Advertisement

The CD28–B7 Family of Co-signaling Molecules

  • Shigenori NagaiEmail author
  • Miyuki Azuma
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1189)

Abstract

Immune responses are controlled by the optimal balance between protective immunity and immune tolerance. T-cell receptor (TCR) signals are modulated by co-signaling molecules, which are divided into co-stimulatory and co-inhibitory molecules. By expression at the appropriate time and location, co-signaling molecules positively and negatively control T-cell differentiation and function. For example, ligation of the CD28 on T cells provides a critical secondary signal along with TCR ligation for naive T-cell activation. In contrast, co-inhibitory signaling by the CD28–B7 family is important to regulate immune homeostasis and host defense, as these signals limit the strength and duration of immune responses to prevent autoimmunity. At the same time, microorganisms or tumor cells can use these pathways to establish an immunosuppressive environment to inhibit the immune responses against themselves. Understanding these co-inhibitory pathways will support the development of new immunotherapy for the treatment of tumors and autoimmune and infectious diseases. Here, we introduce diverse molecules belonging to the members of the CD28–B7 family.

Keywords

Co-stimulation Co-inhibition TCR signaling Immunoglobulin superfamily IgV IgC 

References

  1. Aicher A, Hayden-Ledbetter M, Brady WA, Pezzutto A, Richter G, Magaletti D, Buckwalter S, Ledbetter JA, Clark EA (2000) Characterization of human inducible costimulator ligand expression and function. J Immunol 164:4689–4696PubMedCrossRefGoogle Scholar
  2. Akiba H, Takeda K, Kojima Y, Usui Y, Harada N, Yamazaki T, Ma J, Tezuka K, Yagita H, Okumura K (2005) The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. J Immunol 175:2340–2348PubMedCrossRefGoogle Scholar
  3. Arimura Y, Kato H, Dianzani U, Okamoto T, Kamekura S, Buonfiglio D, Miyoshi-Akiyama T, Uchiyama T, Yagi J (2002) A co-stimulatory molecule on activated T cells, H4/ICOS, delivers specific signals in T(h) cells and regulates their responses. Int Immunol 14:555–566PubMedCrossRefGoogle Scholar
  4. Attema JL, Reeves R, Murray V, Levichkin I, Temple MD, Tremethick DJ, Shannon MF (2002) The human IL-2 gene promoter can assemble a positioned nucleosome that becomes remodeled upon T cell activation. J Immunol 169:2466–2476PubMedCrossRefGoogle Scholar
  5. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R (2006) Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–687PubMedCrossRefGoogle Scholar
  6. Bhatia S, Edidin M, Almo SC, Nathenson SG (2005) Different cell surface oligomeric states of B7-1 and B7-2: implications for signaling. Proc Natl Acad Sci U S A 102:15569–15574PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bignotti E, Tassi RA, Calza S, Ravaggi A, Romani C, Rossi E, Falchetti M, Odicino FE, Pecorelli S, Santin AD (2006) Differential gene expression profiles between tumor biopsies and short-term primary cultures of ovarian serous carcinomas: identification of novel molecular biomarkers for early diagnosis and therapy. Gynecol Oncol 103:405–416PubMedCrossRefGoogle Scholar
  8. Boise LH, Minn AJ, Noel PJ, June CH, Accavitti MA, Lindsten T, Thompson CB (1995) CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 3:87–98PubMedCrossRefGoogle Scholar
  9. Boomer JS, Green JM (2010) An enigmatic tail of CD28 signaling. Cold Spring Harb Perspect Biol 2:a002436PubMedPubMedCentralCrossRefGoogle Scholar
  10. Borriello F, Lederer J, Scott S, Sharpe AH (1997) MRC OX-2 defines a novel T cell costimulatory pathway. J Immunol 158:4548–4554PubMedPubMedCentralGoogle Scholar
  11. Bour-Jordan H, Grogan JL, Tang Q, Auger JA, Locksley RM, Bluestone JA (2003) CTLA-4 regulates the requirement for cytokine-induced signals in T(H)2 lineage commitment. Nat Immunol 4:182–188PubMedCrossRefPubMedCentralGoogle Scholar
  12. Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG, Golstein P (1987) A new member of the immunoglobulin superfamily--CTLA-4. Nature 328:267–270PubMedPubMedCentralCrossRefGoogle Scholar
  13. Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ (2007) Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 27:111–122PubMedPubMedCentralCrossRefGoogle Scholar
  14. Butte MJ, Lee SJ, Jesneck J, Keir ME, Haining WN, Sharpe AH (2012) CD28 costimulation regulates genome-wide effects on alternative splicing. PLoS One 7:e40032PubMedPubMedCentralCrossRefGoogle Scholar
  15. Carreno BM, Collins M (2002) The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu Rev Immunol 20:29–53PubMedCrossRefGoogle Scholar
  16. Castriconi R, Dondero A, Augugliaro R, Cantoni C, Carnemolla B, Sementa AR, Negri F, Conte R, Corrias MV, Moretta L et al (2004) Identification of 4Ig-B7-H3 as a neuroblastoma-associated molecule that exerts a protective role from an NK cell-mediated lysis. Proc Natl Acad Sci U S A 101:12640–12645PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chang CH, Curtis JD, Maggi LB Jr, Faubert B, Villarino AV, O‘Sullivan D, Huang SC, van der Windt GJ, Blagih J, Qiu J et al (2013) Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153:1239–1251PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chapoval AI, Ni J, Lau JS, Wilcox RA, Flies DB, Liu D, Dong H, Sica GL, Zhu G, Tamada K et al (2001) B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat Immunol 2:269–274PubMedCrossRefGoogle Scholar
