Skip to main content

Rhizoremediation of Polyaromatic Hydrocarbons (PAHs): A Task Force of Plants and Microbes

  • Chapter
  • First Online:
Phyto and Rhizo Remediation

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 9))

Abstract

Polyaromatic hydrocarbons (PAHs) are a group of more than hundred highly toxic, recalcitrant, and carcinogenic organic compounds, generated after incomplete combustion of organics, and persist in the environment as very noxious pollutants. Generally, several anthropogenic activities often pollute the upper fertile and rhizosphere soil of earth that exerts multiple harmful influences on the ecosystems. The severe contaminations from PAHs cause ill health of soil by the damage of plant, animals, and microorganisms, which may result in imbalance in the ecosystem. Though various physical and chemical methods have been attempted, they were found inappropriate, non-economical, and non-ecofriendly. The rhizoremediation presents itself as a potential approach for the remediation of soil from the PAHs using plant and rhizosphere microbes. The synergistic interaction of plant and existing rhizosphere bacteria has a wonderful role in bioremediation of PAHs, which constitutes rhizoremediation as an excellent and very attractive green technology. Under the integrated rhizoremediation approach of PAHs, plant roots on one side secrete organic exudates, while on the other side, bacteria contribute various enzymes to degrade recalcitrant PAHs into non-toxic forms. Thus, this eco-friendly technology establishes an approach, which not only limits to PAHs but also has a broad spectrum of bioremediation for various other recalcitrant organic pollutants such as chlorinated phenyls, explosives, insecticides, fungicides, etc. In consequence, practical implementation of rhizoremediation at ground level for decontamination of highly polluted sites needs to be promoted. The present chapter emphasizes detailed account on rhizoremediation of PAHs using an integrated approach of plant and microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aitken MD, Stringfellow WT, Nagel RD, Kazunga C, Chen SH (1998) Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons. Can J Microbiol 44:743–752

    Article  CAS  Google Scholar 

  • Al-Ameeri DK, Al-Sarawi M (2017) Rhizoremediation of contaminated soils by comparing six roots species in Al-Wafra, state of Kuwait. J Bioremed Biodegr 8:384

    Article  CAS  Google Scholar 

  • Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants in soil. J Biores Technol 79:273–276

    Article  CAS  Google Scholar 

  • Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere: plant roots and associated microbes clean contaminated soil. Environ Sci Technol 27:2630–2636

    Article  CAS  Google Scholar 

  • Anokhina TO, Kochetkov VV, Zelenkova NF, Balakshina VV, Boronin AM (2004) Biodegradation of Phenanthrene by Pseudomonas bacteria bearing rhizospheric plasmids in model plant–microbial associations. Appl Biochem Microbiol 6:568–572

    Article  Google Scholar 

  • Antizar-Ladislao B, Lopez-Real JM, Beck AJ (2004) Bioremediation of polycyclic aromatic hydrocarbon (PAH) contaminated waste using composting approaches. Crit Rev Environ Sci Technol 34:249–289

    Article  CAS  Google Scholar 

  • Arora NK (2018) Bioremediation: a green approach for restoration of polluted ecosystems. Environ Sustain 1(3):1–3

    Article  Google Scholar 

  • Arora NK, Fatima T, Mishra J, Verma M, Mishra J, Mishra V (2018) Environmental sustainability: challenges and viable solutions. Environ Sustain 1(4):309–340

    Google Scholar 

  • Bakeas E, Karavalakis G, Fontaras G, Stournas S (2011) An experimental study on the impact of bio-diesel origin on the regulated and PAH emissions from a Euro 4 light-duty vehicle. Fuel 90:3200–3208

    Article  CAS  Google Scholar 

  • Baldrian P (2008) Wood-inhabiting ligninolytic basidiomycetes in soils: ecology and constraints for applicability in bioremediation. Fungal Ecol 1:4–12

    Article  Google Scholar 

  • Balloi A, Rolli E, Marasco R, Mapelli F, Tamagnini I, Cappitelli F, Borin S, Daffonchio D (2010) The role of microorganisms in bioremediation and phytoremediation of polluted and stressed soils. Agrochimica 54:353–369

    Google Scholar 

  • Barac T, Weyens N, Oeyen L, Taghavi S, van der Lelie D, Dubin D, Spliet M, Vangronveld J (2009) Field note: hydraulic containment of BTEX plume using poplar trees. Int J Phytoremediation 11:416–424

