Skip to main content

Lichens as Sinks of Airborne Organic Pollutants: A Case Study in the Natural Ecosystem of Himalayas

  • Chapter
  • First Online:
Phyto and Rhizo Remediation

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 9))

Abstract

Persistent organic pollutants (POPs) are predominantly released into the atmosphere due to anthropogenic activities. POPs pose risk to the global environment as they are persistent having long-range transport potential. In the developing nation like India, anthropogenic activities (mainly due to diesel-driven vehicles and industrial activity) are the major contributing factor of POPs in the environment and its dispersal in the air. Due to long-range transport of pollutants, deposition of POPs affects high-altitude ecosystems especially the Himalayas, which needs to be investigated as Himalayas are source of major perennial rivers and have rich biodiversity. Lichens having peculiar characteristics serve as potential sinks/accumulators for range of pollutants and are well-recognised biomonitors of pollutants including POPs.

The case study discussed in the present chapter is pioneer regarding the levels of PCB congeners as well as N-PAHs levels in lichens from Indian Himalayas. The levels and distribution of POPs, viz., polychlorinated biphenyls (PCBs) congeners, polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (N-PAHs), together with heavy metals, were analysed in lichen Heterodermia diademata samples from protected forest area of Lansdowne in Garhwal Himalaya, Uttarakhand, India. The result provided valuable information on the concentration of different POPs in lichen samples from Garhwal Himalayan region. Concentrations detected in lichens were further utilised for source apportionment, detecting the spatial behaviour of individual POPs. The study clearly indicated the influence of long-range transport of the PCB congeners, PAH and N-PAHs, as well as local practices of excessive usage of wood, coal and practice of forest fire as the major factors affecting the air quality of the Garhwal Himalayan forests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albinet A, Leoz-Garziandia E, Budzinski H, Villenave E, Jarezo J-L J (2008) Nitrated and oxygenated derivatives of polycyclic aromatic hydrocarbons in the ambient air of two French alpine valleys: part 1: concentrations, sources and gas/particle partitioning. Atmos Environ Elsevier 42(173):43–54

    Article  CAS  Google Scholar 

  • Atkinson and Arey J (1994) Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: formation of atmospheric mutagens. Environ Health Perspect 102:117–126

    Google Scholar 

  • Augusto S, Máguas C, Branquinho C (2013a) Guidelines for biomonitoring persistent organic pollutants (POPs), using lichens and aquatic mosses – a review. Environ Pollut 180:330–338

    Article  CAS  Google Scholar 

  • Augusto, S., Pereira, M. J., Máguas, C. and Branquinho, C. (2013b) A step towards the use of biomonitors as estimators of atmospheric PAHs for regulatory purposes. Chemosphere. 92 n5 626-632

    Article  CAS  Google Scholar 

  • Augusto S, Shukla V, Upreti DK, Paoli L, Vannini A, Loppi S, Nerín C, Domeño C, Schuhmacher M (2016) Biomonitoring of air pollution using mosses and lichens: passive and active approach – state of the art and perspectives. In: Urošević MA, Vuković G, Tomašević M (eds) Biomonitoring airborne persistent organic pollutants using lichens. Nova Science Publishers (NOVA), pp 137–175. www.novapublishers.com

  • Bajpai R, Shukla V, Upreti DK (2013) Impact assessment of anthropogenic activities on air quality, using lichen Remototrachyna awasthii as biomonitors. Int J Environ Sci Technol 10:1287–1294

    Article  CAS  Google Scholar 

  • Bamford HA, Bezabeh DZ, Schantz MM, Wise SA, Baker JE (2003) Determination and comparison of nitrated-polycyclic aromatic hydrocarbons measured in air and diesel particulate reference materials. Chemosphere 50:575–587

    Article  CAS  Google Scholar 

  • Blasco M, Domeno C, Nerin C (2008) Lichen biomonitoring as feasible methodology to assess air pollution in natural ecosystems: combined study of quantitative PAHs analysis and lichen biodiversity in the Pyrenees Mountain. Anal Bioanal Chem 391:759–771

    Article  CAS  Google Scholar 

  • Conti ME, Cecchetti G (2002) Biological monitoring: lichens as bioindicator of air pollution assessment – a review. Environ Pollut 114:471–492

    Article  Google Scholar 

  • Daly GL, Wania F (2005) Organic Contaminants in Mountains. Environ Sci Technol 39(2):385–398