  19. Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL (2004) SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol 173:945–954PubMedCrossRefGoogle Scholar
  20. Chen M, Muckersie E, Luo C, Forrester JV, Xu H (2010) Inhibition of the alternative pathway of complement activation reduces inflammation in experimental autoimmune uveoretinitis. Eur J Immunol 40:2870–2881PubMedCrossRefPubMedCentralGoogle Scholar
  21. Chen J, Wang F, Cai Q, Shen S, Chen Y, Hao C, Sun J (2013) A novel anti-human ICOSL monoclonal antibody that enhances IgG production of B cells. Monoclon Antib Immunodiagn Immunother 32:125–131PubMedCrossRefPubMedCentralGoogle Scholar
  22. Cho HY, Lee SW, Seo SK, Choi IW, Choi I, Lee SW (2008) Interferon-sensitive response element (ISRE) is mainly responsible for IFN-alpha-induced upregulation of programmed death-1 (PD-1) in macrophages. Biochim Biophys Acta 1779:811–819PubMedCrossRefPubMedCentralGoogle Scholar
  23. Chuang E, Fisher TS, Morgan RW, Robbins MD, Duerr JM, Vander Heiden MG, Gardner JP, Hambor JE, Neveu MJ, Thompson CB (2000) The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 13:313–322PubMedCrossRefPubMedCentralGoogle Scholar
  24. Coyle AJ, Lehar S, Lloyd C, Tian J, Delaney T, Manning S, Nguyen T, Burwell T, Schneider H, Gonzalo JA et al (2000) The CD28-related molecule ICOS is required for effective T cell-dependent immune responses. Immunity 13:95–105PubMedCrossRefPubMedCentralGoogle Scholar
  25. Crotty S (2014) T follicular helper cell differentiation, function, and roles in disease. Immunity 41:529–542PubMedPubMedCentralCrossRefGoogle Scholar
  26. Dariavach P, Mattei MG, Golstein P, Lefranc MP (1988) Human Ig superfamily CTLA-4 gene: chromosomal localization and identity of protein sequence between murine and human CTLA-4 cytoplasmic domains. Eur J Immunol 18:1901–1905PubMedCrossRefPubMedCentralGoogle Scholar
  27. de Jong VM, Zaldumbide A, van der Slik AR, Persengiev SP, Roep BO, Koeleman BP (2013) Post-transcriptional control of candidate risk genes for type 1 diabetes by rare genetic variants. Genes Immun 14:58–61PubMedCrossRefPubMedCentralGoogle Scholar
  28. Diehn M, Alizadeh AA, Rando OJ, Liu CL, Stankunas K, Botstein D, Crabtree GR, Brown PO (2002) Genomic expression programs and the integration of the CD28 costimulatory signal in T cell activation. Proc Natl Acad Sci U S A 99:11796–11801PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dokmanovic-Chouinard M, Chung WK, Chevre JC, Watson E, Yonan J, Wiegand B, Bromberg Y, Wakae N, Wright CV, Overton J et al (2008) Positional cloning of "Lisch-Like", a candidate modifier of susceptibility to type 2 diabetes in mice. PLoS Genet 4:e1000137PubMedPubMedCentralCrossRefGoogle Scholar
  30. Dong C, Juedes AE, Temann UA, Shresta S, Allison JP, Ruddle NH, Flavell RA (2001a) ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409:97–101PubMedCrossRefGoogle Scholar
  31. Dong C, Temann UA, Flavell RA (2001b) Cutting edge: critical role of inducible costimulator in germinal center reactions. J Immunol 166:3659–3662PubMedCrossRefGoogle Scholar
  32. DuPage M, Chopra G, Quiros J, Rosenthal WL, Morar MM, Holohan D, Zhang R, Turka L, Marson A, Bluestone JA (2015) The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation. Immunity 42:227–238PubMedPubMedCentralCrossRefGoogle Scholar
  33. Engelhardt JJ, Sullivan TJ, Allison JP (2006) CTLA-4 overexpression inhibits T cell responses through a CD28-B7-dependent mechanism. J Immunol 177:1052–1061PubMedCrossRefGoogle Scholar
  34. Evans EJ, Esnouf RM, Manso-Sancho R, Gilbert RJ, James JR, Yu C, Fennelly JA, Vowles C, Hanke T, Walse B et al (2005) Crystal structure of a soluble CD28-Fab complex. Nat Immunol 6:271–279PubMedCrossRefGoogle Scholar
  35. Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R, Belladonna ML, Fioretti MC, Alegre ML, Puccetti P (2003) Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 4:1206–1212PubMedCrossRefGoogle Scholar
  36. Fife BT, Pauken KE, Eagar TN, Obu T, Wu J, Tang Q, Azuma M, Krummel MF, Bluestone JA (2009) Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol 10:1185–1192PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fischer KD, Kong YY, Nishina H, Tedford K, Marengere LE, Kozieradzki I, Sasaki T, Starr M, Chan G, Gardener S et al (1998a) Vav is a regulator of cytoskeletal reorganization mediated by the T-cell receptor. Curr Biol 8:554–562PubMedCrossRefGoogle Scholar
  38. Fischer KD, Tedford K, Penninger JM (1998b) Vav links antigen-receptor signaling to the actin cytoskeleton. Semin Immunol 10:317–327PubMedCrossRefGoogle Scholar
  39. Flies DB, Han X, Higuchi T, Zheng L, Sun J, Ye JJ, Chen L (2014) Coinhibitory receptor PD-1H preferentially suppresses CD4(+) T cell-mediated immunity. J Clin Invest 124:1966–1975PubMedPubMedCentralCrossRefGoogle Scholar
  40. Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, Sharpe AH (2009) PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 206:3015–3029PubMedPubMedCentralCrossRefGoogle Scholar
  41. Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR, Elstrom RL, June CH, Thompson CB (2002) The CD28 signaling pathway regulates glucose metabolism. Immunity 16:769–777PubMedCrossRefGoogle Scholar
  42. Freeman GJ, Lombard DB, Gimmi CD, Brod SA, Lee K, Laning JC, Hafler DA, Dorf ME, Gray GS, Reiser H et al (1992) CTLA-4 and CD28 mRNA are coexpressed in most T cells after activation. Expression of CTLA-4 and CD28 mRNA does not correlate with the pattern of lymphokine production. J Immunol 149:3795–3801PubMedGoogle Scholar