    Article  CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aquilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  Google Scholar 

  • Bisht S, Pandey P, Bhargava B, Sharma S, Kumar V, Sharma KD (2015) Bioremediation of polyaromatic hydrocarbons (PAH) using rhizosphere technology. Braz J Microbiol 46:7–21

    Article  CAS  Google Scholar 

  • Boffetta P, Jourenkova N, Gustavsson (1997) Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control 8:444–472

    Article  CAS  Google Scholar 

  • Bosma TNP, Middeldorp PJM, Schraa G, Zender AJB (1997) Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol 31:248–252

    Article  CAS  Google Scholar 

  • Brazil GM, Kenefick L, Callanan M (1995) Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere. Appl Environ Microbiol 61:1946–1952

    CAS  Google Scholar 

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    Article  CAS  Google Scholar 

  • Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Ind Microbiol Biotechnol 19:324–333

    Article  CAS  Google Scholar 

  • Cerniglia CE, Heitkamp MA (1989) Microbial degradation of polycyclic aromatic hydrocarbons (PAH) in the aquatic environment. In: Varanasi U (ed) Metabolism of polycyclic aromatic hydrocarbons in the aquatic environment. CRC Press, Boca Raton, pp 41–68

    Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle SJ, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Article  CAS  Google Scholar 

  • Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilizing the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res 12:34–48

    Article  CAS  Google Scholar 

  • Christensen-Kirsh KM (1996) Phytoremediation and wastewater effluent disposal: guidelines for landscape designers and planners. Master’s project, Department of Landscape Architecture, University of Oregon, Eugene, p 238

    Google Scholar 

  • Clegg C, Murray P (2002) Soil microbial ecology and plant root interactions. Iger Innovations 36–39

    Google Scholar 

  • Conde SR, Molina L, González P, García-Puente A, Segura A (2016) Degradation of phenanthrene by Novosphingobium sp. HS2a improved plant growth in PAHs-contaminated environments. Appl Microbiol Biotechnol 100:10627–10636

    Article  CAS  Google Scholar 

  • Cui C, Mab L, Shi J, Lin K, Luo Q, Liu Y (2014) Metabolic pathway for degradation of anthracene by halophilic Martelellasp. AD-3. Int Biodeterior Biodegrad 89:67–73

    Article  CAS  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    Article  CAS  Google Scholar 

  • Dai C, Tian L, Zhao Y, Chen Y, Xie H (2010) Degradation of phenanthrene by the endophytic fungus Ceratobasidum stevensii found in Bischofia polycarpa. Biodegradation 21:245–255

    Article  CAS  Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri AK (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152

    Article  CAS  Google Scholar 

  • Eskandary S, Tahmourespour A, Hoodaji M, Abdollahi A (2017) The synergistic use of plant and isolated bacteria to clean up polycyclic aromatic hydrocarbons from contaminated soil. J Environ Health Sci Eng 15:12

    Article  CAS  Google Scholar 

  • Federici E, Giubilei MA, Covino S, Zanaroli G, Fava F, D'Annibale A, Petruccioli M (2012) Addition of maize stalks and soybean oil to a historically PCB-contaminated soil: effect on degradation performance and indigenous microbiota. New Biotechnol 30:69–79

    Article  CAS  Google Scholar 

  • Ferradji FZ, Mnif S, Badis A, Rebbani S, Fodil D, Eddouaouda K, Sayadi S (2014) Naphthalene and crude oil degradation by biosurfactant producing Streptomyces sp. isolated from Mitidja plain soil (North of Algeria). Int Biodeterior Biodegrad 86:300–308

    Article  CAS  Google Scholar 

  • Festa S, Coppotelli BM, Morelli IS (2013) Bacterial diversity and functional interactions between bacterial strains from a phenanthrene-degrading consortium obtained from a chronically contaminated-soil. Int Biodeterior Biodegrad 85:42–51

    Article  CAS  Google Scholar 

  • Frerot H, Lefebvre C, Gruber W, Collin C, Dos SA, Escarre J (2006) Specific interactions between local metallicolous plants improve the phytostabilization of mine soils. Plant Soil 282:53–65

