, Eaton D, Grogan JL (2009) The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol 10:48–57PubMedPubMedCentralCrossRefGoogle Scholar
  340. Zhan Y, Funda DP, Every AL, Fundova P, Purton JF, Liddicoat DR, Cole TJ, Godfrey DI, Brady JL, Mannering SI, Harrison LC, Lew AM (2004) TCR-mediated activation promotes GITR upregulation in T cells and resistance to glucocorticoid-induced death. Int Immunol 16:1315–1321PubMedCrossRefGoogle Scholar
  341. Zhang X, Schwartz JC, Guo X, Bhatia S, Cao E, Lorenz M, Cammer M, Chen L, Zhang ZY, Edidin MA, Nathenson SG, Almo SC (2004) Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity 20:337–347PubMedCrossRefGoogle Scholar
  342. Zhang Q, Cui F, Fang L, Hong J, Zheng B, Zhang JZ (2013a) TNF-alpha impairs differentiation and function of TGF-beta-induced Treg cells in autoimmune diseases through Akt and Smad3 signaling pathway. J Mol Cell Biol 5:85–98PubMedCrossRefGoogle Scholar
  343. Zhang R, Huynh A, Whitcher G, Chang J, Maltzman JS, Turka LA (2013b) An obligate cell-intrinsic function for CD28 in Tregs. J Clin Invest 123:580–593PubMedPubMedCentralGoogle Scholar
  344. Zhang Z, Wu N, Lu Y, Davidson D, Colonna M, Veillette A (2015) DNAM-1 controls NK cell activation via an ITT-like motif. J Exp Med 212:2165–2182PubMedPubMedCentralCrossRefGoogle Scholar
  345. Zheng C, Kabaleeswaran V, Wang Y, Cheng G, Wu H (2010a) Crystal structures of the TRAF2: cIAP2 and the TRAF1: TRAF2: cIAP2 complexes: affinity, specificity, and regulation. Mol Cell 38:101–113PubMedPubMedCentralCrossRefGoogle Scholar
  346. Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY (2010b) Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463:808–812PubMedPubMedCentralCrossRefGoogle Scholar
  347. Zhou Z, Song X, Berezov A, Zhang G, Li Y, Zhang H, Murali R, Li B, Greene MI (2008a) Human glucocorticoid-induced TNF receptor ligand regulates its signaling activity through multiple oligomerization states. Proc Natl Acad Sci U S A 105:5465–5470PubMedPubMedCentralCrossRefGoogle Scholar
  348. Zhou Z, Tone Y, Song X, Furuuchi K, Lear JD, Waldmann H, Tone M, Greene MI, Murali R (2008b) Structural basis for ligand-mediated mouse GITR activation. Proc Natl Acad Sci U S A 105:641–645PubMedPubMedCentralCrossRefGoogle Scholar
  349. Zhu C, Anderson AC, Schubart A, Xiong H, Imitola J, Khoury SJ, Zheng XX, Strom TB, Kuchroo VK (2005) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6:1245–1252PubMedPubMedCentralCrossRefGoogle Scholar
  350. Zhu P, Jiang W, Cao L, Yu W, Pei Y, Yang X, Wan B, Liu JO, Yi Q, Yu L (2010) IL-2 mRNA stabilization upon PMA stimulation is dependent on NF90-Ser647 phosphorylation by protein kinase CbetaI. J Immunol 185:5140–5149PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Division of Experimental Animal Immunology, Research Institute for Biomedical SciencesTokyo University of ScienceChibaJapan
  2. 2.Strategic Innovation and Research CenterTeikyo UniversityTokyoJapan
  3. 3.Division of Immunobiology, Research Institute for Biomedical SciencesTokyo University of ScienceChibaJapan

Personalised recommendations