  43. Gibson HM, Hedgcock CJ, Aufiero BM, Wilson AJ, Hafner MS, Tsokos GC, Wong HK (2007) Induction of the CTLA-4 gene in human lymphocytes is dependent on NFAT binding the proximal promoter. J Immunol 179:3831–3840PubMedPubMedCentralCrossRefGoogle Scholar
  44. Girard T, Gaucher D, El-Far M, Breton G, Sekaly RP (2014) CD80 and CD86 IgC domains are important for quaternary structure, receptor binding and co-signaling function. Immunol Lett 161:65–75PubMedCrossRefGoogle Scholar
  45. Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F, Falorni A, Candeloro P, Belladonna ML, Bianchi R, Fioretti MC et al (2002) CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 3:1097–1101PubMedCrossRefPubMedCentralGoogle Scholar
  46. Han Y, Chen Z, Yang Y, Jiang Z, Gu Y, Liu Y, Lin C, Pan Z, Yu Y, Jiang M et al (2014) Human CD14+ CTLA-4+ regulatory dendritic cells suppress T-cell response by cytotoxic T-lymphocyte antigen-4-dependent IL-10 and indoleamine-2,3-dioxygenase production in hepatocellular carcinoma. Hepatology 59:567–579PubMedCrossRefGoogle Scholar
  47. Hathcock KS, Laszlo G, Pucillo C, Linsley P, Hodes RJ (1994) Comparative analysis of B7-1 and B7-2 costimulatory ligands: expression and function. J Exp Med 180:631–640PubMedCrossRefGoogle Scholar
  48. He C, Qiao H, Jiang H, Sun X (2011) The inhibitory role of b7-h4 in antitumor immunity: association with cancer progression and survival. Clin Dev Immunol 2011:695834PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hecht I, Toporik A, Podojil JR, Vaknin I, Cojocaru G, Oren A, Aizman E, Liang SC, Leung L, Dicken Y et al (2018) ILDR2 is a novel B7-like protein that negatively regulates T cell responses. J Immunol 200:2025–2037PubMedPubMedCentralCrossRefGoogle Scholar
  50. Helmy KY, Katschke KJ Jr, Gorgani NN, Kljavin NM, Elliott JM, Diehl L, Scales SJ, Ghilardi N, van Lookeren Campagne M (2006) CRIg: a macrophage complement receptor required for phagocytosis of circulating pathogens. Cell 124:915–927PubMedCrossRefGoogle Scholar
  51. Higashi T, Tokuda S, Kitajiri S, Masuda S, Nakamura H, Oda Y, Furuse M (2013) Analysis of the ‘angulin’ proteins LSR, ILDR1 and ILDR2--tricellulin recruitment, epithelial barrier function and implication in deafness pathogenesis. J Cell Sci 126:966–977PubMedCrossRefGoogle Scholar
  52. Hu H, Wu X, Jin W, Chang M, Cheng X, Sun SC (2011) Noncanonical NF-kappaB regulates inducible costimulator (ICOS) ligand expression and T follicular helper cell development. Proc Natl Acad Sci U S A 108:12827–12832PubMedPubMedCentralCrossRefGoogle Scholar
  53. Huang X, Feng Z, Jiang Y, Li J, Xiang Q, Guo S, Yang C, Fei L, Guo G, Zheng L et al (2019) VSIG4 mediates transcriptional inhibition of Nlrp3 and Il-1beta in macrophages. Sci Adv 5:eaau7426PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, Kroczek RA (1999) ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397:263–266PubMedCrossRefGoogle Scholar
  55. Ishida Y, Agata Y, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11:3887–3895PubMedPubMedCentralCrossRefGoogle Scholar
  56. Isomura I, Palmer S, Grumont RJ, Bunting K, Hoyne G, Wilkinson N, Banerjee A, Proietto A, Gugasyan R, Wu L et al (2009) c-Rel is required for the development of thymic Foxp3+ CD4 regulatory T cells. J Exp Med 206:3001–3014PubMedPubMedCentralCrossRefGoogle Scholar
  57. Janakiram M, Chinai JM, Fineberg S, Fiser A, Montagna C, Medavarapu R, Castano E, Jeon H, Ohaegbulam KC, Zhao R et al (2015) Expression, Clinical Significance, and Receptor Identification of the Newest B7 Family Member HHLA2 Protein. Clin Cancer Res 21:2359–2366PubMedCrossRefGoogle Scholar
  58. Jung K, Kang M, Park C, Hyun Choi Y, Jeon Y, Park SH, Seo SK, Jin D, Choi I (2012) Protective role of V-set and immunoglobulin domain-containing 4 expressed on kupffer cells during immune-mediated liver injury by inducing tolerance of liver T- and natural killer T-cells. Hepatology 56:1838–1848PubMedCrossRefGoogle Scholar
  59. Kang S, Zhang C, Ohno T, Azuma M (2017) Unique B7-H1 expression on masticatory mucosae in the oral cavity and trans-coinhibition by B7-H1-expressing keratinocytes regulating CD4(+) T cell-mediated mucosal tissue inflammation. Mucosal Immunol 10:650–660PubMedCrossRefGoogle Scholar
  60. Kao C, Oestreich KJ, Paley MA, Crawford A, Angelosanto JM, Ali MA, Intlekofer AM, Boss JM, Reiner SL, Weinmann AS et al (2011) Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nat Immunol 12:663–671PubMedPubMedCentralCrossRefGoogle Scholar
  61. Katschke KJ Jr, Helmy KY, Steffek M, Xi H, Yin J, Lee WP, Gribling P, Barck KH, Carano RA, Taylor RE et al (2007) A novel inhibitor of the alternative pathway of complement reverses inflammation and bone destruction in experimental arthritis. J Exp Med 204:1319–1325PubMedPubMedCentralCrossRefGoogle Scholar
  62. Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704CrossRefGoogle Scholar
  63. Khayyamian S, Hutloff A, Buchner K, Grafe M, Henn V, Kroczek RA, Mages HW (2002) ICOS-ligand, expressed on human endothelial cells, costimulates Th1 and Th2 cytokine secretion by memory CD4+ T cells. Proc Natl Acad Sci U S A 99:6198–6203PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kinter AL, Godbout EJ, McNally JP, Sereti I, Roby GA, O‘Shea MA, Fauci AS (2008) The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J Immunol 181:6738–6746PubMedCrossRefGoogle Scholar
