Skip to main content

Rhizoremediation: A Sustainable Approach to Improve the Quality and Productivity of Polluted Soils

  • Chapter
  • First Online:
Phyto and Rhizo Remediation

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 9))

Abstract

Soil contamination is a widespread problem which has been causing deleterious changes in the biology, structure, and also its productivity. Various recalcitrant and xenobiotic compounds, due to rapid pace of anthropogenic activities, have accumulated in soil resulting in its degradation and infertility. In addition to this, persistent nature of these pollutants allows them to enter into the food chain posing serious threats to living beings. Therefore, a holistic and sustainable approach which is ecofriendly, cost-effective, and organic in nature, is the need of the hour. Rhizoremediation is one such method which could obviate the problem of such hazardous compounds from soils. The co-evolutionary relationship between plant and their associated microbiota is being successfully used to reclaim and restore degraded soils without causing any harmful by-products unlike conventional methods. Not only this, application of rhizoremediation technique is also reported to improve soil organic matter (SOM), nutrient cycling, bioavailability of insoluble compounds, which in turn enhances biomass production rendering the soil fertile and productive for better agronomic purposes. Recent advances in genetic engineering and “omics” techniques have further strengthened our knowledge in this area which when exploited in future could be used to alleviate the problem of soil contamination with precision and in shortest possible time. In this way, this green technology along with amalgamation of biotechnological tools could be envisaged as an excellent substitute to chemical and physical methods to remediate contaminated soil making it fertile and productive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Elsaoud AM, Nafady NA, Abdel-Azeem AM (2017) Arbuscular mycorrhizal strategy for zinc mycoremediation and diminished translocation to shoots and grains in wheat. PLoS One 12(11):e0188220

    Article  CAS  Google Scholar 

  • Adriano DC, Bolan NS, Vangronsveld J, Wenzel WW (2005) Heavy metals. In: Hillel D (ed) Encyclopedia of soils in the environment. Elsevier, Amsterdam, pp 175–182

    Chapter  Google Scholar 

  • Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applicationsfor the phytoremediation of organic pollutants. Chemosphere 117:232–242

    Article  CAS  Google Scholar 

  • Agnello AC, Bagard M, van Hullebusch ED, Esposito G, Huguenot D (2016) Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation. Sci Total Environ 563–564:693–703

    Article  CAS  Google Scholar 

  • Aguiar-Pulido V, Huang W, Suarez-Ulloa V, Cickovski T, Mathee K, Narasimhan G (2016) Metagenomics, metatranscriptomics, and metabolomics approaches for microbiome analysis. Evol Bioinformatics Online 12(Suppl 1):5–16

    Google Scholar 

  • Ahemad M (2014) Bacterial mechanisms for Cr(VI) resistance and reduction: an overview and recent advances. Folia Microbiol 59(4):321–332

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2012) Effects of pesticides on plant growth promoting traits of Mesorhizobium strain MRC4. J Saudi Soc Agric Sci 11(1):63–71

    CAS  Google Scholar 

  • Akbar S, Sultan S, Kertesz M (2015) Determination of cypermethrin degradation potential of soil bacteria along with plant growth-promoting characteristics. Curr Microbiol 70(1):75–84

    Article  CAS  Google Scholar 

  • Al-Ameeri DK, Al Sarawi M (2017) Rhizoremediation of contaminated soils by comparing six roots species in Al-Wafra, State of Kuwait. J Bioremed Biodeg 8:384

    Article  CAS  Google Scholar 

  • Alkorta I, Garbisu C (2001) Phytoremediation of organic contaminants in soil. Bioresour Technol 79:273–276

    Article  CAS  Google Scholar 

  • Anderson TA, Coats JR (1995) An overview of microbial degradation in the rhizosphere and its implication for bioremediation. In : Skipper HD, Turco RF (eds) Bioremediation: science and applications 43:135–143 Soil Science Society of America, Madison

    Google Scholar 

  • Andria V, Reichenauer TG, Sessitsch A (2009) Expression of alkane monooxygenase (alkB) genes by plant-associated bacteria in the rhizosphere and endosphere of Italian ryegrass (Lolium multiflorum L.) grown in diesel contaminated soil. Environ Pollut 157:3347–3350

    Article  CAS  Google Scholar 

  • Aprill W, Sims RC (1990) Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere 20:253–265

