Skip to main content

Hair Cell Mechano-electrical Transduction and Synapse Transmission

  • Chapter
  • First Online:
Auditory Information Processing
  • 359 Accesses

Abstract

Sound signal is transduced to electrical signal in hair cells, transmitted across synapse to auditory nerve fibers (ANFs), and along the ascending pathway to the cochlear nucleus in the brainstem, then to the midbrain, and through the auditory thalamus to the auditory cortex. In every step, auditory signal has temporal structures representing the sound. I will discuss in this chapter two fundamental attributes of hair cell transduction: (1) how the receptor potential is generated in hair cells, and (2) how the hair cell receptor potential is transmitted across synapse to the auditory nerve fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JC, Mroz EA, Sewell WF (1987) A possible neurotransmitter role for CGRP in a hair-cell sensory organ. Brain Res 419:347–351

    Article  PubMed  CAS  Google Scholar 

  • Art JJ, Fettiplace R, Fuchs PA (1984) Synaptic hyperpolarization and inhibition of turtle cochlear hair cells. J Physiol 356:525–550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ashmore JF (1983) Frequency tuning in a frog vestibular organ. Nature 304:536–538

    Article  PubMed  CAS  Google Scholar 

  • Ashmore JF, Ohmori H (1990) Control of intracellular calcium by ATP in isolated outer hair cells of the guinea-pig cochlea. J Physiol 428:109–131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ashmore JF, Russell IJ (1983) Sensory and effector functions of vertebrate hair cells. J Submicrosc Cytol 15(1):163–166

    PubMed  CAS  Google Scholar 

  • Bagger-Sjoebaeck D, Wersaell J (1973) The sensory hairs and tectorial membrane of the basilar papilla in the lizard Calotes versicolor. J Neurocytol 2:329–350

    Article  Google Scholar 

  • Bellingham MC, Lim R, Walmsley B (1998) Developmental changes in EPSC quantal size and quantal content at a central glutamatergic synapse in rat. J Physiol 511:861–869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beurg M, Evans MG, Hackney CM, Fettiplace R (2006) A large-conductance calcium-selective mechanotransducer channel in mammalian cochlear hair cells. J Neurosci 26(43):10992–11000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beurg M, Fettiplace R, Nam JH, Ricci AJ (2009) Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging. Nat Neurosci 12(5):553–558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beurg M, Kim KX, Fettiplace R (2014) Conductance and block of hair-cell mechanotransducer channels in transmembrane channel-like protein mutants. J Gen Physiol 144(1):55–69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beurg M, Goldring AC, Ricci AJ, Fettiplace R (2016) Development and localization of reverse-polarity mechanotransducer channels in cochlear hair cells. Proc Natl Acad Sci U S A 113(24):6767–6772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bobbin RP (1979) Glutamate and aspartate mimic the afferent transmitter in the cochlea. Exp Brain Res 34(2):389–393

    Article  PubMed  CAS  Google Scholar 

  • Bosher SK, Warren RL (1971) A study of the electrochemistry and osmotic relationships of the cochlear fluids in the neonatal rat at the time of the development of the endocochlear potential. J Physiol 212(3):739–761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bosher SK, Warren RL (1978) Very low calcium content of cochlear endolymph, an extracellular fluid. Nature 273(5661):377–378

    Article  PubMed  CAS  Google Scholar 

  • Ciani S, Krasne S, Miyazaki S, Hagiwara S (1978) A model for anomalous rectification: electrochemical-potential-dependent gating of membrane channels. J Membr Biol 44(2):103–134

    Article  PubMed  CAS  Google Scholar 

  • Comis SD, Leng G (1979) Action of putative neurotransmitters in the guinea pig cochlea. Exp Brain Res 36(1):119–128

    Article  PubMed  CAS  Google Scholar 

  • Corey DP, Holt JR (2016) Are TMCs the Mechanotransduction channels of vertebrate hair cells? J Neurosci 36(43):10921–10926

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corey DP, Hudspeth AJ (1979) Ionic basis of the receptor potential in a vertebrate hair cell. Nature 281(5733):675–677

    Article  PubMed  CAS  Google Scholar 

  • Corey DP, Hudspeth AJ (1983) Analysis of the microphonic potential of the bullfrog’s sacculus. J Neurosci 3(5):942–961