  65. Kondo Y, Ohno T, Nishii N, Harada K, Yagita H, Azuma M (2016) Differential contribution of three immune checkpoint (VISTA, CTLA-4, PD-1) pathways to antitumor responses against squamous cell carcinoma. Oral Oncol 57:54–60PubMedCrossRefGoogle Scholar
  66. Kong KF, Fu G, Zhang Y, Yokosuka T, Casas J, Canonigo-Balancio AJ, Becart S, Kim G, Yates JR 3rd, Kronenberg M et al (2014) Protein kinase C-eta controls CTLA-4-mediated regulatory T cell function. Nat Immunol 15:465–472PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kontgen F, Grumont RJ, Strasser A, Metcalf D, Li R, Tarlinton D, Gerondakis S (1995) Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and interleukin-2 expression. Genes Dev 9:1965–1977PubMedCrossRefGoogle Scholar
  68. Krummel MF, Allison JP (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182:459–465PubMedPubMedCentralCrossRefGoogle Scholar
  69. Krummel MF, Allison JP (1996) CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 183:2533–2540PubMedCrossRefGoogle Scholar
  70. Kuehn HS, Ouyang W, Lo B, Deenick EK, Niemela JE, Avery DT, Schickel JN, Tran DQ, Stoddard J, Zhang Y et al (2014) Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science 345:1623–1627PubMedPubMedCentralCrossRefGoogle Scholar
  71. Langnaese K, Colleaux L, Kloos DU, Fontes M, Wieacker P (2000) Cloning of Z39Ig, a novel gene with immunoglobulin-like domains located on human chromosome X. Biochim Biophys Acta 1492:522–525PubMedCrossRefGoogle Scholar
  72. Laurent S, Carrega P, Saverino D, Piccioli P, Camoriano M, Morabito A, Dozin B, Fontana V, Simone R, Mortara L et al (2010) CTLA-4 is expressed by human monocyte-derived dendritic cells and regulates their functions. Hum Immunol 71:934–941PubMedCrossRefGoogle Scholar
  73. Leitner J, Klauser C, Pickl WF, Stockl J, Majdic O, Bardet AF, Kreil DP, Dong C, Yamazaki T, Zlabinger G et al (2009) B7-H3 is a potent inhibitor of human T-cell activation: No evidence for B7-H3 and TREML2 interaction. Eur J Immunol 39:1754–1764PubMedPubMedCentralCrossRefGoogle Scholar
  74. Lemke D, Pfenning PN, Sahm F, Klein AC, Kempf T, Warnken U, Schnolzer M, Tudoran R, Weller M, Platten M et al (2012) Costimulatory protein 4IgB7H3 drives the malignant phenotype of glioblastoma by mediating immune escape and invasiveness. Clin Cancer Res 18:105–117PubMedCrossRefGoogle Scholar
  75. Li J, Diao B, Guo S, Huang X, Yang C, Feng Z, Yan W, Ning Q, Zheng L, Chen Y et al (2017) VSIG4 inhibits proinflammatory macrophage activation by reprogramming mitochondrial pyruvate metabolism. Nat Commun 8:1322PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lindstein T, June CH, Ledbetter JA, Stella G, Thompson CB (1989) Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway. Science 244:339–343PubMedCrossRefPubMedCentralGoogle Scholar
  77. Lines JL, Pantazi E, Mak J, Sempere LF, Wang L, O‘Connell S, Ceeraz S, Suriawinata AA, Yan S, Ernstoff MS et al (2014) VISTA is an immune checkpoint molecule for human T cells. Cancer Res 74:1924–1932PubMedPubMedCentralCrossRefGoogle Scholar
  78. Ling V, Wu PW, Spaulding V, Kieleczawa J, Luxenberg D, Carreno BM, Collins M (2003) Duplication of primate and rodent B7-H3 immunoglobulin V- and C-like domains: divergent history of functional redundancy and exon loss. Genomics 82:365–377PubMedCrossRefGoogle Scholar
  79. Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA (1991) CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 174:561–569PubMedCrossRefPubMedCentralGoogle Scholar
  80. Linsley PS, Greene JL, Tan P, Bradshaw J, Ledbetter JA, Anasetti C, Damle NK (1992) Coexpression and functional cooperation of CTLA-4 and CD28 on activated T lymphocytes. J Exp Med 176:1595–1604PubMedCrossRefGoogle Scholar
  81. Linsley PS, Bradshaw J, Greene J, Peach R, Bennett KL, Mittler RS (1996) Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity 4:535–543PubMedCrossRefGoogle Scholar
  82. Linterman MA, Rigby RJ, Wong R, Silva D, Withers D, Anderson G, Verma NK, Brink R, Hutloff A, Goodnow CC et al (2009) Roquin differentiates the specialized functions of duplicated T cell costimulatory receptor genes CD28 and ICOS. Immunity 30:228–241PubMedCrossRefGoogle Scholar
  83. Liu J, Yuan Y, Chen W, Putra J, Suriawinata AA, Schenk AD, Miller HE, Guleria I, Barth RJ, Huang YH et al (2015) Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. Proc Natl Acad Sci U S A 112:6682–6687PubMedPubMedCentralCrossRefGoogle Scholar
  84. Lo B, Zhang K, Lu W, Zheng L, Zhang Q, Kanellopoulou C, Zhang Y, Liu Z, Fritz JM, Marsh R et al (2015) AUTOIMMUNE DISEASE. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science 349:436–440PubMedCrossRefGoogle Scholar
  85. Long M, Park SG, Strickland I, Hayden MS, Ghosh S (2009) Nuclear factor-kappaB modulates regulatory T cell development by directly regulating expression of Foxp3 transcription factor. Immunity 31:921–931PubMedCrossRefGoogle Scholar
  86. Luo L, Chapoval AI, Flies DB, Zhu G, Hirano F, Wang S, Lau JS, Dong H, Tamada K, Flies AS et al (2004) B7-H3 enhances tumor immunity in vivo by costimulating rapid clonal expansion of antigen-specific CD8+ cytolytic T cells. J Immunol 173:5445–5450PubMedCrossRefGoogle Scholar
  87. Mager DL, Hunter DG, Schertzer M, Freeman JD (1999) Endogenous retroviruses provide the primary polyadenylation signal for two new human genes (HHLA2 and HHLA3). Genomics 59:255–263PubMedCrossRefGoogle Scholar