    Article  CAS  Google Scholar 

  • Aranda E, Ullrich R, Hofrichter M (2010) Conversion of polycyclic aromatic hydrocarbons, methyl naphthalenes and dibenzofuran by two fungal peroxygenases. Biodegradation 21:267–281

    Article  CAS  Google Scholar 

  • Arora NK (2018) Bioremediation: a green approach for restoration polluted ecosystem. Environ Sustain 1(4):305–307

    Article  Google Scholar 

  • Arora NK, Khare E, Maheshwari DK (2010) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin, pp 97–116

    Chapter  Google Scholar 

  • Arora NK, Tewari S, Singh S, Lal N, Maheshwari DK (2012) PGPR for protection of plant health under saline conditions. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin, pp 239–258

    Chapter  Google Scholar 

  • Arora NK, Fatima T, Mishra I, Verma M, Mishra J, Mishra V (2018) Environmental sustainability: challenges and viable solutions. Environ Sustain 1(4):309–340

    Article  Google Scholar 

  • Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25:356–362

    Article  CAS  Google Scholar 

  • Arslan M, Afzal M, Amin I, Iqbal S, Khan QM (2014) Nutrients can enhance the abundance and expression of alkane hydroxylase CYP153 Gene in the rhizosphere of ryegrass planted in hydrocarbon-polluted soil. PLoS One 9(10):e111208

    Article  CAS  Google Scholar 

  • Asemoloye MD, Jonathan SG, Ahmad R (2019) Synergistic plant-microbes interactions in the rhizosphere: a potential headway for the remediation of hydrocarbon polluted soils. Int J Phytoremediation 21(2):71–83

    Article  CAS  Google Scholar 

  • Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of two worst oil spills in U.S history. Environ Sci Technol 45(16):6709–6715

    Article  CAS  Google Scholar 

  • Azcón-Aguilar and Barea JM (1997) Applying mycorrhiza biotechnology to horticulture: significance and potential. Sci Hortic 68:1–24

    Article  Google Scholar 

  • Balakrishna K, Rath A, Praveenkumarreddy Y, Guruge KS, Subedi B (2016) A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicol Environ Saf 137:113–120

    Article  CAS  Google Scholar 

  • Barac T, Weyens N, Oeyen L, Taghavi S, vanderLelie D, Dubin D, Spliet M, Vangronsveld J (2009) Field note: hydraulic containment of a BTEX plume using poplar trees. Int J Phytoremediation 11(5):416–424

    Article  CAS  Google Scholar 

  • Barea JM, Toro M, Orozco MO, Campos E, Azcón R (2002) The application of isotopic 32P and 15N dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutr Cycl Agroecosyst 63:35–42

    Article  CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  Google Scholar 

  • Basu S, Rabara RC, Negi S, Shukla P (2018) Engineering PGMOs through gene editing and systems biology: a solution for phyotremediation. Trends Biotechnol 36(5):499–510

    Article  CAS  Google Scholar 

  • Bauer H, Ache P, Lautner S, Fromm J, Hartung W, Al-Rasheid KA, Mendel RR (2013) The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr Biol 23:53–57

    Article  CAS  Google Scholar 

  • Bello-Akinosho M, Makofane R, Adeleke R, Thantsha M, Pillay M, Chirima GJ (2016) Potential of polycyclic aromatic hydrocarbon-degrading bacterial isolates to contribute to soil fertility. Biomed Res Int 2016:1–10

    Article  CAS  Google Scholar 

  • Bisht S, Pandey P, Aggarwal H, Sood A, Sharma S, Kumar V, Bisht NS (2014) Utilization of endophytic strain Bacillus sp. SBER3 for biodegradation of polyaromatic hydrocarbons (PAH) in soil model system. Eur J Soil Biol 60:67–76

    Article  CAS  Google Scholar 

  • Bisht S, Pandey P, Bhargava B, Sharma S, Kumar V, Sharma KD (2015) Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz J Microbiol 46(1):7–21

    Article  CAS  Google Scholar 

  • Biswas B, Sarkar B, Rusmin R, Naidu R (2015) Bioremediation of PAHs and VOCs: advances in clay mineral-microbial interaction. Environ Int 85:168–181

    Article  CAS  Google Scholar 

  • Blackburn JW, Hafker WR (1993) The impact of biochemistry, bioavilability, and bioactivity on the selection of bioremediation technologies. Trends Biotechnol 11:328–333

