Cancer Immunotherapy Targeting Co-signal Molecules

  • Masao Nakajima
  • Koji TamadaEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1189)


Great success of immune checkpoint blockade represented by anti-PD-1 monoclonal antibodies (mAbs) has changed a landscape of cancer immunotherapy. There is no doubt about an importance of co-signal molecules as one of the most promising targets in anti-cancer drugs. However, it should be noted that the proportion of patients who have objective and durable responses to immune checkpoint blockade remains less than 30% in majority of cancers. Thus, in addition to refine the usage of existing drugs for checkpoint blockade, identification and characterization of novel checkpoint molecules other than CTLA-4 and PD-1 is a highly anticipated research subject. In addition, agonists of stimulatory co-signal molecules have a potential to further improve anti-tumor effects, rendering them attractive in research and drug development. In this chapter, functions of co-signal molecules in anti-tumor immunity in terms of pre-clinical animal models as well as clinical trials are described.


Inhibitory co-signals Immune checkpoint blockade T cell exhaustion Stimulatory co-signals Agonistic antibody 


  1. Andreae S, Piras F, Burdin N, Triebel F (2002) Maturation and activation of dendritic cells induced by lymphocyte activation gene-3 (CD223). J Immunol 168:3874–3880PubMedCrossRefGoogle Scholar
  2. Baixeras E et al (1992) Characterization of the lymphocyte activation gene 3-encoded protein. A new ligand for human leukocyte antigen class II antigens. J Exp Med 176:327–337PubMedCrossRefGoogle Scholar
  3. Blackburn SD et al (2009) Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Publ Group 10:29–37Google Scholar
  4. Brignone C, Escudier B, Grygar C, Marcu M, Triebel F (2009) A phase I pharmacokinetic and biological correlative study of IMP321, a novel MHC class II agonist, in patients with advanced renal cell carcinoma. Clin Cancer Res 15:6225–6231PubMedCrossRefGoogle Scholar
  5. Brignone C et al (2010) First-line chemoimmunotherapy in metastatic breast carcinoma: combination of paclitaxel and IMP321 (LAG-3Ig) enhances immune responses and antitumor activity. J Transl Med 8:71PubMedPubMedCentralCrossRefGoogle Scholar
  6. Brunet JF et al (1987) A new member of the immunoglobulin superfamily--CTLA-4. Nat Int Weekly J Sci 328:267–270Google Scholar
  7. Chambers CA, Allison JP (1999) Costimulatory regulation of T cell function. Curr Opin Cell Biol 11:203–210PubMedCrossRefPubMedCentralGoogle Scholar
  8. Chang C-H et al (2015) Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 162:1229–1241PubMedPubMedCentralCrossRefGoogle Scholar
  9. Chauvin J-M et al (2015) TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients. J Clin Invest 125:2046–2058PubMedPubMedCentralCrossRefGoogle Scholar
  10. Chen AI et al (1999) Ox40-ligand has a critical costimulatory role in dendritic cell:T cell interactions. Immunity 11:689–698PubMedCrossRefPubMedCentralGoogle Scholar
  11. Chen S et al (2015) Combination of 4-1BB agonist and PD-1 antagonist promotes antitumor effector/memory CD8 T cells in a poorly immunogenic tumor model. Cancer Immunol Res 3:149–160PubMedCrossRefPubMedCentralGoogle Scholar
  12. Chiba S et al (2012) Tumor-infiltrating DCs suppress nucleic acid-mediated innate immune responses through interactions between the receptor TIM-3 and the alarmin HMGB1. Nat Publ Group 13:832–842Google Scholar
  13. Chiou VL, Burotto M (2015) Pseudoprogression and immune-related response in solid tumors. J Clin Oncol 33:3541–3543PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cohen AD et al (2010) Agonist anti-GITR monoclonal antibody induces melanoma tumor immunity in mice by altering regulatory T cell stability and intra-tumor accumulation. PLoS One 5:e10436PubMedPubMedCentralCrossRefGoogle Scholar