  88. Mages HW, Hutloff A, Heuck C, Buchner K, Himmelbauer H, Oliveri F, Kroczek RA (2000) Molecular cloning and characterization of murine ICOS and identification of B7h as ICOS ligand. Eur J Immunol 30:1040–1047PubMedCrossRefGoogle Scholar
  89. Magistrelli G, Jeannin P, Herbault N, Benoit De Coignac A, Gauchat JF, Bonnefoy JY, Delneste Y (1999) A soluble form of CTLA-4 generated by alternative splicing is expressed by nonstimulated human T cells. Eur J Immunol 29:3596–3602PubMedCrossRefGoogle Scholar
  90. Malquori L, Carsetti L, Ruberti G (2008) The 3’ UTR of the human CTLA4 mRNA can regulate mRNA stability and translational efficiency. Biochim Biophys Acta 1779:60–65PubMedCrossRefPubMedCentralGoogle Scholar
  91. Martinez-Llordella M, Esensten JH, Bailey-Bucktrout SL, Lipsky RH, Marini A, Chen J, Mughal M, Mattson MP, Taub DD, Bluestone JA (2013) CD28-inducible transcription factor DEC1 is required for efficient autoreactive CD4+ T cell response. J Exp Med 210:1603–1619PubMedPubMedCentralCrossRefGoogle Scholar
  92. Mathieu M, Cotta-Grand N, Daudelin JF, Thebault P, Labrecque N (2013) Notch signaling regulates PD-1 expression during CD8(+) T-cell activation. Immunol Cell Biol 91:82–88PubMedCrossRefPubMedCentralGoogle Scholar
  93. McAdam AJ, Chang TT, Lumelsky AE, Greenfield EA, Boussiotis VA, Duke-Cohan JS, Chernova T, Malenkovich N, Jabs C, Kuchroo VK et al (2000) Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J Immunol 165:5035–5040PubMedCrossRefPubMedCentralGoogle Scholar
  94. McAdam AJ, Greenwald RJ, Levin MA, Chernova T, Malenkovich N, Ling V, Freeman GJ, Sharpe AH (2001) ICOS is critical for CD40-mediated antibody class switching. Nature 409:102–105PubMedCrossRefPubMedCentralGoogle Scholar
  95. Mead KI, Zheng Y, Manzotti CN, Perry LC, Liu MK, Burke F, Powner DJ, Wakelam MJ, Sansom DM (2005) Exocytosis of CTLA-4 is dependent on phospholipase D and ADP ribosylation factor-1 and stimulated during activation of regulatory T cells. J Immunol 174:4803–4811PubMedCrossRefGoogle Scholar
  96. Metzler WJ, Bajorath J, Fenderson W, Shaw SY, Constantine KL, Naemura J, Leytze G, Peach RJ, Lavoie TB, Mueller L et al (1997) Solution structure of human CTLA-4 and delineation of a CD80/CD86 binding site conserved in CD28. Nat Struct Biol 4:527–531PubMedCrossRefPubMedCentralGoogle Scholar
  97. Miller RE, Fayen JD, Mohammad SF, Stein K, Kadereit S, Woods KD, Sramkoski RM, Jacobberger JW, Templeton D, Shurin SB et al (2002) Reduced CTLA-4 protein and messenger RNA expression in umbilical cord blood T lymphocytes. Exp Hematol 30:738–744PubMedCrossRefPubMedCentralGoogle Scholar
  98. Muscolini M, Camperio C, Porciello N, Caristi S, Capuano C, Viola A, Galandrini R, Tuosto L (2015) Phosphatidylinositol 4-phosphate 5-kinase alpha and Vav1 mutual cooperation in CD28-mediated actin remodeling and signaling functions. J Immunol 194:1323–1333PubMedCrossRefGoogle Scholar
  99. Nurieva R, Thomas S, Nguyen T, Martin-Orozco N, Wang Y, Kaja MK, Yu XZ, Dong C (2006) T-cell tolerance or function is determined by combinatorial costimulatory signals. EMBO J 25:2623–2633PubMedPubMedCentralCrossRefGoogle Scholar
  100. Oaks MK, Hallett KM, Penwell RT, Stauber EC, Warren SJ, Tector AJ (2000) A native soluble form of CTLA-4. Cell Immunol 201:144–153PubMedCrossRefGoogle Scholar
  101. Oestreich KJ, Yoon H, Ahmed R, Boss JM (2008) NFATc1 regulates PD-1 expression upon T cell activation. J Immunol 181:4832–4839PubMedPubMedCentralCrossRefGoogle Scholar
  102. Ohno T, Zhang C, Kondo Y, Kang S, Furusawa E, Tsuchiya K, Miyazaki Y, Azuma M (2018) The immune checkpoint molecule VISTA regulates allergen-specific Th2-mediated immune responses. Int Immunol 30:3–11PubMedCrossRefPubMedCentralGoogle Scholar
  103. Okazaki T, Honjo T (2007) PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 19:813–824PubMedCrossRefPubMedCentralGoogle Scholar
  104. Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T (2013) A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol 14:1212–1218PubMedCrossRefPubMedCentralGoogle Scholar
  105. Parry RV, Rumbley CA, Vandenberghe LH, June CH, Riley JL (2003) CD28 and inducible costimulatory protein Src homology 2 binding domains show distinct regulation of phosphatidylinositol 3-kinase, Bcl-xL, and IL-2 expression in primary human CD4 T lymphocytes. J Immunol 171:166–174PubMedCrossRefGoogle Scholar
  106. Paterson AM, Lovitch SB, Sage PT, Juneja VR, Lee Y, Trombley JD, Arancibia-Carcamo CV, Sobel RA, Rudensky AY, Kuchroo VK et al (2015) Deletion of CTLA-4 on regulatory T cells during adulthood leads to resistance to autoimmunity. J Exp Med 212:1603–1621PubMedPubMedCentralCrossRefGoogle Scholar
  107. Patsoukis N, Brown J, Petkova V, Liu F, Li L, Boussiotis VA (2012) Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci Signal 5:ra46PubMedPubMedCentralCrossRefGoogle Scholar
  108. Patsoukis N, Li L, Sari D, Petkova V, Boussiotis VA (2013) PD-1 increases PTEN phosphatase activity while decreasing PTEN protein stability by inhibiting casein kinase 2. Mol Cell Biol 33:3091–3098PubMedPubMedCentralCrossRefGoogle Scholar
  109. Perkins D, Wang Z, Donovan C, He H, Mark D, Guan G, Wang Y, Walunas T, Bluestone J, Listman J et al (1996) Regulation of CTLA-4 expression during T cell activation. J Immunol 156:4154–4159PubMedPubMedCentralGoogle Scholar
  110. Picarda E, Ohaegbulam KC, Zang X (2016) Molecular Pathways: Targeting B7-H3 (CD276) for Human Cancer Immunotherapy. Clin Cancer Res 22:3425–3431PubMedPubMedCentralCrossRefGoogle Scholar