    Article  CAS  Google Scholar 

  • Böltner D, Godoy P, Muñoz-Rojas J, Duque E, Moreno-Morillas S, Sánchez L, Ramos JL (2007) Rhizoremediation of lindane by root-colonizing Sphingomonas. Microb Biotechnol 1(1):87–93

    Google Scholar 

  • Bowen BJM (1979) Environmental chemistry of the elements. Academic, London, p 333

    Google Scholar 

  • Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr-and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286

    Article  CAS  Google Scholar 

  • Brezna B, Khan AA, Cerniglia CE (2003) Molecular characterization of dioxygenases from polycyclic aromatic hydrocarbon-degrading Mycobacterium spp. FEMS Microbiol Lett 223:177–183

    Article  CAS  Google Scholar 

  • Bruyn D, Warren J, Catherine DC, Ottelle K, Aiona P (2012) Photochemical degradation of phenanthrene as a function of natural water variables modeling freshwater to marine environments. Mar Pollut Bull 64:532–538

    Article  CAS  Google Scholar 

  • Cai Y, Ma LQ (2002) Metal tolerance, accumulation, and detoxification in plants with emphasis on arsenic in terrestrial plants. In: Cai Y, Braids OC (eds) Biogeochemistry of environmentally important trace elements. American Chemical Society, Washington, DC, pp 95–114

    Chapter  Google Scholar 

  • Campbell R, Greaves MP (1990) Anatomy and community structure of the rhizosphere. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester, pp 11–34

    Google Scholar 

  • CCICED (2015) Special policy study on soil pollution management. China Council for International Cooperation on Environment and Development. Also available at http://english.sepa.gov.cn/Events/Special_Topics/AGM_1/2015nh/document/201605/P020160524149463335883.pdf

  • Cébron A, Louvel B, Faure P, France-Lanord C, Chen Y, Murrell JC, Leyval C (2011) Root exudates modify bacterial diversity of phenanthrene degraders in PAH-polluted soil but not phenanthrene degradation rates. Environ Microbiol 13(3):722–736

    Article  CAS  Google Scholar 

  • Chang P, Gerhardt KE, Huang XD, Yu XM, Glick BR, Gerwing PD, Greenberg BM (2014) Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils. Int J Phytoremediation 16(7–12):1133–1147

    Article  CAS  Google Scholar 

  • Chatterjee S, Sau GB, Mukherjee SK (2009) Plant growth promotion by hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World J Microbiol Biotechnol 25:1829–1836

    Article  CAS  Google Scholar 

  • Chaudhry Q, Blom-Zandstra M, Gupta S, Joner EJ (2005) Utilising the synergy between plants and rhizosphere microorganisms to enhance breakdown of organic pollutants in the environment. Environ Sci Pollut Res 12:34–48

    Article  CAS  Google Scholar 

  • Chen L, Luo S, Li X, Wan Y, Chen J, Liu C (2014) Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308

    Article  CAS  Google Scholar 

  • Chiaia-Hernandez AC, Keller A, Wachter D, Steinlin C, Camenzuli L, Hollender J, Krauss M (2017) Long-term persistence of pesticides and TPs in archived agricultural soil samples and comparison with pesticide application. Environ Sci Technol 51:10642–10651

    Article  CAS  Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci pp 12 Article ID: 752708

    Google Scholar 

  • Clark CD, De Bruyn WJ, Ting J, Scholle W (2007) Solution medium effects on the photochemical degradation of pyrene in water. J Photochem Photobiol A Chem 186:342–348

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  Google Scholar 

  • Cook RL, Hesterberg D (2013) Comparison of trees and grasses for rhizoremediation of petroleum hydrocarbons. Int J Phytoremediation 15:844–860

    Article  CAS  Google Scholar 

  • Corgie SC, Joner EJ, Leyval (2003) Rhizospheric degradation of phenanthrene is a function of proximity to roots. Plant Soil 257:143–150

    Article  CAS  Google Scholar 

  • Costa OYA, Raaijmakers JM, Kuramae EE (2018) Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol 9:1636

    Article  Google Scholar 

  • Cruz-Hernández A, Tomasini-Campocosio A, Pérez-Flores LJ, Fernández-Perrino FJ, Gutiérrez-Rojas M (2013) Inoculation of seed-borne fungus in the rhizosphere of Festuca arundinacea promotes hydrocarbon removal and pyrene accumulation in roots. Plant Soil 362(1–2):260–271