    Article  CAS  Google Scholar 

  • Gałązka A, Król M, Perzyński A (2012) The efficiency of rhizosphere bioremediation with Azospirillumsp. and Pseudomonas stutzeri in soils freshly contaminated with PAHs and diesel fuel. Pol J Environ Stud 2:345–353

    Google Scholar 

  • Gan S, Laua EV, Ng HK (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172:532–549

    Article  CAS  Google Scholar 

  • Gao S, Seo J, Wang J, Keum Y, Li J, Li QX (2013) Multiple degradation pathways of phenanthrene by Stenotrophomonas maltophilia C6. Int Biodeterior Biodegrad 79:98–104

    Article  CAS  Google Scholar 

  • Gaskin SE, Bentham RH (2010) Rhizoremediation of hydrocarbon contaminated soil using Australian native grasses. Sci Total Environ 408:3683–3688

    Article  CAS  Google Scholar 

  • Gerhardt KE (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Germaine K, Keogh E, Cabellos GG, Borremans B, van der Lelie D, Barac T, Oeyen L, Vangronsveld J, Moore FP, Moore ERB, Campbell CD, Ryan D, Dowling DN (2004) Colonisation of poplar E.T. Alori trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol 48:109–118

    Article  CAS  Google Scholar 

  • Germaine KJ, Keogh E, Ryan D, Dowling DN (2009) Bacterial endophyte- mediated naphthalene phytoprotection and phytoremediation. FEMS Microbiol Lett 296:226–234

    Article  CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    Article  CAS  Google Scholar 

  • Golubev S, Schelud’ko A, Muratova A, Makarov O, Turkovskaya O (2009) Assessing the potential of rhizobacteria to survive under phenanthrene pollution. Water Air Soil Pollut 198:5–16

    Article  CAS  Google Scholar 

  • Haderlein A, Legros R, Ramsay BA (2006) Pyrene mineralization capacity increases with compost maturity. Biodegradation 17:293–302

    Article  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15

    Article  CAS  Google Scholar 

  • Hong S, Kim D, Baek S, Kwon S, Samson RA (2011) Taxonomy of Eurotium species isolated frommeju. J Microbiol 49:669–674

    Article  Google Scholar 

  • Hsu P, Chen I, Pan C, Wu K, Pan M, Chen J, Chen C, Chang-Chien HC, Liu C, Wu M (2006) Sperm DNA damage correlates with polycyclic aromatic hydrocarbons biomarker in coke-oven workers. Int Arch Occup Environ Health 79:349–356

    Article  CAS  Google Scholar 

  • Huang XD, Alawi YE, Penrose DM, Glick BR, Greenberg BM (2004) A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soil. J Environ 130:465–476

    CAS  Google Scholar 

  • Jacobsen CS (1997) Plant protection and rhizosphere colonization of barley by seed inoculating herbicide degrading bacteria Burkholderia (Pseudomonas) cepacia DBO1 (pRO101) in 2,4-D contaminated soil. Plant Soil 189:139–144

    Article  CAS  Google Scholar 

  • Jha P, Panwar J, Jha PN (2015) Secondary plant metabolites and root exudates: guiding tools for polychlorinated biphenyl biodegradation. Int J Environ Sci Technol 12:789–802

    Article  CAS  Google Scholar 

  • Jha P, Panwar J, Jha PN (2018) Mechanistic insights on plant root colonization by bacterial endophytes: a symbiotic relationship for sustainable agriculture. Environ Sustain 1:25–38

    Article  Google Scholar 

  • Johnsen AR, Lukas YW, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    Article  CAS  Google Scholar 

  • Kanaly RA, Harayama S (2000) Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J Bacteriol 182:2059–2067

    Article  CAS  Google Scholar 

  • Kannangara S, Undugoda L, Rajapaksha N, Abeywickrama K (2016) Depolymerizing activities of aromatic hydrocarbon degrading phyllosphere fungi in Sri Lanka. J Bioremed Biodegr 7:6

    Google Scholar 

  • Kastner M, Breuer-Jammali M, Mahro B (1994) Enumeration and characterization of the soil microflora from hydrocarbon-contaminated soil sites able to mineralize polycyclic aromatic hydrocarbons (PAH). Appl Microbiol Biotechnol 41:267–273

