Skip to main content

Graphic Approach for the Disturbance Decoupling of Boolean Networks

  • Conference paper
  • First Online:
Proceedings of 2019 Chinese Intelligent Systems Conference (CISC 2019)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 592))

Included in the following conference series:

  • 973 Accesses

Abstract

In this paper, the disturbance decoupling problem (DDP) of Boolean networks (BNs) is investigated by graphic approach. Firstly, by referring to the graphic structure of BNs, a necessary and sufficient graphic condition for the disturbance decoupling is proposed. Secondly, an algorithm is designed to search a concolorous perfect equal vertex partition (C-PEVP). By a C-PEVP, we can construct a logical coordinate transformation which makes the DDP solvable for BNs. Finally, an illustrative example is provided to validate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kauffman S (1969) Metabolic stability and epigenesis in randomly constructed genetic. J Theor Biol 22(3):437–467

    Article  MathSciNet  Google Scholar 

  2. Huang S, Ingber D (2000) Shape-dependent control of cell growth, differentferentiation, and apoptosis: switching between attractors in cell regulatory networks. Exp Cell Res 261(1):91–103

    Article  Google Scholar 

  3. Huang S (2002) Regulation of cellular states in mammalian cells from a genomewide view. In: Julio C-V, Hofestadt R (eds) Gene regulation and metabolism: post-genomic computational approaches. MIT Press, Cambridge, pp 181–220

    Google Scholar 

  4. Farrow C, Heidel J, Maloney J, Rogers J (2004) Scalar equations for synchronous Boolean networks with biological applications. IEEE Trans Neural Netw 15(2):348–354

    Article  Google Scholar 

  5. Albert R, Othmer H (2003) The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol 75(6):1–18

    Article  MathSciNet  Google Scholar 

  6. Chaves M, Albert R, Sontag E (2005) Robustness and fragility of Boolean models for genetic regulatory networks. J Theor Biol 235(3):431–449

    Article  MathSciNet  Google Scholar 

  7. Klmat S, Saez-Rodriguez J, Lindquist JA (2006) A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinform 7(1):56

    Article  Google Scholar 

  8. Ching WK, Zhang SQ, Ng MK (2007) An approximation method for solving the steady-state probability distuibution of probabilistic Boolean networks. Bioinformatics 23(12):1511–1518

    Article  Google Scholar 

  9. Datta A, Choudhary A, Bittner M et al (2004) External control in Markovian genetic regulatory networks: the imperfect information case. Bioinformatics 20(6):924–930

    Article  Google Scholar 

  10. Cheng D, Qi H (2010) A linear representation of dynamics of Boolean networks. IEEE Trans Autom Control 55(10):2251–2258

    Article  MathSciNet  Google Scholar 

  11. Cheng D, Qi H, Li Z (2011) Analysis and control of Boolean control networks: a semi-tensor product approach. Springer, London

    Book  Google Scholar 

  12. Cheng D, Qi H (2008) Controllability and observability of Boolean control networks. Automatica 45(7):1659–1667

    Article  MathSciNet  Google Scholar 

  13. Liu Y, Chen H, Lu J (2015) Controllability of probabilistic Boolean control networks based on transition probability matrices. Automatica 52(10):340–345

    Article  MathSciNet  Google Scholar 

  14. Laschov D, Margaliot M (2011) A maximum principle for singke-input Boolean control networks. IEEE Trans Autom Control 56(4):913–917

    Article  Google Scholar 

  15. Zhao Y, Li Z, Cheng D (2011) Optimal control of logical control networks. IEEE Trans Autom Control 56(8):1766–1776

    Article  MathSciNet  Google Scholar 

  16. Li F, Sun J (2012) Controllability and optimal control of a temporal Boolean network. Neural Netw 34(8):10–17

    Article  Google Scholar 

  17. Wu Y, Shen T (2015) An algebraic expression of finite horizon optimal control algorithm for stochastic logical dynamical system. Syst Control Lett 82:108–114

    Article  MathSciNet  Google Scholar 

  18. Fornasini E, Valcher M (2013) Observability, reconstructibility and state observers of Boolean control networks. IEEE Trans Autom Control 26(6):871–885