  111. Pistillo MP, Tazzari PL, Palmisano GL, Pierri I, Bolognesi A, Ferlito F, Capanni P, Polito L, Ratta M, Pileri S et al (2003) CTLA-4 is not restricted to the lymphoid cell lineage and can function as a target molecule for apoptosis induction of leukemic cells. Blood 101:202–209PubMedCrossRefGoogle Scholar
  112. Podojil JR, Hecht I, Chiang MY, Vaknin I, Barbiro I, Novik A, Neria E, Rotman G, Miller SD (2018) ILDR2-Fc Is a Novel Regulator of Immune Homeostasis and Inducer of Antigen-Specific Immune Tolerance. J Immunol 200:2013–2024PubMedPubMedCentralCrossRefGoogle Scholar
  113. Prasad DV, Nguyen T, Li Z, Yang Y, Duong J, Wang Y, Dong C (2004) Murine B7-H3 is a negative regulator of T cells. J Immunol 173:2500–2506PubMedCrossRefGoogle Scholar
  114. Qian X, Agematsu K, Freeman GJ, Tagawa Y, Sugane K, Hayashi T (2006) The ICOS-ligand B7-H2, expressed on human type II alveolar epithelial cells, plays a role in the pulmonary host defense system. Eur J Immunol 36:906–918PubMedCrossRefGoogle Scholar
  115. Qian Y, Hong B, Shen L, Wu Z, Yao H, Zhang L (2013) B7-H4 enhances oncogenicity and inhibits apoptosis in pancreatic cancer cells. Cell Tissue Res 353:139–151PubMedCrossRefGoogle Scholar
  116. Qureshi OS, Kaur S, Hou TZ, Jeffery LE, Poulter NS, Briggs Z, Kenefeck R, Willox AK, Royle SJ, Rappoport JZ et al (2012) Constitutive clathrin-mediated endocytosis of CTLA-4 persists during T cell activation. J Biol Chem 287:9429–9440PubMedPubMedCentralCrossRefGoogle Scholar
  117. Ramakrishnan P, Clark PM, Mason DE, Peters EC, Hsieh-Wilson LC, Baltimore D (2013) Activation of the transcriptional function of the NF-kappaB protein c-Rel by O-GlcNAc glycosylation. Sci Signal 6:ra75PubMedPubMedCentralCrossRefGoogle Scholar
  118. Ramos-Morales F, Romero F, Schweighoffer F, Bismuth G, Camonis J, Tortolero M, Fischer S (1995) The proline-rich region of Vav binds to Grb2 and Grb3-3. Oncogene 11:1665–1669PubMedGoogle Scholar
  119. Rao S, Gerondakis S, Woltring D, Shannon MF (2003) c-Rel is required for chromatin remodeling across the IL-2 gene promoter. J Immunol 170:3724–3731PubMedCrossRefGoogle Scholar
  120. Saito T, Yokosuka T, Hashimoto-Tane A (2010) Dynamic regulation of T cell activation and co-stimulation through TCR-microclusters. FEBS Lett 584:4865–4871PubMedCrossRefGoogle Scholar
  121. Sakr MA, Takino T, Domoto T, Nakano H, Wong RW, Sasaki M, Nakanuma Y, Sato H (2010) GI24 enhances tumor invasiveness by regulating cell surface membrane-type 1 matrix metalloproteinase. Cancer Sci 101:2368–2374PubMedCrossRefGoogle Scholar
  122. Sanchez-Lockhart M, Graf B, Miller J (2008) Signals and sequences that control CD28 localization to the central region of the immunological synapse. J Immunol 181:7639–7648PubMedPubMedCentralCrossRefGoogle Scholar
  123. Sauer S, Bruno L, Hertweck A, Finlay D, Leleu M, Spivakov M, Knight ZA, Cobb BS, Cantrell D, O’Connor E et al (2008) T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci U S A 105:7797–7802PubMedPubMedCentralCrossRefGoogle Scholar
  124. Schneider H, Martin M, Agarraberes FA, Yin L, Rapoport I, Kirchhausen T, Rudd CE (1999) Cytolytic T lymphocyte-associated antigen-4 and the TCR zeta/CD3 complex, but not CD28, interact with clathrin adaptor complexes AP-1 and AP-2. J Immunol 163:1868–1879PubMedGoogle Scholar
  125. Schneider H, Downey J, Smith A, Zinselmeyer BH, Rush C, Brewer JM, Wei B, Hogg N, Garside P, Rudd CE (2006) Reversal of the TCR stop signal by CTLA-4. Science 313:1972–1975PubMedCrossRefGoogle Scholar
  126. Schwartz JC, Zhang X, Nathenson SG, Almo SC (2002) Structural mechanisms of costimulation. Nat Immunol 3:427–434PubMedCrossRefGoogle Scholar
  127. Shapiro VS, Truitt KE, Imboden JB, Weiss A (1997) CD28 mediates transcriptional upregulation of the interleukin-2 (IL-2) promoter through a composite element containing the CD28RE and NF-IL-2B AP-1 sites. Mol Cell Biol 17:4051–4058PubMedPubMedCentralCrossRefGoogle Scholar
  128. Sheppard KA, Fitz LJ, Lee JM, Benander C, George JA, Wooters J, Qiu Y, Jussif JM, Carter LL, Wood CR et al (2004) PD-1 inhibits T-cell receptor induced phosphorylation of the ZAP70/CD3zeta signalosome and downstream signaling to PKCtheta. FEBS Lett 574:37–41PubMedCrossRefGoogle Scholar
  129. Sica GL, Choi IH, Zhu G, Tamada K, Wang SD, Tamura H, Chapoval AI, Flies DB, Bajorath J, Chen L (2003) B7-H4, a molecule of the B7 family, negatively regulates T cell immunity. Immunity 18:849–861PubMedCrossRefGoogle Scholar
  130. Smith KM, Brewer JM, Webb P, Coyle AJ, Gutierrez-Ramos C, Garside P (2003) Inducible costimulatory molecule-B7-related protein 1 interactions are important for the clonal expansion and B cell helper functions of naive, Th1, and Th2 T cells. J Immunol 170:2310–2315PubMedCrossRefGoogle Scholar
  131. Sonkoly E, Janson P, Majuri ML, Savinko T, Fyhrquist N, Eidsmo L, Xu N, Meisgen F, Wei T, Bradley M et al (2010) MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte-associated antigen 4. J Allergy Clin Immunol 126(581–589):e581–e520CrossRefGoogle Scholar
  132. Stamper CC, Zhang Y, Tobin JF, Erbe DV, Ikemizu S, Davis SJ, Stahl ML, Seehra J, Somers WS, Mosyak L (2001) Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature 410:608–611PubMedCrossRefGoogle Scholar
  133. Staron MM, Gray SM, Marshall HD, Parish IA, Chen JH, Perry CJ, Cui G, Li MO, Kaech SM (2014) The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8(+) T cells during chronic infection. Immunity 41:802–814PubMedPubMedCentralCrossRefGoogle Scholar