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corns LF, Johnson SL, Kros CJ, Marcotti W (2014) Calcium entry into stereocilia drives adaptation of the mechanoelectrical transducer current of mammalian cochlear hair cells. Proc Natl Acad Sci U S A 111(41):14918–14923

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1981a) An electrical tuning mechanism in turtle cochlear hair cells. J Physiol 312:377–412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crawford AC, Fettiplace R (1981b) Non-linearities in the responses of turtle hair cells. J Physiol 315:317–338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crawford AC, Evans MG, Fettiplace R (1989) Activation and adaptation of transducer currents in turtle hair cells. J Physiol 419:405–434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crawford AC, Evans MG, Fettiplace R (1991) The actions of calcium on the mechano-electrical transducer current of turtle hair cells. J Physiol 434:369–398

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Curras MC, Dingledine R (1992) Selectivity of amino acid transmitters acting at N-methyl-D-aspartate and amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors. Mol Pharmacol 41(3):520–526

    PubMed  CAS  Google Scholar 

  • Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76

    Article  PubMed  CAS  Google Scholar 

  • Denk W, Holt JR, Shepherd GM, Corey DP (1995) Calcium imaging of single stereocilia in hair cells: localization of transduction channels at both ends of tip links. Neuron 15(6):1311–1321

    Article  PubMed  CAS  Google Scholar 

  • Dietz B, Jovanovic S, Wielsch B, Nerlich J, Rübsamen R, Milenkovic I (2012) Purinergic modulation of neuronal activity in developing auditory brainstem. J Neurosci 32(31):10699–10712

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doi T, Ohmori H (1993) Acetylcholine increases intracellular Ca2+ concentration and hyperpolarizes the guinea-pig outer hair cell. Hear Res 67(1–2):179–188

    Article  PubMed  CAS  Google Scholar 

  • Eatock RA, Corey DP, Hudspeth AJ (1987) Adaptation of mechanoelectrical transduction in hair cells of the bullfrog’s sacculus. J Neurosci 7(9):2821–2836

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eckrich T, Varakina K, Johnson SL, Franz C, Singer W, Kuhn S, Knipper M, Holley MC, Marcotti W (2012) Development and function of the voltage-gated sodium current in immature mammalian cochlear inner hair cells. PLoS One 7(9):e45732

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elgoyhen AB, Johnson DS, Boulter J, Vetter DE, Heinemann S (1994) Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79(4):705–715

    Article  PubMed  CAS  Google Scholar 

  • Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107–115

    Article  CAS  Google Scholar 

  • Fenwick EM, Marty A, Neher E (1982) A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J Physiol 331:577–597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fettiplace R, Kim KX (2014) The physiology of mechanoelectrical transduction channels in hearing. Physiol Rev 94(3):951–986

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flock A (1965) Transducing mechanisms in the lateral line canal organ receptors. Cold Spring Harb Symp Quant Biol 30:133–145

    Article  PubMed  CAS  Google Scholar 

  • Flock A, Lam DMK (1974) Neurotransmitter synthesis in inner ear and lateral line sense organs. Nature 249:142–144

    Article  PubMed  CAS  Google Scholar 

  • Flock A, Russell I (1976) Inhibition by efferent nerve fibres: action on hair cells and afferent synaptic transmission in the lateral line canal organ of the burbot Lota lota. J Physiol 257(1):45–62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuchs PA, Murrow BW (1992) Cholinergic inhibition of short (outer) hair cells of the chick’s cochlea. J Neurosci 12(3):800–809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujino K, Koyano K, Ohmori H (1997) Lateral and medial olivocochlear neurons have distinct electrophysiological properties in the rat brain slice. J Neurophysiol 77(5):2788–2804

    Article  PubMed  CAS  Google Scholar 

  • Furness DN, Hackney CM, Benos DJ (1996) The binding site on cochlear stereocilia for antisera raised against renal Na+ channels is blocked by amiloride and dihydrostreptomycin. Hear Res 93(1–2):136–146