    Google Scholar 

  • Cui CZ, Zeng C, Wan X, Chen D, Zhang JY, Shen P (2008) Effect of Rhamnolipids in degradation of anthracene by two newly isolated strains, Sphingomonas sp. 12A and Pseudomonas sp. 12B. J Microbiol Biotechnol 18:63

    CAS  Google Scholar 

  • Daane LL, Harjono I, Zylstra GJ, Haggblom MM (2001) Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants. Appl Environ Microbiol 67:2683–2691

    Article  CAS  Google Scholar 

  • Dakiky M, Khamis M, Manassra A, Mereb M (2002) Selection adsorption of Chromium (VI) in industrial waste water using low-cost abundantly available adsorbents. Adv Environ Res 6:533–540

    Article  CAS  Google Scholar 

  • Darmawan R, Nakata H, Ohta H, Niidome T, Takikawa K, Morimura S (2015) Isolation and evaluation of PAH degrading bacteria. J Bioremed Biodegrad 6:283

    Google Scholar 

  • DECA (2010) Assessment levels for soil, sediment and water., p. 56. No. 4. Australia, Department of Environment and Conservation. https://www.der.wa.gov.au/images/documents/yourenvironment/contaminatedsites/guidelines/2009641__assessment_levels_for_soil_sediment_and_water_-_web.pdf.

  • Deguchi S, Uozumi S, Touno E, Kaneko M, Tawaraya K (2012) Arbuscular mycorrhizal colonization increases phosphorus uptake and growth of corn in a white clover living mulch system. Soil Sci Plant Nutr 58:169–172

    Article  CAS  Google Scholar 

  • Deicke M, Bellenger JP, Wichard T (2013) Direct quantification of bacterial molybdenum and iron metallophores with ultra-high-performance liquid chromatography coupled to time-of-flight mass spectrometry. J Chromatogr A 1298:50–60

    Article  CAS  Google Scholar 

  • Devers M, Azhari NE, Kolic NU, Martin-Laurent F (2007) Detection and organization of atrazine-degrading genetic potential of seventeen bacterial isolates belonging to divergent taxa indicate a recent common origin of their catabolic functions. FEMS Microbiol Lett 273:78–86

    Article  CAS  Google Scholar 

  • Dubey KK, Fulekar MH (2012) Chlorpyrifos bioremediation in Pennisetum rhizosphere by a novel potential degrader Stenotrophomonas maltophilia MHF ENV20. World J Microbiol Biotechnol 28:1715–1725

    Article  CAS  Google Scholar 

  • Eerd LLV, Zablotowicz REHRM, Hall JC (2003) Pesticide metabolism in plants and microorganisms. Weed Sci 51:472–495

    Article  Google Scholar 

  • Erickson LE, Davis LC, Narayanan M (1995) Bioenergetics and bioremediation of contaminated soil. Therochim Acta 250:353–358

    Article  CAS  Google Scholar 

  • European Environment Agency (EEA) (2014) Progress in management of contaminated sites. European Environment Agency. https://www.eea.europa.eu/data-and-maps/indicators/progress-in-management-of-contaminated-sites/progress-in-management-ofcontaminated-1

  • Eskandary S, Tahmourespour A, Hoodaji M, Abdollahi A (2017) The synergistic use of plant and isolated bacteria to clean up polycyclic aromatic hydrocarbons from contaminated soil. J Environ Health Sci Eng 15:12

    Article  CAS  Google Scholar 

  • Etesami H (2018) Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecotoxicol Environ Saf 147:175–191

    Article  CAS  Google Scholar 

  • Finlayson-Pitts BJ, Pitts JN Jr (2000) Chemistry of the upper and lower atmosphere: theory, experiments and applications. Academic, New York, p 969

    Google Scholar 

  • FAO (2017). Available at http://www.fao.org/faostat/en/#home

  • FAO (2018). http://www.fao.org/3/I9183EN/i9183en.pdf

  • Fulekar MH (2014) Rhizosphere bioremediation of pesticides by microbial consortium and potential microorganism. Int J Curr Microbiol App Sci 3(7):235–248

    Google Scholar 

  • Fu Y, Viraraghavan T (2001) Fungal decolorization of dye wastewaters: a review. Bioresour Technol 79(3):251–262