  134. Stojanovic A, Fiegler N, Brunner-Weinzierl M, Cerwenka A (2014) CTLA-4 is expressed by activated mouse NK cells and inhibits NK Cell IFN-gamma production in response to mature dendritic cells. J Immunol 192:4184–4191PubMedCrossRefGoogle Scholar
  135. Suh WK, Gajewska BU, Okada H, Gronski MA, Bertram EM, Dawicki W, Duncan GS, Bukczynski J, Plyte S, Elia A et al (2003) The B7 family member B7-H3 preferentially down-regulates T helper type 1-mediated immune responses. Nat Immunol 4:899–906PubMedCrossRefPubMedCentralGoogle Scholar
  136. Suh WK, Wang S, Duncan GS, Miyazaki Y, Cates E, Walker T, Gajewska BU, Deenick E, Dawicki W, Okada H et al (2006) Generation and characterization of B7-H4/B7S1/B7x-deficient mice. Mol Cell Biol 26:6403–6411PubMedPubMedCentralCrossRefGoogle Scholar
  137. Sun MY, Richards S, Prasad DVR, Mai XM, Rudensky A, Dong C (2002) Characterization of mouse and human B7-H3 genes. J Immunol 168:6294–6297PubMedCrossRefPubMedCentralGoogle Scholar
  138. Sun J, Fu F, Gu W, Yan R, Zhang G, Shen Z, Zhou Y, Wang H, Shen B, Zhang X (2011) Origination of new immunological functions in the costimulatory molecule B7-H3: the role of exon duplication in evolution of the immune system. PLoS One 6:e24751PubMedPubMedCentralCrossRefGoogle Scholar
  139. Tafuri A, Shahinian A, Bladt F, Yoshinaga SK, Jordana M, Wakeham A, Boucher LM, Bouchard D, Chan VS, Duncan G et al (2001) ICOS is essential for effective T-helper-cell responses. Nature 409:105–109PubMedCrossRefGoogle Scholar
  140. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N, Mak TW, Sakaguchi S (2000) Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 192:303–310PubMedPubMedCentralCrossRefGoogle Scholar
  141. Tan C, Wei L, Vistica BP, Shi G, Wawrousek EF, Gery I (2014) Phenotypes of Th lineages generated by the commonly used activation with anti-CD3/CD28 antibodies differ from those generated by the physiological activation with the specific antigen. Cell Mol Immunol 11:305–313PubMedPubMedCentralCrossRefGoogle Scholar
  142. Tavano R, Contento RL, Baranda SJ, Soligo M, Tuosto L, Manes S, Viola A (2006) CD28 interaction with filamin-A controls lipid raft accumulation at the T-cell immunological synapse. Nat Cell Biol 8:1270–1276PubMedCrossRefGoogle Scholar
  143. Terawaki S, Chikuma S, Shibayama S, Hayashi T, Yoshida T, Okazaki T, Honjo T (2011) IFN-alpha directly promotes programmed cell death-1 transcription and limits the duration of T cell-mediated immunity. J Immunol 186:2772–2779PubMedCrossRefGoogle Scholar
  144. Thomas RM, Gao L, Wells AD (2005) Signals from CD28 induce stable epigenetic modification of the IL-2 promoter. J Immunol 174:4639–4646PubMedCrossRefGoogle Scholar
  145. Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G, Rainbow DB, Hunter KM, Smith AN, Di Genova G et al (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423:506–511PubMedCrossRefGoogle Scholar
  146. Valk E, Leung R, Kang H, Kaneko K, Rudd CE, Schneider H (2006) T cell receptor-interacting molecule acts as a chaperone to modulate surface expression of the CTLA-4 coreceptor. Immunity 25:807–821PubMedCrossRefGoogle Scholar
  147. van der Merwe PA, Davis SJ (2003) Molecular interactions mediating T cell antigen recognition. Annu Rev Immunol 21:659–684PubMedCrossRefGoogle Scholar
  148. van der Merwe PA, Bodian DL, Daenke S, Linsley P, Davis SJ (1997) CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J Exp Med 185:393–403PubMedPubMedCentralCrossRefGoogle Scholar
  149. Victora GD, Nussenzweig MC (2012) Germinal centers. Annu Rev Immunol 30:429–457PubMedCrossRefGoogle Scholar
  150. Vigdorovich V, Ramagopal UA, Lazar-Molnar E, Sylvestre E, Lee JS, Hofmeyer KA, Zang X, Nathenson SG, Almo SC (2013) Structure and T cell inhibition properties of B7 family member, B7-H3. Structure 21:707–717PubMedPubMedCentralCrossRefGoogle Scholar
  151. Vijayakrishnan L, Slavik JM, Illes Z, Greenwald RJ, Rainbow D, Greve B, Peterson LB, Hafler DA, Freeman GJ, Sharpe AH et al (2004) An autoimmune disease-associated CTLA-4 splice variant lacking the B7 binding domain signals negatively in T cells. Immunity 20:563–575PubMedCrossRefGoogle Scholar
  152. Vogt L, Schmitz N, Kurrer MO, Bauer M, Hinton HI, Behnke S, Gatto D, Sebbel P, Beerli RR, Sonderegger I et al (2006) VSIG4, a B7 family-related protein, is a negative regulator of T cell activation. J Clin Invest 116:2817–2826PubMedPubMedCentralCrossRefGoogle Scholar
  153. Walunas TL, Bakker CY, Bluestone JA (1996) CTLA-4 ligation blocks CD28-dependent T cell activation. J Exp Med 183:2541–2550PubMedCrossRefGoogle Scholar
  154. Wang L, Rubinstein R, Lines JL, Wasiuk A, Ahonen C, Guo Y, Lu LF, Gondek D, Wang Y, Fava RA et al (2011) VISTA, a novel mouse Ig superfamily ligand that negatively regulates T cell responses. J Exp Med 208:577–592PubMedPubMedCentralCrossRefGoogle Scholar
  155. Wang J, Wu G, Manick B, Hernandez V, Renelt M, Erickson C, Guan J, Singh R, Rollins S, Solorz A et al (2019) VSIG-3 as a ligand of VISTA inhibits human T-cell function. Immunology 156:74–85PubMedCrossRefGoogle Scholar
  156. Watts TH (2010) Staying alive: T cell costimulation, CD28, and Bcl-xL. J Immunol 185:3785–3787PubMedCrossRefGoogle Scholar
  157. Weiss A, Manger B, Imboden J (1986) Synergy between the T3/antigen receptor complex and Tp44 in the activation of human T cells. J Immunol 137:819–825PubMedGoogle Scholar
  158. Wilson EH, Zaph C, Mohrs M, Welcher A, Siu J, Artis D, Hunter CA (2006) B7RP-1-ICOS interactions are required for optimal infection-induced expansion of CD4+ Th1 and Th2 responses. J Immunol 177:2365–2372PubMedPubMedCentralCrossRefGoogle Scholar