    Article  PubMed  CAS  Google Scholar 

  • Furness DN, Zetes DE, Hackney CM, Steele CR (1997) Kinematic analysis of shear displacement as a means for operating mechanotransduction channels in the contact region between adjacent stereocilia of mammalian cochlear hair cells. Proc Biol Sci 264(1378):45–51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Furukawa T (1981) Effects of efferent stimulation on the saccule of goldfish. J Physiol 315:203–215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Furukawa T, Ishii Y (1967) Neurophysiological studies on hearing in goldfish. J Neurophysiol 30(6):1377–1403

    Article  PubMed  CAS  Google Scholar 

  • Galambos R (1956) Suppression of auditory nerve activity by stimulation of efferent fibers to cochlea. J Neurophysiol 19(5):424–437

    Article  CAS  PubMed  Google Scholar 

  • Gay LA, Stanfield PR (1977) Cs(+) causes a voltage-dependent block of inward K currents in resting skeletal muscle fibres. Nature 267(5607):169–170

    Article  PubMed  CAS  Google Scholar 

  • Géléoc GS, Lennan GW, Richardson GP, Kros CJ (1997) A quantitative comparison of mechanoelectrical transduction in vestibular and auditory hair cells of neonatal mice. Proc Biol Sci 264(1381):611–621

    Article  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Salt AN (1997) Quantitative differences in endolymphatic calcium and endocochlear potential between pigmented and albino guinea pigs. Hear Res 113(1–2):191–197

    Article  PubMed  CAS  Google Scholar 

  • Glowatzki E, Fuchs PA (2002) Transmitter release at the hair cell ribbon synapse. Nat Neurosci 5(2):147–154

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JM, Fernández C (1980) Efferent vestibular system in the squirrel monkey: anatomical location and influence on afferent activity. J Neurophysiol 43(4):986–1025

    Article  PubMed  CAS  Google Scholar 

  • Goldman DE (1943) Potential, impedance, and rectification in membranes. J Gen Physiol 27(1):37–60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hackney CM, Furness DN, Benos DJ, Woodley JF, Barratt J (1992) Putative immunolocalization of the mechanoelectrical transduction channels in mammalian cochlear hair cells. Proc Biol Sci 248(1323):215–221

    Article  PubMed  CAS  Google Scholar 

  • Hacohen N, Assad JA, Smith WJ, Corey DP (1989) Regulation of tension on hair-cell transduction channels: displacement and calcium dependence. J Neurosci 9(11):3988–3997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hagiwara S, Ohmori H (1982) Studies of calcium channels in rat clonal pituitary cells with patch electrode voltage clamp. J Physiol 331:231–252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hagiwara S, Takahashi K (1974) The anomalous rectification and cation selectivity of the membrane of a starfish egg cell. J Membr Biol 18(1):61–80

    Article  PubMed  CAS  Google Scholar 

  • Hillman DE (1972) Observations on morphological features and mechanical properties of the peripheral vestibular receptor system in the frog. Porg Brain Res 37:69–75

    Article  CAS  Google Scholar 

  • Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol 108(1):37–77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holt JR, Stauffer EA, Abraham D, Géléoc GS (2007) Dominant-negative inhibition of M-like potassium conductances in hair cells of the mouse inner ear. J Neurosci 27(33):8940–8951

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hossain WA, Antic SD, Yang Y, Rasband MN, Morest DK (2005) Where is the spike generator of the cochlear nerve? Voltage-gated sodium channels in the mouse cochlea. J Neurosci 25(29):6857–6868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Housley GD, Morton-Jones R, Vlajkovic SM, Telang RS, Paramananthasivam V, Tadros SF, Wong AC, Froud KE, Cederholm JM, Sivakumaran Y, Snguanwongchai P, Khakh BS, Cockayne DA, Thorne PR, Ryan AF (2013) ATP-gated ion channels mediate adaptation to elevated sound levels. Proc Natl Acad Sci U S A 110(18):7494–7499

    Article  PubMed  PubMed Central  Google Scholar 

  • Hudspeth AJ (1982) Extracellular current flow and the site of transduction by vertebrate hair cells. J Neurosci 2(1):1–10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hudspeth AJ, Corey DP (1977) Sensitivity, polarity, and conductance change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc Natl Acad Sci U S A 74(6):2407–2411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jaramillo F, Hudspeth AJ (1991) Localization of the hair cell’s transduction channels at the hair bundle’s top by iontophoretic application of a channel blocker. Neuron 7(3):409–420