    Article  Google Scholar 

  • Kawasaki A, Watson ER, Kertesz MA (2012) Indirect effects of polycyclic aromatic hydrocarbon contamination on microbial communities in legume and grass rhizospheres. Plant Soil 358:169–182

    Article  CAS  Google Scholar 

  • Kidd PS, Prieto-Fernandez A, Monterroso C, Acea MJ (2008) Rhizosphere microbial community and hexachlorocyclohexane degradative potential in contrasting plant species. Plant Soil 302:233–247

    Article  CAS  Google Scholar 

  • Kim S, Kweon O, Jones RC, Freeman JP, Edmondson RD, Cerniglia CE (2007) Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. J Bacteriol 189:464–472

    Article  CAS  Google Scholar 

  • Kingsley MT, Fredrickson JK, Metting FB (1994) Environmental restoration using plant-microbe bioaugmentation. In: Hinchee RE, Leeson A, Semprini L, Ong SK (eds) Bioremediation of chlorinated and polyaromatic hydrocarbon compounds. Lewis Publishers, Boca Raton, pp 287–292

    Google Scholar 

  • Kuiper I, Bloemberg GV, Lugtenberg BJJ (2001) Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant-Microbe Interact 14:1197–1205

    Article  CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant microbe interaction. Mol Plant-Microbe Interact 17:6–15

    Article  CAS  Google Scholar 

  • Kuo HC, Juang DF, Yang L, Kuo WC, Wu YM (2014) Phytoremediation of soil contaminated by heavy oil with plants colonized by mycorrhizal fungi. Int J Environ Sci Technol 11:1661–1668

    Article  CAS  Google Scholar 

  • Leigh MB, Fletcher JS, Fu X (2002) Root turnover: an important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environ Sci Technol 36:1579–1583

    Article  CAS  Google Scholar 

  • Leigh MB, Prouzova P, Macek MT (2006) Polychlorinated biphenyl (PCB) degrading bacteria associated with trees in a PCB contaminated site. Appl Environ Microbiol 72:2331–2342

    Article  CAS  Google Scholar 

  • Lim LH, Harrison RM, Harrad S (1999) The contribution of traffic to atmospheric concentrations of polycyclic aromatic hydrocarbons. Environ Sci Technol 33:3538–3542

    Article  CAS  Google Scholar 

  • Liu R, Xiao N, Wei S, Zhao L, An J (2014) Rhizosphere effects of PAH-contaminated soil phytoremediation using a special plant named Fire Phoenix. Sci Total Environ 473–474:350–358

    Article  CAS  Google Scholar 

  • Ma B, He Y, Chen H, Xu J, Rengel Z (2010) Dissipation of polycyclic aromatic hydrocarbons (PAHs) in the rhizosphere: synthesis through meta-analysis. Environ Pollut 158:855–861

    Article  CAS  Google Scholar 

  • Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258

    Article  CAS  Google Scholar 

  • Ma J, Xu L, Jia L (2013) Characterization of pyrene degradation by Pseudomonas sp. strain Jpyr-1 isolated from active sewage sludge. Bioresour Technol 140:15–21

    Article  CAS  Google Scholar 

  • Mackova M, Macek T, Ocenasko J, Burkhard J, Demnero K, Pazlarova J (1997) Biodegradation of polychlorinated biphenyls by plant cells. J Int Biodeter Biodegrad 39:317–325

    Article  CAS  Google Scholar 

  • Mapelli F, Marasco M, Balloi A, Rolli E, Cappitelli F, Daffonchio D, Borin S (2012) Mineral–microbe interactions: biotechnological potential of bioweathering. J Biotechnol 157:473–481

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663

    Article  CAS  Google Scholar 

  • Martin BC, George SJ, Price CA, Ryan MH, Tibbett M (2014) The role of root exuded low molecular weight organic anions in facilitating petroleum hydrocarbon degradation: current knowledge and future directions. Sci Total Environ 472:642–653

    Article  CAS  Google Scholar 

  • Mastrangelo G, Fadda E, Marzia V (1996) Polycyclic aromatic hydrocarbons and cancer in man. Environ Health Perspect 104:1166–1170

    Article  CAS  Google Scholar 

  • McCutcheon SC, Schnoor JL (2003) Phytoremediation: transformation and control of contaminants. Wiley-Interscience, Inc, Hoboken