  15. Collins AV et al (2002) The interaction properties of costimulatory molecules revisited. Immunity 17:201–210PubMedCrossRefPubMedCentralGoogle Scholar
  16. Curti BD et al (2013) OX40 is a potent immune-stimulating target in late-stage cancer patients. Cancer Res 73:7189–7198PubMedPubMedCentralCrossRefGoogle Scholar
  17. Dardalhon V et al (2010) Tim-3/galectin-9 pathway: regulation of Th1 immunity through promotion of CD11b+Ly-6G+ myeloid cells. J Immunol 185:1383–1392PubMedPubMedCentralCrossRefGoogle Scholar
  18. Dong H et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800PubMedCrossRefPubMedCentralGoogle Scholar
  19. Eggermont AMM et al (2015) Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol 16:522–530PubMedPubMedCentralCrossRefGoogle Scholar
  20. Freeman GJ et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034PubMedPubMedCentralCrossRefGoogle Scholar
  21. Freeman GJ, Casasnovas JM, Umetsu DT, DeKruyff RH (2010) TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol Rev 235:172–189PubMedPubMedCentralCrossRefGoogle Scholar
  22. Goding SR et al (2013) Restoring immune function of tumor-specific CD4+ T cells during recurrence of melanoma. J Immunol 190:4899–4909PubMedPubMedCentralCrossRefGoogle Scholar
  23. Gramaglia I, Weinberg AD, Lemon M, Croft M (1998) Ox-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T cell responses. J Immunol 161:6510–6517PubMedPubMedCentralGoogle Scholar
  24. Hodi FS et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363:711–723PubMedPubMedCentralCrossRefGoogle Scholar
  25. Hodi FS et al (2016) Evaluation of immune-related response criteria and RECIST v1.1 in patients with Advanced melanoma treated with pembrolizumab. J Clin Oncol 34:1510–1517PubMedPubMedCentralCrossRefGoogle Scholar
  26. Huang C-T et al (2004) Role of LAG-3 in regulatory T cells. Immunity 21:503–513PubMedCrossRefPubMedCentralGoogle Scholar
  27. Huang Y-H et al (2016) Corrigendum: CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. Nature 536:359–359PubMedPubMedCentralCrossRefGoogle Scholar
  28. Huard B, Gaulard P, Faure F, Hercend T, Triebel F (1994) Cellular expression and tissue distribution of the human LAG-3-encoded protein, an MHC class II ligand. Immunogenetics 39:213–217PubMedCrossRefPubMedCentralGoogle Scholar
  29. Hui E et al (2017) T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355:1428–1433PubMedPubMedCentralCrossRefGoogle Scholar
  30. Ishida Y, Agata Y, Shibahara K, Honjo T (1992) Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 11:3887–3895PubMedPubMedCentralCrossRefGoogle Scholar
  31. Johnston RJ et al (2014) The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell 26:923–937PubMedCrossRefPubMedCentralGoogle Scholar
  32. Kano Y et al (2016) Combined adjuvants of poly(I:C) plus LAG-3-Ig improve antitumor effects of tumor-specific T cells, preventing their exhaustion. Cancer Sci 107:398–406PubMedPubMedCentralCrossRefGoogle Scholar
  33. Keler T et al (2003) Activity and safety of CTLA-4 blockade combined with vaccines in cynomolgus macaques. J Immunol 171:6251–6259PubMedCrossRefGoogle Scholar
  34. Kopf M et al (1999) OX40-deficient mice are defective in Th cell proliferation but are competent in generating B cell and CTL responses after virus infection. Immunity 11:699–708PubMedCrossRefGoogle Scholar
  35. Langer CJ et al (2016) Carboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol 17:1497–1508CrossRefGoogle Scholar
  36. Latchman Y et al (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268PubMedCrossRefPubMedCentralGoogle Scholar
  37. Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–1736PubMedPubMedCentralCrossRefGoogle Scholar
  38. Lee H-W et al (2002) 4-1BB promotes the survival of CD8+ T lymphocytes by increasing expression of Bcl-xL and Bfl-1. J Immunol 169:4882–4888PubMedCrossRefGoogle Scholar