    Article  CAS  Google Scholar 

  • Gangola S, Negi P, Srivastava G, Sharma A (2014) Enhanced biodegradation of endosulfan using a consortium of Aspergillus and Trichoderma spp. isolated from agriculture field of Kumaun region of Uttarakhand. Pestic Res J 27(2):223–230

    Google Scholar 

  • Gangola S, Khati P, Sharma A (2015) Mycoremediation of imidaclopid in the presence of different soil amendment using Trichoderma longibrachiatum and Aspergillus oryzae isolated from pesticide contaminated Agricultural fields of Uttarakhand. J Bioremed Biodeg 6(5):2–5

    Google Scholar 

  • Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad. Curr Microbiol 56:403–407

    Article  CAS  Google Scholar 

  • Garbisu C, Garaiyurrebaso O, Epelde L, Grohmann E, Alkorta I (2017) Plasmid-mediated bioaugmentation for the bioremediation of contaminated soils. Front Microbiol 8:1966

    Article  Google Scholar 

  • Gerhardt KE, Huang X-D, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Germaine KJ, Liu X, Cabellos GG, Hogan JP, Ryan D, Dowling DN (2006) Bacterial endophyte-enhanced phytoremediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid. FEMS Microbiol Ecol 57:302–310

    Article  CAS  Google Scholar 

  • Gilden RC, Huffling K, Sattler B (2010) Pesticides and health risks. J Obstet Gynecol Neonatal Nurs 39(1):103–110

    Article  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 12:15. Article ID 963401

    Google Scholar 

  • Godheja J, Shekhar SK, Siddiqui SA, Modi DR (2016) Xenobiotic compounds present in soil and water: a review on remediation strategies. J Environ Anall Toxicol 6:5

    Google Scholar 

  • Gomeiro T (2016) Soil degradation, land scarcity and food security: reviewing a complex challenge. Sustainability 8:281

    Article  Google Scholar 

  • Gonzales-Chavez MC, Carrillo-Gonzales R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323

    Article  CAS  Google Scholar 

  • Gunther T, Dornberger U, Fritsche W (1996) Effects of ryegrass on biodegradation of hydrocarbons in soil. Chemosphere 33:203–216

    Article  CAS  Google Scholar 

  • Gupta P, Diwan B (2016) Bacterial Exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71

    Article  Google Scholar 

  • Gupta P, Kumar V (2017) Value added phytoremediation of metal stressed soils using phosphate solubilizing microbial consortium. World J Microbiol Biotechnol 33(1):9

    Article  CAS  Google Scholar 

  • Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787

    Article  Google Scholar 

  • Hamdi H, Benzarti S, Manusadžianas L, Aoyama I, Jedidi N (2007) Bioaugmentation and biostimulation effects on PAH dissipation and soil ecotoxicity under controlled conditions. Soil Biol Biochem 39:1926–1935

    Article  CAS  Google Scholar 

  • Hiltner L (1904) Uber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderden berucksichtigung und Brache. Arb Dtsch Landwirtsch Gesellschaft 98:59–78

    Google Scholar 

  • Heitkamp MA, Cerniglia CE (1989) Polycyclic aromatic hydrocarbon degradation by a Mycobacterium sp. in microcosms containing sediment and water from a pristine ecosystem. Appl Environ Microbiol 55(8):1968–1973

    CAS  Google Scholar 

  • Hernandez AF, Parron T, Tsatsakis AM, Requena M, Alarcón R, López-Guarnido O (2013) Toxic effects of pesticide mixtures at a molecular level: their relevance to human health. Toxicology 307:136–145

    Article  CAS  Google Scholar 

  • Hoagland RE, Zablotowicz RM, Locke MA (1994) Propanil metabolism by rhizosphere microflora. In: Anderson TA, Coats JR (eds) Bioremediation through rhizosphere technology. American Chemical Society, Washington, DC, pp 160–183

    Chapter  Google Scholar 

  • Hong SH, Ryu H, Kim J, Cho KS (2011) Rhizoremediation of diesel-contaminated soil using the plant growth-promoting rhizobacterium Gordonia sp. S2RP-17. Biodegradation 22(3):593–601

    Article  CAS  Google Scholar 

  • Hou J, Liu W, Wang B, Wang Q (2015) PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response. Chemosphere 138:592–593