    MathSciNet  MATH  Google Scholar 

  19. Li R, Yang M, Chu T (2013) State feedback stabilization for Boolean control networks. IEEE Trans Autom Control 58(7):1853–1857

    Article  MathSciNet  Google Scholar 

  20. Li H, Wang Y (2017) Further results on feedback stabilization control design of Boolean control networks. Automatica 83:303–308

    Article  MathSciNet  Google Scholar 

  21. Cheng D, Xu X (2013) Bi-decomposition of multi-valued logical functions and its applications. Automatica 49(7):1979–1985

    Article  MathSciNet  Google Scholar 

  22. Zhao Y, Filippone M (2013) Aggregation algorithm towards large-scale Boolean network analysis. IEEE Trans Autom Control 58(8):1976–1985

    Article  MathSciNet  Google Scholar 

  23. Zou Y, Zhu J (2014) System decomposition with respect to inputs for Boolean control networks. Automatica 50:1304–1309

    Article  MathSciNet  Google Scholar 

  24. Zou Y, Zhu J (2017) Graph theory methods for decomposition w.r.t. outputs of Boolean control networks. J Syst Sci Complex 30:519–534

    Article  MathSciNet  Google Scholar 

  25. Zou Y, Zhu J (2015) Kalman decomposition for Boolean control networks. Automatica 54:65–71

    Article  MathSciNet  Google Scholar 

  26. Li H, Xie L, Wang Y (2017) Output regulation of Boolean control networks. IEEE Trans Autom Control 62(6):2993–2998

    Article  MathSciNet  Google Scholar 

  27. Lu J, Zhong J, Huang C, Cao J (2016) On pinning controllability of Boolean control networks. IEEE Trans Autom Control 61(6):1658–1663

    Article  MathSciNet  Google Scholar 

  28. Meng M, Lam J, Feng J et al (2016) \(l_1\) gain analysis and model reduction problem for Boolean control networks. Inf Sci 348:68–83

    Article  MathSciNet  Google Scholar 

  29. Chen BS, Wang YC (2016) On the attenuation and amplification of molecular noise in genetic regulatory networks. BMC Bioinform. 7(52):1–14

    Google Scholar 

  30. Cheng D (2011) Disturbance decoupling of Boolean control networks. IEEE Trans Autom Control 56(1):2–10

    Article  MathSciNet  Google Scholar 

  31. Cheng D, Qi H (2010) State-space analysis of Boolean control networks. IEEE Trans Neural Netw 21(4):584–594

    Article  Google Scholar 

  32. Liu Z, Wang Y (2012) Disturbance decoupling of mix-valued logical networks via the semi-tensor product method. Automatica 48(8):1839–1844

    Article  MathSciNet  Google Scholar 

  33. Zhang L, Feng J, Feng X (2014) Further results on disturbance decoupling of mix-valued logical networks. IEEE Trans Autom Control 59(6):1630–1634

    Article  Google Scholar 

  34. Li H, Wang Y, Xie L (2014) Disturbance decoupling control design for switched Boolean control networks. Syst Control Lett 72:1–6

    Article  MathSciNet  Google Scholar 

  35. Meng M, Feng J (2014) Topological structure and the disturbance decoupling problem of singular Boolean networks. IET Control Theory Appl. 8(13):1247–1255

    Article  MathSciNet  Google Scholar 

  36. Zou Y, Zhu J, Liu Y (2017) State-feedback controller design for disturbance decoupling of Boolean control networks. IET Control Theory Appl. 11(18):3233–3239

    Article  MathSciNet  Google Scholar 

  37. Li Y, Zhu J (2019) On disturbance decoupling problem of Boolean control network. Asian J Control (in press)

    Google Scholar 

  38. Boruvka O (1974) Foundations of the theory of groupoids and groups. VEB Deutscher Verlag der Wissenschaften, Berlin

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiandong Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Zhu, J. (2020). Graphic Approach for the Disturbance Decoupling of Boolean Networks. In: Jia, Y., Du, J., Zhang, W. (eds) Proceedings of 2019 Chinese Intelligent Systems Conference. CISC 2019. Lecture Notes in Electrical Engineering, vol 592. Springer, Singapore. https://doi.org/10.1007/978-981-32-9682-4_21

Download citation

Publish with us

Policies and ethics