  159. Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, Nomura T, Sakaguchi S (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322:271–275PubMedCrossRefGoogle Scholar
  160. Witsch EJ, Peiser M, Hutloff A, Buchner K, Dorner BG, Jonuleit H, Mages HW, Kroczek RA (2002) ICOS and CD28 reversely regulate IL-10 on re-activation of human effector T cells with mature dendritic cells. Eur J Immunol 32:2680–2686PubMedCrossRefGoogle Scholar
  161. Wong SC, Oh E, Ng CH, Lam KP (2003) Impaired germinal center formation and recall T-cell-dependent immune responses in mice lacking the costimulatory ligand B7-H2. Blood 102:1381–1388PubMedCrossRefGoogle Scholar
  162. Wu YQ, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC, Bates DL, Guo L, Han AD, Ziegler SF et al (2006) FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126:375–387PubMedCrossRefGoogle Scholar
  163. Xiao Y, Yu S, Zhu B, Bedoret D, Bu X, Francisco LM, Hua P, Duke-Cohan JS, Umetsu DT, Sharpe AH et al (2014) RGMb is a novel binding partner for PD-L2 and its engagement with PD-L2 promotes respiratory tolerance. J Exp Med 211:943–959PubMedPubMedCentralCrossRefGoogle Scholar
  164. Yamazaki T, Akiba H, Iwai H, Matsuda H, Aoki M, Tanno Y, Shin T, Tsuchiya H, Pardoll DM, Okumura K et al (2002) Expression of programmed death 1 ligands by murine T cells and APC. J Immunol 169:5538–5545PubMedCrossRefPubMedCentralGoogle Scholar
  165. Ying H, Yang L, Qiao G, Li Z, Zhang L, Yin F, Xie D, Zhang J (2010) Cutting edge: CTLA-4--B7 interaction suppresses Th17 cell differentiation. J Immunol 185:1375–1378PubMedPubMedCentralCrossRefGoogle Scholar
  166. Yokosuka T, Kobayashi W, Sakata-Sogawa K, Takamatsu M, Hashimoto-Tane A, Dustin ML, Tokunaga M, Saito T (2008) Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C theta translocation. Immunity 29:589–601PubMedPubMedCentralCrossRefGoogle Scholar
  167. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T (2012) Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 209:1201–1217PubMedPubMedCentralCrossRefGoogle Scholar
  168. Yoon KW, Byun S, Kwon E, Hwang SY, Chu K, Hiraki M, Jo SH, Weins A, Hakroush S, Cebulla A et al (2015) Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science 349:1261669PubMedPubMedCentralCrossRefGoogle Scholar
  169. Yoshinaga SK, Whoriskey JS, Khare SD, Sarmiento U, Guo J, Horan T, Shih G, Zhang M, Coccia MA, Kohno T et al (1999) T-cell co-stimulation through B7RP-1 and ICOS. Nature 402:827–832PubMedCrossRefGoogle Scholar
  170. Yoshinaga SK, Zhang M, Pistillo J, Horan T, Khare SD, Miner K, Sonnenberg M, Boone T, Brankow D, Dai T et al (2000) Characterization of a new human B7-related protein: B7RP-1 is the ligand to the co-stimulatory protein ICOS. Int Immunol 12:1439–1447PubMedCrossRefGoogle Scholar
  171. Yuan X, Yang BH, Dong Y, Yamamura A, Fu W (2017) CRIg, a tissue-resident macrophage specific immune checkpoint molecule, promotes immunological tolerance in NOD mice, via a dual role in effector and regulatory T cells. elife 6:e29540PubMedPubMedCentralCrossRefGoogle Scholar
  172. Zang X, Loke P, Kim J, Murphy K, Waitz R, Allison JP (2003) B7x: a widely expressed B7 family member that inhibits T cell activation. Proc Natl Acad Sci U S A 100:10388–10392PubMedPubMedCentralCrossRefGoogle Scholar
  173. Zhang X, Schwartz JC, Almo SC, Nathenson SG (2003) Crystal structure of the receptor-binding domain of human B7-2: insights into organization and signaling. Proc Natl Acad Sci U S A 100:2586–2591PubMedPubMedCentralCrossRefGoogle Scholar
  174. Zhang G, Hou J, Shi J, Yu G, Lu B, Zhang X (2008) Soluble CD276 (B7-H3) is released from monocytes, dendritic cells and activated T cells and is detectable in normal human serum. Immunology 123:538–546PubMedPubMedCentralCrossRefGoogle Scholar
  175. Zhao R, Chinai JM, Buhl S, Scandiuzzi L, Ray A, Jeon H, Ohaegbulam KC, Ghosh K, Zhao A, Scharff MD et al (2013) HHLA2 is a member of the B7 family and inhibits human CD4 and CD8 T-cell function. Proc Natl Acad Sci U S A 110:9879–9884PubMedPubMedCentralCrossRefGoogle Scholar
  176. Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY (2007) Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445:936–940PubMedCrossRefPubMedCentralGoogle Scholar
  177. Zhong X, Bai C, Gao W, Strom TB, Rothstein TL (2004) Suppression of expression and function of negative immune regulator PD-1 by certain pattern recognition and cytokine receptor signals associated with immune system danger. Int Immunol 16:1181–1188PubMedCrossRefPubMedCentralGoogle Scholar
  178. Zhong X, Tumang JR, Gao W, Bai C, Rothstein TL (2007) PD-L2 expression extends beyond dendritic cells/macrophages to B1 cells enriched for V(H)11/V(H)12 and phosphatidylcholine binding. Eur J Immunol 37:2405–2410PubMedCrossRefPubMedCentralGoogle Scholar
  179. Zhu G, Augustine MM, Azuma T, Luo L, Yao S, Anand S, Rietz AC, Huang J, Xu H, Flies AS et al (2009) B7-H4-deficient mice display augmented neutrophil-mediated innate immunity. Blood 113:1759–1767PubMedPubMedCentralCrossRefGoogle Scholar
  180. Zhu Y, Yao S, Iliopoulou BP, Han X, Augustine MM, Xu H, Phennicie RT, Flies SJ, Broadwater M, Ruff W et al (2013) B7-H5 costimulates human T cells via CD28H. Nat Commun 4:2043PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Molecular Immunology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan

Personalised recommendations