    Article  CAS  Google Scholar 

  • Hrynkiewicz K, Baum C (2011) The potential of rhizosphere microorganisms to promote the plant growth in disturbed soils. In: Malik A, Grohmann E (eds) Environmental protection strategies for sustainable development. strategies for sustainability. Springer, New York, pp 35–64

    Google Scholar 

  • Huang XD, El-Alawai Y, Gurska J, Glick BR, Greenberg BM (2005) A multi-process phytoremediation system for decontamination of persistent total petroleum hydro-carbons (TPHs) from soils. Microchem J 81:139–147

    Article  CAS  Google Scholar 

  • Hussain MB, Zahir Z, Naeem Asghar HN, Asgher M (2014) Can Catalase and exopolysaccharides producing rhizobia ameliorate drought stress in wheat? Int J Agric Biol 16(1):3–13

    CAS  Google Scholar 

  • Imsande J (1998) Iron, sulfur, and chlorophyll deficiencies: a need for an integrative approach in plant physiology. Physiol Plant 103:139–144

    Article  CAS  Google Scholar 

  • Isaac P, Sanchez AL, Bourgurgnon N, Cabral ML, Ferrerd MA (2013) Indigenous PAH-degrading bacteria from oil-polluted sediments in Caleta Cordova, Patagonia Argentina. Int Biodeterior Biodegrad 82:207–214

    Article  CAS  Google Scholar 

  • Isaac P, Martínez FL, Bourguignon N, Sánchez LA, Ferrero MA (2015) Improved PAHs removal performance by a defined bacterial consortium of indigenous Pseudomonas and actinobacteria from Patagonia, Argentina. Int Biodeterior Biodegrad 101:23–31

    Article  CAS  Google Scholar 

  • Jacobsen CS (1997) Plant protection and rhizosphere colonization of barley by seed inoculated herbicide degrading Burkholderia (Pseudomonas) cepacia DBO1(pRO101) in 2,4-D contaminated soil. Plant Soil 189:139–144

    Article  CAS  Google Scholar 

  • Jayaraj R, Megha P, Sreedev P (2017) Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip Toxicol 9(3–4):90–100

    Google Scholar 

  • Johnsen AR, Wick LY, Harms H (2005) Principles of microbial PAH-degradation in soil. Environ Pollut 133:71–84

    Article  CAS  Google Scholar 

  • Johansen JE, Binnerup SJ (2002) Contribution of Cytophaga-like bacteria to the potential of turnover of carbon, nitrogen, and phosphorus by bacteria in the rhizosphere of barley (Hordeum vulgare L). Microb Ecol 43:298–306

    Article  CAS  Google Scholar 

  • Joner EJ, Leyval C (2003) Rhizosphere gradients of polycyclic aromatic hydrocarbon (PAH) dissipation in two industrial soils and the impact of arbuscular Mycorrhiza. Environ Sci Technol 37:2371–2375

    Article  CAS  Google Scholar 

  • Joner EJ, Hirmann D, Oliver HJ, Todorovic D, Leyval C, Loibner A (2004) Priming effects on PAH degradation and ecotoxicity during a phytoremediation experiment. Environ Pollut 128:429–435

    Article  CAS  Google Scholar 

  • Joner EJ, Levyal C (2001) Influence of arbuscular mycorrhiza on clover and ryegrass grown together in a soil spiked with polycyclic aromatic hydrocarbons. Mycorrhiza 10:155–159

    Article  CAS  Google Scholar 

  • Joshi PM, Juwarkar AA (2009) In vivo studies to elucidate the role of extracellular polymeric substances from Azotobacter in immobilization of heavy metals. Environ Sci Technol 43:5884–5889

    Article  CAS  Google Scholar 

  • Ju W, Liu L, Fang L, Cui Y, Duan C, Wu H (2019) Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil. Ecotoxicol Environ Saf 167:218–226

    Article  CAS  Google Scholar 

  • Kamaludeen SP, Ramasamy K (2008) Rhizoremediation of metals: harnessing microbial communities. Indian J Microbiol 48(1):80–88

    Article  CAS  Google Scholar 

  • Kanaly RA, Harayama S (2010) Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microb Biotechnol 1(2):136–164

    Article  CAS  Google Scholar 

  • Karthik C, Barathi S, Pugazhendhi A, Ramkumar VS, Thi NBD, Arulselvi PI (2017) Evaluation of Cr(VI) reduction mechanism and removal by Cellulosimicrobium funkei strain AR8, a novel haloalkaliphilic bacterium. J Hazard Mater 333:42–53