  39. Mallett S, Fossum S, Barclay AN (1990) Characterization of the MRC OX40 antigen of activated CD4 positive T lymphocytes--a molecule related to nerve growth factor receptor. EMBO J 9:1063–1068PubMedPubMedCentralCrossRefGoogle Scholar
  40. Martinet L, Smyth MJ (2015) Balancing natural killer cell activation through paired receptors. Nat Rev Immunol 15:243–254PubMedCrossRefPubMedCentralGoogle Scholar
  41. Matsuzaki J et al (2010) Tumor-infiltrating NY-ESO-1-specific CD8+ T cells are negatively regulated by LAG-3 and PD-1 in human ovarian cancer. Proc Natl Acad Sci U S A 107:7875–7880PubMedPubMedCentralCrossRefGoogle Scholar
  42. McIntire JJ et al (2001) Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family. Nat Immunol 2:1109–1116PubMedCrossRefPubMedCentralGoogle Scholar
  43. Melero I et al (1997) Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med 3:682–685PubMedCrossRefPubMedCentralGoogle Scholar
  44. Monney L et al (2002) Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nat Int Weekly J Sci 415:536–541Google Scholar
  45. Nishimura H et al (2001) Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291:319–322PubMedCrossRefPubMedCentralGoogle Scholar
  46. Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T (2013) A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Publ Group 14:1212–1218Google Scholar
  47. Park J-J et al (2010) B7-H1/CD80 interaction is required for the induction and maintenance of peripheral T-cell tolerance. Blood 116:1291–1298PubMedPubMedCentralCrossRefGoogle Scholar
  48. Parry RV et al (2005) CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 25:9543–9553PubMedPubMedCentralCrossRefGoogle Scholar
  49. Pauken KE, Wherry EJ (2014) TIGIT and CD226: tipping the balance between costimulatory and coinhibitory molecules to augment the cancer immunotherapy toolkit. Cancer Cell 26:785–787PubMedCrossRefPubMedCentralGoogle Scholar
  50. Piconese S, Valzasina B, Colombo MP (2008) OX40 triggering blocks suppression by regulatory T cells and facilitates tumor rejection. J Exp Med 205:825–839PubMedPubMedCentralCrossRefGoogle Scholar
  51. Postow MA et al (2015) Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 372:2006–2017PubMedPubMedCentralCrossRefGoogle Scholar
  52. Prigent P, El mir S, Dréano M, Triebel F (1999) Lymphocyte activation gene-3 induces tumor regression and antitumor immune responses. Eur J Immunol 29:3867–3876PubMedCrossRefPubMedCentralGoogle Scholar
  53. Pulle G, Vidric M, Watts TH (2006) IL-15-dependent induction of 4-1BB promotes antigen-independent CD8 memory T cell survival. J Immunol 176:2739–2748PubMedCrossRefPubMedCentralGoogle Scholar
  54. Qureshi OS et al (2011) Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332:600–603PubMedPubMedCentralCrossRefGoogle Scholar
  55. Rangachari M et al (2012) Bat3 promotes T cell responses and autoimmunity by repressing Tim-3–mediated cell death and exhaustion. Nat Med 18:1394–1400PubMedPubMedCentralCrossRefGoogle Scholar
  56. Robert C et al (2011) Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 364:2517–2526PubMedPubMedCentralCrossRefGoogle Scholar
  57. Robert C et al (2015) Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med 372:2521–2532PubMedPubMedCentralCrossRefGoogle Scholar
  58. Romano E et al (2014) MART-1 peptide vaccination plus IMP321 (LAG-3Ig fusion protein) in patients receiving autologous PBMCs after lymphodepletion: results of a phase I trial. J Transl Med 12:97PubMedPubMedCentralCrossRefGoogle Scholar
  59. Sakuishi K et al (2010) Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med 207:2187–2194PubMedPubMedCentralCrossRefGoogle Scholar
  60. Sánchez-Fueyo A et al (2003) Tim-3 inhibits T helper type 1-mediated auto- and alloimmune responses and promotes immunological tolerance. Nat Immunol 4:1093–1101PubMedCrossRefPubMedCentralGoogle Scholar