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen F (1978) Effect of amiloride on the mechanosensitivity of hair cells in the lateral line system of Necturus mac. Acta physiologica Scandinavica abstracts for Scandinavian Physiological Society Meeting (Odense), November 1978, 25-26A

    Google Scholar 

  • Jorgensen F, Ohmori H (1988) Amiloride blocks the mechano-electrical transduction channel of hair cells of the chick. J Physiol 403:577–588

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kandler K, Clause A, Noh J (2009) Tonotopic reorganization of developing auditory brainstem circuits. Nat Neurosci 12(6):711–717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kataoka Y, Ohmori H (1994) Activation of glutamate receptors in response to membrane depolarization of hair cells isolated from chick cochlea. J Physiol 477(Pt 3):403–414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kataoka Y, Ohmori H (1996) Of known neurotransmitters, glutamate is the most likely to be released from chick cochlear hair cells. J Neurophysiol 76(3):1870–1879

    Article  PubMed  CAS  Google Scholar 

  • Kawashima Y, Géléoc GSG, Kurima K, Labay V, Lelli A, Asai Y, Makishima T, Wu DK, Santina CCD, Holt JR, Griffith AJ (2011) Mechanotransduction in mouse inner ear hair cells require transmembrane channel–like genes. J Clin Invest 121(12):4796–4809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kawashima Y, Kurima K, Pan B, Griffith AJ, Holt JR (2015) Transmembrane channel-like (TMC) genes are required for auditory and vestibular mechanosensation. Pflugers Arch 467(1):85–94

    Article  PubMed  CAS  Google Scholar 

  • Kilić G, Sciancalepore M, Cherubini E (1992) Single-channel currents of NMDA type activated by L- and D-homocysteic acid in cerebellar granule cells in culture. Neurosci Lett 141(2):231–235

    Article  PubMed  Google Scholar 

  • Kimitsuki T, Ohmori H (1992) The effect of caged calcium release on the adaptation of the transduction current in chick hair cells. J Physiol 458:27–40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kimitsuki T, Ohmori H (1993) Dihydrostreptomycin modifies adaptation and blocks the mechano-electric transducer in chick cochlear hair cells. Brain Res 624(1–2):143–150

    Article  PubMed  CAS  Google Scholar 

  • Kitajiri M, Yamashita T, Tohyama Y, Kumazawa T, Takeda N, Kawasaki Y, Matsunaga T, Girgis S, Hillyard CJ, MacIntyre I, Emson PC, ShiosakaS TM (1985) Localization of calcitonin gene-related peptide in the organ of Corti of the rat: an immunohistochemical study. Brain Res 358(1–2):394–397

    Article  PubMed  CAS  Google Scholar 

  • Kroese AB, van den Bercken J (1982) Effects of ototoxic antibiotics on sensory hair cell functioning. Hear Res 6(2):183–197

    Article  PubMed  CAS  Google Scholar 

  • Kroese AB, Das A, Hudspeth AJ (1989) Blockage of the transduction channels of hair cells in the bullfrog’s sacculus by aminoglycoside antibiotics. Hear Res 37(3):203–217

    Article  PubMed  CAS  Google Scholar 

  • Kurima K, Peters LM, Yang Y, Riazuddin S, Ahmed ZM, Naz S, Arnaud D, Drury S, Mo J, Makishima T, Ghosh M, Menon PS, Deshmukh D, Oddoux C, Ostrer H, Khan S, Riazuddin S, Deininger PL, Hampton LL, Sullivan SL, Battey JF Jr, Keats BJ, Wilcox ER, Friedman TB, Griffith AJ (2002) Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. Nat Genet 30(3):277–284

    Article  PubMed  Google Scholar 

  • Kurima K, Yang Y, Sorber K, Griffith AJ (2003) Characterization of the transmembrane channel-like (TMC) gene family: functional clues from hearing loss and epidermodysplasia verruciformis. Genomics 82(3):300–308