    Article  CAS  Google Scholar 

  • Karthik C, Arulselvi PI (2017) Biotoxic effect of chromium (VI) on plant growth-promoting traits of novel cellulosimicrobium funkei strain AR8 isolated from phaseolus vulgaris Rhizosphere. Geomicrobiol J 34:434–442

    CAS  Google Scholar 

  • Kaushal M, Wani SP (2016) Rhizobacterial-plant interactions: strategies ensuring plant growth promotion under drought and salinity stress. Agric Ecosyst Environ 231:68–78

    Article  CAS  Google Scholar 

  • Khalid A, Akhtar MJ, Mahmood MH, Arshad M (2006) Effect of substrate-dependent microbial ethylene production on plant growth. Microbiology 75:231–236

    Article  CAS  Google Scholar 

  • Khan MA (2014) Microbiological solution to environmental problems – a review on bioremediation. Int J Pure Appl Biosci 2(6):295–303

    Google Scholar 

  • Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41:197–207

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  CAS  Google Scholar 

  • Khandare RV, Govindwar SP (2015) Phytoremediation of textile dyes and effluents: current scenario and future prospects. Biotechnol Adv 33(8):1697–1714

    Article  CAS  Google Scholar 

  • Khare E, Singh S, Maheshwari DK, Arora NK (2011) Suppression of charcoal rot of chickpea by fluorescent pseudomonas under saline stress condition. Curr Microbiol 62(5):1548–1553

    Article  CAS  Google Scholar 

  • Kim J, Min K, Cho K, Lee I (2007) Enhanced bioremediation and modified bacterial community structure by barnyard grass in diesel-contaminated soil. Environ Eng Res 12(2):37–45

    Article  Google Scholar 

  • Kuiper I, Bloemberg GV, Lugtenberg BJJ (2001) Selection of a plant-bacterium pair as a novel tool for rhizostimulation of polycyclic aromatic hydrocarbon-degrading bacteria. Mol Plant-Microbe Interact 14(10):1197–1205

    Article  CAS  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant-Microbe Interact 17:6–15

    Article  CAS  Google Scholar 

  • Lacalle RG, Gómez-Sagasti MT, Artetxe U, Garbisu C, Becerril JM (2018) Brassica napus has a key role in the recovery of the health of soils contaminated with metals and diesel by rhizoremediation. Sci Total Environ 618:347–356

    Article  CAS  Google Scholar 

  • Levyal C, Binet P (1998) Effect of poly aromatic hydrocarbons (PAHs) in soil on aurbuscular mycorrhizal plants. J Environ Qual 27:402–407

    Article  Google Scholar 

  • Li J, Zhao B, LI X, Jiang R, Bing HS (2008) Effects of long-term combined application of organic and mineral fertilizers on microbial biomass, soil enzyme activities and soil fertility. Agric Sci China 7:336–343

    Article  Google Scholar 

  • Ling W, Sun R, Gao X, Xu R, Li H (2015) Low-molecular-weight organic acids enhance desorption of polycyclic aromatic hydrocarbons from soil. Eur J Soil Sci 66:339–347

    Article  CAS  Google Scholar 

  • Lipthay JR, Barkay T, Sørensen SJ (2001) Enhanced degradation of phenoxyacetic acid in soil by horizontal transfer of the tfdA gene encoding a 2,4-dichlorophenoxyacetic acid dioxygenase. FEMS Microbiol Ecol 35:75–84

    Article  Google Scholar 

  • Liu W, Hou J, Wang Q, Ding L, Luo Y (2014) Isolation and characterization of plant growth-promoting rhizobacteria and their effects on phytoremediation of petroleum-contaminated saline-alkali soil. Chemosphere 117:303–308

    Article  CAS  Google Scholar 

  • Liu R, Dai Y, Sun L (2015) Effect of rhizosphere enzymes on phytoremediation in PAH-contaminated soil using five plant species. PLoS One 10:e0120369

    Article  CAS  Google Scholar 

  • Lowder LG, Zhang D, Baltes NJ, Paul JW, Tang X, Zheng X, Voytas DF, Hsieh TE, Zhang Y, Qi Y (2015) A CRISPR-Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169:971–985

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Zhang C, Freitas H (2016) Beneficial role of bacterial endophytes in heavy metal phytoremediation. J Environ Manag 174:14–25