    Book  Google Scholar 

  • Meng L, Qiao M, Arp H (2011) Phytoremediation efficiency of a PAH-contaminated industrial soilusing ryegrass, white clover, and celery as mono- and mixed cultures. J Soils Sediments 11:482–490

    Article  CAS  Google Scholar 

  • Menzie CA, Potoki BB, Santodonato J (1992) Exposure to carcinogenic PAHs in the environment. Environ Sci Technol 26:1278–1284

    Article  CAS  Google Scholar 

  • Miller KP, Borgeest C, Greenfield C, Tomic D, Flaws JA (2004) In utero effects of chemicals on reproductive tissues in females. Toxicol Appl Pharmacol 198:111–131

    Article  CAS  Google Scholar 

  • Mishra J, Singh R, Arora NK (2017) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 8:1706. https://doi.org/10.3389/fmicb.2017.01706

    Article  Google Scholar 

  • Moore FP, Barac T, Borrernans B, Oeyen L, Vangronsveld J, van der Lie D, Cambell CD, Moore ERB (2006) Endophytic bacterial diversity in poplar trees growing on BTEX contaminated site: the characterization of isolates with potential to enhance phytoremediation. Syst Appl Microbiol 29:539–556

    Article  CAS  Google Scholar 

  • Muckian L, Grant R, Doyle E, Clipson N (2007) Bacterial community structure in soils contaminated by polycyclic aromatic hydrocarbons. Chemosphere 68:1535–1541

    Article  CAS  Google Scholar 

  • Mumtaz M, George J (1995) Toxicological Profile for Polycyclic Aromatic Hydrocarbons. U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry

    Google Scholar 

  • Musilova L, Ridl J, Polivkova M, Macek T, Uhlik O (2016) Effects of secondary plant metabolites on microbial populations: changes in community structure and metabolic activity in contaminated environments. Int J Mol Sci 17:1205

    Article  CAS  Google Scholar 

  • Nannipieri P, Ascher J, Ceccherini MT, Loretta L, Giacomo P, Giancarlo R (2003) Microbial diversity and soil functions. Eur J Soil Sci 54:655–670

    Article  Google Scholar 

  • Nelson SD, Khan SU (1992) Uptake of atrazine by hyphae of Glomus vesicular-Arbuscular Mycorrhizae and root systems of corn (Zea mays L.). Weed Sci 1:161–170

    Article  Google Scholar 

  • Nichols TD, Wolf DC, Rogers HB, Beyrouty CA, Reynold CM (1997) Rhizosphere microbial populations in contaminated soils. J Water Air Soil Pollut 95:165–178

    CAS  Google Scholar 

  • Pant R, Pandey P, Kotoky R (2016) Rhizosphere mediated biodegradation of 1, 4-dichlorobenzene by plant growth promoting rhizobacteria of Jatropha curcas. Ecol Eng 94:50–56

    Article  Google Scholar 

  • Parales RE, Ditty JL, Harwood CS (2000) Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Appl Environ Microbiol 66:4098–4104

    Article  CAS  Google Scholar 

  • Patnaik P (1992) Health hazard, which includes toxic, corrosive, carcinogenic, and teratogenic properties, exposure limits. In: Patnaik P (ed) Comprehensive guide to the hazardous properties of chemical substances. Van Nostrand Reinhold, New York, pp 425–445

    Google Scholar 

  • Paul D, Pandey GJ, Jain RK (2005) Accessing microbial diversity for bioremediation and environmental restoration. Trends Biotechnol 23:135–142

    Article  CAS  Google Scholar 

  • Pawar AN, Ugale SS, More MG, Kokani NF, Khandelwal SR (2013) Biological degradation of naphthalene: a new era. J Bioremed Biodegr 4:203

    Google Scholar 

  • Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955

    Article  CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Plociniczak MP, Plaza GA, Seget ZP (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654

    Article  CAS  Google Scholar 

  • Pradhan SP, Conrad JR, Paterek JR, Srivastava VJ (1998) Potential of phytoremediation for treatment of PAHS in soil at MGP sites. J Soil Contam 7:467–480

    Article  CAS  Google Scholar 

  • Prak DJ, Pritchard PH (2002) Solubilization of polycyclic aromatic hydrocarbon mixtures in micellar non-ionic surfactant solution. Water Res 36:3463–3472

    Article  CAS  Google Scholar 

  • Radvan S, Sorkhoh N, El Nemr L (1995) Oil biodegradation around roots. Nature:376–302