    Article  CAS  Google Scholar 

  • Elix JA (2011) Heterodermia, Australian Physciaceae (Lichenised Ascomycota). http://www.anbg.gov.au/abrs/lichenlist/Heterodermia.pdf

  • Escartín E, Porte C (1999) Biomoitoring of PAH pollution in high-altitude mountain lakes through the analysis of Fish bile. Environ Sci Technol 33:406–409

    Article  Google Scholar 

  • Feilberg (2000) Atmospheric chemistry of polycyclic aromatic compounds with special emphasis on nitro derivative. Risø National Laboratory, Roskilde. Information Service Department, Risø

    Google Scholar 

  • Feilberg A, Nielsen T (2000) Effect of aerosol chemical composition on the photodegradation of nitro-polycyclic aromatic hydrocarbons. Environ Sci Technol 34:789–797

    Article  CAS  Google Scholar 

  • Fernandez P, Vilanora RM, Grimalt JO (1999) Sediment fluxes of polyaromatic aromatic hydrocarbons in European high altitude Mountain Lakes. Environ Sci Technol 33:3716–3722

    Article  CAS  Google Scholar 

  • Garćia AZ, Coyotzin CM, Amaro AR, Veneroni DL, Martínez CL, Iglesias GS (2009) Distribution and sources of bioaccumulative air pollutants at Mezquital Valley, Mexico, as reflected by the atmospheric plant Tillandsia recurvata L. Atmos Chem Phys 9:6479–6494

    Article  Google Scholar 

  • Inengite AK, Oforka NC, Osuji LC (2012) Sources of polycyclic aromatic hydrocarbons in an environment urbanised by crude oil exploration. Environ Nat Resour Res 2(3):62–70

    Google Scholar 

  • Klánová J, Matykiewiczová N, Máčka PP, Láska K, Klán P (2007) Persistent organic pollutants in soils and sediments from James Ross Island, Antarctica. Environmental Pollution 152 2 416-423

    Article  CAS  Google Scholar 

  • Korenaga T, Liu X, Tsukiyama Y (2000) Dynamics analysis for emission sources of polycyclic aromatic hydrocarbons in Tokushima soils. J Health Sci 46(5):380–384

    Article  CAS  Google Scholar 

  • Kumar D, Kumar S, Shukla V, Kumar N (2017) Adaptation strategies of plants against common inorganic pollutants and metals. In: Shukla et al (eds) Plant adaptation strategies in changing environment. Springer Nature, Singapore, pp 315–328

    Chapter  Google Scholar 

  • Kumar N, Kulsoom M, Shukla V, Kumar D, Priyanka KS, Tiwari J, Dwivedi N (2018) Profiling of heavy metal and pesticide residues in medicinal plants. Environ Sci Pollut Res, 25 (29):29505–29510

    Article  CAS  Google Scholar 

  • Lammel, Sehili AM, Bond TC, Feichter J, Grassl H (2009) Gas/particle partitioning and global distribution of polycyclic aromatic hydrocarbons--a modelling approach. Chemosphere 76(1):98–106

    Article  CAS  Google Scholar 

  • Lo Giudice A, Caruso G, Rizzo C, Papale M, Azzaro M (2019) Bacterial communities versus anthropogenic disturbances in the Antarctic coastal marine environment. Environ Sustain. https://doi.org/10.1007/s42398-019-00064-2

    Article  CAS  Google Scholar 

  • Marino F, Cecinato A, Siskos PA (2000) Nitro-PAH in ambient particulate matter in the atmosphere of Athens. Chemosphere 40:533–537

    Article  CAS  Google Scholar 

  • Markert BA, Breure AM, Zechmeister HG (2003) Definitions, strategies and principles for bioindication/biomonitoring of the environment. In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors. Elsevier, Oxford, pp 3–39

    Google Scholar 

  • McLachlan MS (1999) Framework for the interpretation of measurements of SOCs in plants. Environ Sci Technol 33:1799–1804

    Article  CAS  Google Scholar 

  • Negotia TG, Covaci A, Gheorghe A, Schepens P (2003) Distribution of polychlorinated biphenyls (PCBs) and organochlorine pesticides in soils from the East Antarctic coast. J Environ Monit 5:281–286

    Article  CAS  Google Scholar 

  • Nielsen A, Feilberg A, Binderup ML (1999) The variation of street air levels of PAH and other mutagenic PAC in relation to regulations of traffic emissions and the impact of atmospheric processes. Environ Sci Pollut Res 6(3):133–137