  61. Selby MJ et al (2013) Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells. Cancer Immunol Res 1:32–42PubMedCrossRefPubMedCentralGoogle Scholar
  62. Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S (2002) Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3:135–142PubMedCrossRefPubMedCentralGoogle Scholar
  63. Shrimali RK et al (2017) Concurrent PD-1 blockade negates the effects of OX40 agonist antibody in combination immunotherapy through inducing T-cell apoptosis. Cancer Immunol Res 5:755–766PubMedCrossRefPubMedCentralGoogle Scholar
  64. Tolcher AW et al (2017) Phase Ib study of Utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in combination with Pembrolizumab (MK-3475) in patients with advanced solid tumors. Clin Cancer Res 23:5349–5357PubMedCrossRefPubMedCentralGoogle Scholar
  65. Tone M et al (2003) Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells. PNAS 100:15059–15064PubMedCrossRefPubMedCentralGoogle Scholar
  66. Topalian SL et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454PubMedPubMedCentralCrossRefGoogle Scholar
  67. Vetto JT et al (1997) Presence of the T-cell activation marker OX-40 on tumor infiltrating lymphocytes and draining lymph node cells from patients with melanoma and head and neck cancers. AJS 174:258–265CrossRefGoogle Scholar
  68. Vu MD et al (2007) OX40 costimulation turns off Foxp3+ Tregs. Blood 110:2501–2510PubMedPubMedCentralCrossRefGoogle Scholar
  69. Wang C, Lin GHY, McPherson AJ, Watts TH (2009) Immune regulation by 4-1BB and 4-1BBL: complexities and challenges. Immunol Rev 229:192–215PubMedCrossRefPubMedCentralGoogle Scholar
  70. Waterhouse P et al (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985–988PubMedCrossRefPubMedCentralGoogle Scholar
  71. Weinberg AD et al (2000) Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J Immunol 164:2160–2169PubMedCrossRefGoogle Scholar
  72. Wilcox RA, Tamada K, Strome SE, Chen L (2002a) Signaling through NK cell-associated CD137 promotes both helper function for CD8+ cytolytic T cells and responsiveness to IL-2 but not cytolytic activity. J Immunol 169:4230–4236PubMedCrossRefGoogle Scholar
  73. Wilcox RA et al (2002b) Cutting edge: expression of functional CD137 receptor by dendritic cells. J Immunol 168:4262–4267PubMedCrossRefGoogle Scholar
  74. Wing K et al (2008) CTLA-4 control over Foxp3+ regulatory T cell function. Science 322:271–275PubMedCrossRefGoogle Scholar
  75. Workman CJ, Dugger KJ, Vignali DAA (2002) Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3. J Immunol 169:5392–5395PubMedCrossRefGoogle Scholar
  76. Ye Z et al (2002) Gene therapy for cancer using single-chain Fv fragments specific for 4-1BB. Nat Med 8:343–348PubMedCrossRefGoogle Scholar
  77. Yearley JH et al (2017) PD-L2 expression in human tumors: relevance to anti-PD-1 therapy in Cancer. Clin Cancer Res 23:3158–3167PubMedCrossRefGoogle Scholar
  78. Yokosuka T et al (2012) Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. J Exp Med 209:1201–1217PubMedPubMedCentralCrossRefGoogle Scholar
  79. Yu X et al (2009) The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Publ Group 10:48–57Google Scholar
  80. Zhou Q et al (2011) Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood 117:4501–4510PubMedPubMedCentralCrossRefGoogle Scholar
  81. Zhu C et al (2005) The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat Immunol 6:1245–1252PubMedCrossRefPubMedCentralGoogle Scholar
  82. Zinselmeyer BH et al (2013) PD-1 promotes immune exhaustion by inducing antiviral T cell motility paralysis. J Exp Med 210:757–774PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of ImmunologyYamaguchi University Graduate School of MedicineYamaguchiJapan

Personalised recommendations