    Google Scholar 

  • Rigas F, Papadopoulou K, Dritsa V, Doulia D (2007) Bioremediation of a soil contaminated by lindane utilizing the fungus Ganoderma australe via response surface methodology. J Hazard Mater 140:325–332

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin L (1998) Phytoremediation. Ann Rev Plant Phys Plant Mol Biol 49:643–668

    Article  CAS  Google Scholar 

  • Sandermann H (1994) Higher plant metabolism of xenobiotics: the “green liver” concept. Pharmacogenetics 4:225–241

    Article  CAS  Google Scholar 

  • Sanglard D, Leisola MSA, Fiechter A (1986) Role of extracellular ligninases in biodegradation of benzo(a)pyrene by Phanerochaete chrysosporium. Enzym Microb Technol 8:209–212

    Article  CAS  Google Scholar 

  • Schneider J, Grosser R, Jayasimhulu K, Xue W, Warshawsky D (1996) Degradation of pyrene, benz[a]anthracene and benzo[a]pyrene by Mycobacterium sp. strain RJGII-135, isolated from a former coal gasification site. Appl Environ Microbiol 62:13–19

    CAS  Google Scholar 

  • Schnoor JL, Light LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of organic and nutrient contaminants. Environ Sci Technol 29:318–323

    Article  Google Scholar 

  • Schnoor JL, Aitchison EW, Kelley SL (1998) Phytoremediation and ioaugmentation of 1,4- dioxane. Abstr Adv Biol Rern Syst Conf 87:91–133

    Google Scholar 

  • Segura A, Ramos JL (2013) Plant–bacteria interactions in the removal of pollutants. Curr Opin Biotechnol 24:467–473

    Article  CAS  Google Scholar 

  • Seo JS, Keum YS, Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 6:278–309

    Article  CAS  Google Scholar 

  • Shukla KP, Sharma S, Singh NK, Singh V, Tiwari K, Singh S (2011) Nature and role of root exudates: efficacy in bioremediation. Afr J Biotechnol 10:9717–9724

    Google Scholar 

  • Shukla KP, Sharma S, Singh NK, Singh V (2012) Deciphering rhizosphere soil system for strains having plant growth promoting and bioremediation traits. Agric Res 1:251–257

    Article  Google Scholar 

  • Shukla KP, Sharma S, Singh NK, Singh V, Bisht S, Kumar V (2013) Rhizoremediation: a promising rhizosphere technology. Applied Bioremediation Active and Passive Approaches 333–352

    Google Scholar 

  • Silambarasana S, Vangnai AS (2017) Plant-growth promoting Candida sp. AVGB4 with capability of 4-nitroaniline biodegradation under drought stress. Ecotoxicol Environ Saf 139:472–480

    Article  CAS  Google Scholar 

  • Singer AC, Smith D, Jury WA, Hathuc K, Crowley DE (2003) Impact of the plant rhizosphere and augmentation on remediation of polychlorinated biphenyl contaminated soil. Environ Toxicol Chem 22:1998–2004

    Article  CAS  Google Scholar 

  • Singh P, Tiwary BN (2017) Optimization of conditions for polycyclic aromatic hydrocarbons (PAHs) degradation by Pseudomonas stutzeri P2 isolated from Chirimiri coal mines. Biocatal Agric Biotechnol 10:20–29

    Article  Google Scholar 

  • Singh OV, Labana S, Pandey G, Budhiraja R, Jain RK (2003) Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 61: 405–412

    Article  CAS  Google Scholar 

  • Singha P, Pandey P (2017) Glutathione and glutathione-S-transferase activity in Jatropha curcas in association with pyrene degrader Pseudomonas aeruginosa PDB1 in rhizosphere, for alleviation of stress induced by polyaromatic hydrocarbon for effective rhizoremediation L. Ecol Eng 102:422–432

    Article  Google Scholar 

  • Slater H, Gouin T, Leigh MB (2011) Assessing the potential for rhizoremediation of PCB contaminated soils in northern regions using native tree species. Chemosphere 84:199–206

    Article  CAS  Google Scholar 

  • Smith MR (1990) The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation 1:191–206