    Article  CAS  Google Scholar 

  • Ou D, Liu M, Cheng S, Hou L, Xu S, Wang L (2010) Identification of the sources of polycyclic aromatic hydrocarbon based on molecular and isotopic characterization from the Yangtze estuarine and nearby coastal areas. J Geogr Sci 20(2):283–294

    Article  Google Scholar 

  • Park H, Lee S-H, Kim M, Kim J-H, Lim HS (2010) Polychlorinated biphenyl congeners in soils and lichens from King George Island, South Shetland Islands, Antarctica. Antarct Sci 22(1):31–38

    Article  Google Scholar 

  • Rajkumari J, Bhuyan B, Das N, Pandey P (2019) Environmental applications of microbial extremophiles in the degradation of petroleum hydrocarbons in extreme environments. Environ Sustain. https://doi.org/10.1007/s42398-019-00065-1

    Article  CAS  Google Scholar 

  • Sehili AM, Lammel G (2007) Global fate and distribution of polycyclic aromatic hydrocarbons emitted from Europe and Russia. Atmos Environ 41:8301–8315

    Article  CAS  Google Scholar 

  • Shukla V, Upreti DK (2008) Effect of metallic pollutants on the physiology of lichen, Pyxine subcinerea Stirton in Garhwal Himalayas. Environ Monit Assess 141:237–243

    Article  CAS  Google Scholar 

  • Shukla V, Upreti DK (2009) Polycyclic aromatic hydrocarbon (PAH) accumulation in lichen Phaeophyscia hispidula of Dehra Dun City, Garhwal Himalayas. Environ Monit Assess 149:1–7

    Article  CAS  Google Scholar 

  • Shukla V, Upreti DK (2012) Air quality monitoring with lichens in India. Heavy metals and polycyclic aromatic hydrocarbons. In: Lichtfouse et al. (eds) Environmental chemistry for a sustainable world. Remediation of air and water pollution, vol 2. Springer, Dordrecht, pp 277–294.

    Google Scholar 

  • Shukla V, Patel DK, Upreti DK, Yunus M (2012) Lichens to distinguish urban from industrial PAHs. Environ Chem Lett 10:159–164

    Article  CAS  Google Scholar 

  • Shukla V, Upreti DK, Bajpai R (2013a) Lichens to biomonitor the environment. Springer, New Delhi

    Google Scholar 

  • Shukla V, Upreti DK, Patel DK, Yunus M (2013b) Lichens reveal air PAH fractionation in the Himalaya. Environ Chem Lett 11:19–23

    Article  CAS  Google Scholar 

  • Söderström H, Hajšlová J, Kocourek V, Siegmund B, Kocan A, Obiedzinski MW, Tysklind M, Bergqvist P-A (2005) PAHs and nitrated PAHs in air of five European countries determined using SPMDs as passive samplers. Atmos Environ 39(2005):1627–1640

    Google Scholar 

  • Srogi K (2007) Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett 5:169–195

    Article  CAS  Google Scholar 

  • Talaska G, Underwood P, Maier A, Lewtas J, Rothman N, Jaeger M (1996) Polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs and related environmental compounds: biological markers of exposure and effects. Environ Health Perspect 104(5):901–906

    CAS  Google Scholar 

  • Wang XP, Yao TD, Cong ZY, Yan XL, Kang SC, Zhang Y (2007) Concentration level and distribution of polycyclic aromatic hydrocarbons in soil and grass around Mt. Qomolangma, China. Chin Sci Bull 52(10):1405–1413

    Article  CAS  Google Scholar 

  • Yunker MB, Macdonald RW (1995) Composition and origins of polycyclic aromatic hydrocarbons in the Mackenzie River and on the Beaufort Sea Shelf. Arctic 48(2):118–129

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Director, CSIR-National Botanical Research Institute, Lucknow for facilities and encouragements. V.S. is grateful to the Department of Science and Technology (DST-SERB), New Delhi, for award of Young Scientist fellowship (SR/FTP/ES-39/2013).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shukla, V., Asati, A., Patel, D.K., Semwal, M., Upreti, D.K. (2019). Lichens as Sinks of Airborne Organic Pollutants: A Case Study in the Natural Ecosystem of Himalayas. In: Arora, N., Kumar, N. (eds) Phyto and Rhizo Remediation. Microorganisms for Sustainability, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-32-9664-0_7

Download citation

Publish with us

Policies and ethics