    Article  PubMed  CAS  Google Scholar 

  • Kurima K, Ebrahim S, Pan B, Sedlacek M, Sengupta P, Millis BA, Cui R, Nakanishi H, Fujikawa T, Kawashima Y, Choi BY, Monahan K, Holt JR, Griffith AJ, Kachar B (2015) TMC1 and TMC2 localize at the site of Mechanotransduction in mammalian inner ear hair cell Stereocilia. Cell Rep 12(10):1606–1617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leake PA, Hradek GT, Chair L, Snyder RL (2006) Neonatal deafness results in degraded topographic specificity of auditory nerve projections to the cochlear nucleus in cats. J Comp Neurol 497(1):13–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Lewis RS (1982) Characterization of voltage- and ion-dependent conductances in vertebrate hair cells. Soc Neurosci Abstr 8:728

    Google Scholar 

  • Lewis RS, Hudspeth AJ (1983) Voltage- and ion-dependent conductances in solitary vertebrate hair cells. Nature 304(5926):538–541

    Article  PubMed  CAS  Google Scholar 

  • Llano I, Marty A, Armstrong CM, Konnerth A (1991) Synaptic- and agonist-induced excitatory currents of Purkinje cells in rat cerebellar slices. J Physiol 434:183–213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Llinás R, Steinberg IZ, Walton K (1981) Presynaptic calcium currents in squid giant synapse. Biophys J 33(3):289–321

    Article  PubMed  PubMed Central  Google Scholar 

  • Marcotti W, Johnson SL, Rusch A, Kros CJ (2003) Sodium and calcium currents shape action potentials in immature mouse inner hair cells. J Physiol 552(Pt 3):743–761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masetto S, Bosica M, Correia MJ, Ottersen OP, Zucca G, Perin P, Valli P (2003) Na+ currents in vestibular type I and type II hair cells of the embryo and adult chicken. J Neurophysiol 90(2):1266–1278

    Article  PubMed  CAS  Google Scholar 

  • Matsuura S, Ikeda K, Furukawa T (1971) Effects of streptomycin, kanamycin, quinine, and other drugs on the microphonic potentials of goldfish sacculus. Jpn J Physiol 21(5):579–590

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML, Westbrook GL (1987) The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol 28(3):197–276

    Article  PubMed  CAS  Google Scholar 

  • McBain CJ, Mayer ML (1994) N-methyl-D-aspartic acid receptor structure and function. Physiol Rev 74(3):723–760

    Article  PubMed  CAS  Google Scholar 

  • McKay SM, Oleskevich S (2007) The role of spontaneous activity in development of the endbulb of held synapse. Hear Res 230(1–2):53–63

    Article  PubMed  Google Scholar 

  • Meyer J, Furness DN, Zenner HP, Hackney CM, Gummer AW (1998) Evidence for opening of hair-cell transducer channels after tip-link loss. J Neurosci 18(17):6748–6756

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nakagawa T, Akaike N, Kimitsuki T, Komune S, Arima T (1990) ATP-induced current in isolated outer hair cells of guinea pig cochlea. J Neurophysiol 63(5):1068–1074

    Article  PubMed  CAS  Google Scholar 

  • New HV, Mudge AW (1986) Calcitonin gene-related peptide regulates muscle acetylcholine receptor synthesis. Nature 323(6091):809–811

    Article  PubMed  CAS  Google Scholar 

  • Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurons. Nature 307(5950):462–465

    Article  PubMed  CAS  Google Scholar 

  • Ohmori H (1978) Inactivation kinetics and steady-state current noise in the anomalous rectifier of tunicate egg cell membranes. J Physiol 281:77–99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohmori H (1984a) Mechanoelectrical transducer has discrete conductances in the chick vestibular hair cell. Proc Natl Acad Sci U S A 81(6):1888–1891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohmori H (1984b) Studies of ionic currents in the isolated vestibular hair cell of the chick. J Physiol 350:561–581

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohmori H (1985) Mechano-electrical transduction currents in isolated vestibular hair cells of the chick. J Physiol 359:189–217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohmori H (1987) Gating properties of the mechano-electrical transducer channel in the dissociated vestibular hair cell of the chick. J Physiol 387:589–609

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohmori H (1988) Mechanical stimulation and Fura-2 fluorescence in the hair bundle of dissociated hair cells of the chick. J Physiol 399:115–137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oliver D, Plinkert P, Zenner HP, Ruppersberg JP (1997) Sodium current expression during postnatal development of rat outer hair cells. Pflugers Arch 434(6):772–778