    Article  CAS  Google Scholar 

  • Sul D, Oh E, Im H, Yang M, Kim C, Lee E (2003) DNA damage in T-and B-lymphocytes and granulocytes in emission inspection and incineration workers exposed to polycyclic aromatic hydrocarbons. Mutat Res 538:109–119

    Article  CAS  Google Scholar 

  • Sun YB, Zhou QX, Diao CY (2008) Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresour Technol 99:1103–1110

    Article  CAS  Google Scholar 

  • Sutherland JB, Rafii F, Khan AA, Cerniglia CE (1995) Mechanisms of polycyclic aromatic hydrocarbon degradation. In: Young LY, Cerniglia CE (eds) Microbial transformation and degradation of toxic organic chemicals. Wiley-Liss, New York, pp 269–306

    Google Scholar 

  • Sylvestre M (2013) Prospects for using combined engineered bacterial enzymes and plant systems to rhizoremediate polychlorinated biphenyls. Environ Microbiol 15:907–915

    Article  CAS  Google Scholar 

  • Tam NFY, Guo CL, Yau C, Ke L, Wong YS (2003) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by microbial consortia enriched from mangrove sediments. Water Sci Technol 48:177–183

    Article  CAS  Google Scholar 

  • Thoma GJ, Lam TB, Wolf DC (2003) A mathematical model of phytoremediation for petroleum contaminated soil: sensitivity analysis. Int J Phytoremediation 5:125–136

    Article  CAS  Google Scholar 

  • Tian L, Dai C, Zhao Y, Zhao M, Yong Y, Wang X (2007) The degradation of phenanthrene by endophytic fungi Phomopsis sp. single and co-cultured with rice. China Environ Sci 2007–2006

    Google Scholar 

  • Trzesicka-Mlynarz D, Ward OP (1995) Degradation of polycyclic aromatic hydrocarbons (PAHs) by a mixed culture and its component pure cultures, obtained from PAH-contaminated soil. Can J Microbiol 41:470–476

    Article  CAS  Google Scholar 

  • Van Aken B, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44:2767–2776

    Article  CAS  Google Scholar 

  • Van de Poel B, Van Der Straeten D (2014) 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene. Front Plant Sci 5:640

    Google Scholar 

  • van Dillewijn P, Caballero A, Paz JA, González-Pérez MM, Oliva JM, Ramos JL (2007) Bioremediation of 2,4,6-trinitrotoluene under field conditions. Environ Sci Technol 41:1378–1383

    Article  CAS  Google Scholar 

  • Volkering F, Breure AM, Van Andel JG (1993) Effect of microorganisms on the bioavailability and biodegradation of crystalline naphthalene. Appl Microbiol Biotechnol 40:535–540

    Article  CAS  Google Scholar 

  • Walter U, Beyer M, Klein J, Rehm HJ (1991) Degradation of pyrene by Rhodococcus sp. UW1. Appl Microbiol Biotechnol 34:671–676

    Article  CAS  Google Scholar 

  • Wilson SC, Jones KC (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut 81:229–249

    Article  CAS  Google Scholar 

  • Yateem A, Al-Sharrah T, Bin-Haji A (2007) Investigation of microbes in the rhizosphere of selected grasses for rhizoremediation of hydrocarbon-contaminated soils. Soil Sediment Contam 16:269–280

    Article  CAS  Google Scholar 

  • Zhao HP, Wu QS, Wang L, Zhao XT, Gao HW (2009) Degradation of phenanthrene by bacterial strain isolated from soil in oil refinery fields in Shanghai, China. J Hazard Mater 164:863–869

    Article  CAS  Google Scholar 

  • Zheng Z, Obbard JP (2003) Oxidation of polycyclic aromatic hydrocarbons by fungal isolates from an oil contaminated refinery soil. Environ Sci Pollut Res 10:173–176

    Article  CAS  Google Scholar 

  • Zhou QX, Sun TH (2004) Progress in pollution ecology of soil-plant systems and its expectation. Chin J Appl Ecol 15:1698–1702

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naraian, R., Gautam, R.L., Ram, S., Gupta, M.K. (2019). Rhizoremediation of Polyaromatic Hydrocarbons (PAHs): A Task Force of Plants and Microbes. In: Arora, N., Kumar, N. (eds) Phyto and Rhizo Remediation. Microorganisms for Sustainability, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-32-9664-0_8

Download citation

Publish with us

Policies and ethics