    Article  PubMed  CAS  Google Scholar 

  • Pan B, Géléoc GS, Asai Y, Horwitz GC, Kurima K, Ishikawa K, Kawashima Y, Griffith AJ, Holt JR (2013) TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron 79(3):504–515

    Article  PubMed  CAS  Google Scholar 

  • Pickles JO (1993) A model for the mechanics of the stereocilia bundle on acousticolateral hair cells. Hear Res 68(2):159–172

    Article  PubMed  CAS  Google Scholar 

  • Pickles JO, Comis SD, Osborne MP (1984) Cross-links between stereocilia in the guinea pig organ of Corti, and their possible relation to sensory transduction. Hear Res 15(2):103–112

    Article  PubMed  CAS  Google Scholar 

  • Ricci AJ, Fettiplace R (1997) The effects of calcium buffering and cyclic AMP on mechano-electrical transduction in turtle auditory hair cells. J Physiol 501(Pt 1):111–124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosenmund C, Legendre P, Westbrook GL (1992) Expression of NMDA channels on cerebellar Purkinje cells acutely dissociated from newborn rats. J Neurophysiol 68(5):1901–1905

    Article  PubMed  CAS  Google Scholar 

  • Rubel EW, Fritzsch B (2002) Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 25:51–101

    Article  PubMed  CAS  Google Scholar 

  • Rüsch A, Kros CJ, Richardson GP (1994) Block by amiloride and its derivatives of mechano-electrical transduction in outer hair cells of mouse cochlear cultures. J Physiol 474(1):75–86

    Article  PubMed  PubMed Central  Google Scholar 

  • Russell IJ, Sellick PM (1978) Intracellular studies of hair cells in the mammalian cochlea. J Physiol 284:261–290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Russell IJ, Sellick PM (1983) Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells. J Physiol 338:179–206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sand O (1975) Effects of different ionic environments on the mechanosensitivity of lateral line organs in the mudpuppy. J Comp Physiol A 102:27–42

    Article  CAS  Google Scholar 

  • Sariban-Sohraby S, Benos DJ (1986) The amiloride-sensitive sodium channel. Am J Phys 250(2 Pt 1):C175–C190

    Article  CAS  Google Scholar 

  • Sewell WF, Starr PA (1991) Effects of calcitonin gene-related peptide and efferent nerve stimulation on afferent transmission in the lateral line organ. J Neurophysiol 65(5):1158–1169

    Article  PubMed  CAS  Google Scholar 

  • Sewell WF, Norris CH, Tachibana M, Guth PS (1978) Detection of an auditory nerve--activating substance. Science 202(4370):910–912

    Article  PubMed  CAS  Google Scholar 

  • Shigemoto T, Ohmori H (1990) Muscarinic agonists and ATP increase the intracellular Ca2+ concentration in chick cochlear hair cells. J Physiol 420:127–148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shigemoto T, Ohmori H (1991) Muscarinic receptor hyperpolarizes cochlear hair cells of chick by activating ca(2+)-activated K+ channels. J Physiol 442:669–690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spangler KM, Warr WB (1991) The descending auditory system. In: Altschuler RA, Bobbin RP, Clopton BM, Hoffman DW (eds) Neurobiology of hearing: the central auditory system. Raven, New York, pp 27–45

    Google Scholar 

  • Spoendlin H (1972) Innervation densities of the cochlea. Acta Otolaryngol 73(2):235–248

    Article  PubMed  CAS  Google Scholar 

  • Sridhar TS, Liberman MC, Brown MC, Sewell WF (1995) A novel cholinergic “slow effect” of efferent stimulation on cochlear potentials in the guinea pig. J Neurosci 15(5 Pt 1):3667–3678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Standen NB, Stanfield PR (1978) A potential- and time-dependent blockade of inward rectification in frog skeletal muscle fibres by barium and strontium ions. J Physiol 280:169–191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Standen NB, Stanfield PR (1979) Potassium depletion and sodium block of potassium currents under hyperpolarization in frog sartorius muscle. J Physiol 294:497–520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Steel KP, Barkway C (1989) Another role for melanocytes: their importance for normal stria vascularis development in the mammalian inner ear. Development 107(3):453–463

    PubMed  CAS  Google Scholar 

  • Takasaka T, Smith CA (1971) The structure and innervation of the pigeon’s basilar papilla. J Ultrastruct Res 35(1):20–65

    Article  PubMed  CAS  Google Scholar 

  • Takeda N, Kitajiri M, Girgis S, Hillyard CJ, MacIntyre I, Emson PC, Shiosaka S, Tohyama M, Matsunaga T (1986) The presence of a calcitonin gene-related peptide in the olivocochlear bundle in rat. Exp Brain Res 61(3):575–578

    Article  PubMed  CAS  Google Scholar 

  • Tan X, Beurg M, Hackney C, Mahendrasingam S, Fettiplace R (2013) Electrical tuning and transduction in short hair cells of the chicken auditory papilla. J Neurophysiol 109(8):2007–2020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanaka K, Smith CA (1978) Structure of the chicken’s inner ear: SEM and TEM study. Am J Anat 153(2):251–271

    Article  PubMed  CAS  Google Scholar 

  • Tasaki I, Davis H, Eldredge DH (1954) Exploration of cochlear potentials in Guinea pig with a microelectrode. J Acoust Soc Am 26:765–773

    Article  Google Scholar 

  • Thornhill R (1972) The effect of catecholamine precursors and related drugs on the morphology of the synaptic bars in the vestibular epithelia of the frog, Rana temporaria. Comp Gen Pharmacol 3:89–97

    Article  CAS  Google Scholar 

  • Tilney LG, Saunders JC (1983) Actin filaments, stereocilia, and hair cells of the bird cochlea. I. Length, number, width, and distribution of stereocilia of each hair cell are related to the position of the hair cell on the cochlea. J Cell Biol 96(3):807–821

    Article  PubMed  CAS  Google Scholar 

  • Turner RG, Muraski AA, Nielsen DW (1981) Cilium length: influence on neural tonotopic organization. Science 213(4515):1519–1521

    Article  PubMed  CAS  Google Scholar 

  • van Netten SM, Kros CJ (2007) Insights into the pore of the hair cell transducer channel from experiments with permeant blockers. Curr Top Membr 59:375–398

    Article  PubMed  CAS  Google Scholar 

  • Vollrath MA, Kwan KY, Corey DP (2007) The micromachinery of mechanotransduction in hair cells. Annu Rev Neurosci 30:339–365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vreugde S, Erven A, Kros CJ, Marcotti W, Fuchs H, Kurima K, Wilcox ER, Friedman TB, Griffith AJ, Balling R, Hrabé De Angelis M, Avraham KB, Steel KP (2002) Beethoven, a mouse model for dominant, progressive hearing loss DFNA36. Nat Genet 30(3):257–258

    Article  PubMed  Google Scholar 

  • Warr WB (1992) Organization of olivocochlear efferent systems in mammals. In: Webster DB, Popper AN, Fay RR (eds) The mammalian auditory pathway: neuroanatomy. Springer, New York, pp 410–448

    Chapter  Google Scholar 

  • Webster DB (1992) An overview of mammalian auditory pathways with an emphasis on humans. In: Webster DB, Popper AN, Fay RR (eds) The mammalian auditory pathways: neuroanatomy. Springer, New York, pp 1–22

    Chapter  Google Scholar 

  • Wersaell J, Flock A, Lundquist P-G (1965) Structural basis for directional sensitivity in cochlear and vestibular sensory receptors. Cold Spring Harb Symp Quant Biol 30:115–132

    Article  Google Scholar 

  • Williams DA, Fogarty KE, Tsien RY, Fay FS (1985) Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2. Nature 318(6046):558–561

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Ohmori H (1990) Voltage-gated and chemically gated ionic channels in the cultured cochlear ganglion neuron of the chick. J Physiol 420:185–206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaguchi K, Ohmori H (1993) Suppression of the slow K+ current by cholinergic agonists in cultured chick cochlear ganglion neurons. J Physiol 464:213–228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshida N, Shigemoto T, Sugai T, Ohmori H (1994) The role of inositol trisphosphate on ACh-induced outward currents in bullfrog saccular hair cells. Brain Res 644(1):90–100

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ohmori, H. (2019). Hair Cell Mechano-electrical Transduction and Synapse Transmission. In: Auditory Information Processing. Springer, Singapore. https://doi.org/10.1007/978-981-32-9713-5_1

Download citation

Publish with us

Policies and ethics