    Article  CAS  Google Scholar 

  • Maier RM, Soberón-Chávez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–663

    Article  CAS  Google Scholar 

  • Malla MA, Dubey A, Yadav S, Kumar A, Hashem A, Abd_Allah EF (2018) Understanding and designing the strategies for the microbe-mediated remediation of environmental contaminants using omics approaches. Front Microbiol 9:1132

    Article  Google Scholar 

  • Mani V, Kaur H, Mohini M (2005) Toxic metals and environmental pollution. J Ind Pollut Control 21(1):101–110

    CAS  Google Scholar 

  • Marchand C (2017) Phytoremediation of petroleum hydrocarbons and trace elements contaminated soil, Linnaeus University Dissertation No 279/2017, ISBN:978-91-88357-63-27

    Google Scholar 

  • Marschner P, Yang C-H, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445

    Article  CAS  Google Scholar 

  • Meharg AA, Cairney JWG (2000) Ectomycorrhizas-extending the capacities of rhizosphere remediation? Soil Biol Biochem 32:1475–1484

    Article  CAS  Google Scholar 

  • Meghraj M, Madhavi DR, Sreeinvasaulu C, Umamaheswari A, Venkateswarlu K (1994) Biodegradation of methylparathion by soil isolates of microalgae and cyanobacteria. Bull Environ Contam Toxicol 53:292–297

    Google Scholar 

  • Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37:1362–1375

    Article  CAS  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663

    Article  CAS  Google Scholar 

  • Merry RH, Tiller KG, Alston AM (1983) Accumulation of copper, lead and arsenic in Australian orchard soils. Aust J Soil Res 21:549–561

    Article  CAS  Google Scholar 

  • Mishra J, Singh R, Arora NK (2017) Alleviation of heavy metal stress in plants and remediation of soil by rhizosphere microorganisms. Front Microbiol 8:1706

    Article  Google Scholar 

  • Mishra J, Tewari S, Singh S, Arora NK (2015) Bio-pesticides: where we stand? In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 37–75

    Google Scholar 

  • Mishra N, Sundari SK (2015) Native PGPM consortium: a beneficial solution to support plant growth in the presence of phytopathogens and residual organophosphate pesticides. J Bioprocess Biotech 5:202

    Google Scholar 

  • Miyazaki R, Sato Y, Ito M, Ohtsubo Y, Nagata Y, Tsuda M (2006) Complete nucleotide sequence of an exogenously isolated plasmid, pLB1, involved in gamma-hexachlorocyclohexane degradation. Appl Environ Microbiol 72:6923–6933

    Article  CAS  Google Scholar 

  • Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165:363–375

    Article  CAS  Google Scholar 

  • Moody JD, Freeman JP, Doerge DR, Cerniglia CE (2001) Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strains PYR- 1. Appl Environ Microbiol 67:1476

    Article  CAS  Google Scholar 

  • Morikawa H, Erkin OC (2003) Basic processes in phytoremediation and some applications to air pollution control. Chemosphere 52(9):1553–1558

    Article  CAS  Google Scholar 

  • Mueller UG, Sachs JL (2015) Engineering microbiomes to improve plant and animal health. Trends Microbiol 23:606–617

    Article  CAS  Google Scholar 

  • Mulligan CN, Wang S (2004) Remediation of a heavy metal contaminated soil by a rhamnolipid foam. In: Thomas HR, Yangt RN, Thomas Telford (eds) Geoenvironmental engineering. Integrated management of groundwater and contaminated land. London, pp 544–551

    Google Scholar 

  • Mukherjee T, Chakraborty S, Biswas AA, TK( D (2017) Bioremediation potential of arsenic by non-enzymatically biofabricated silver nanoparticles adhered to the mesoporous carbonized fungal cell surface of Aspergillus foetidus MTCC8876. J Environ Manag 201:435e446

    Article  CAS  Google Scholar 

  • Mulla SI, Talwar MP, Bagewadi ZK, Hoskeri RS, Ninnekar HZ (2013) Enhanced degradation of 2-nitrotoluene by immobilized cells of Micrococcus sp. strain SMN-1. Chemosphere 90:1920–1924

    Article  CAS  Google Scholar 

  • Nath K, Saini S, Sharma YK (2005) Chromium in tannery industry effluent and its effect on plant metabolism and growth. J Environ Biol 26:197–204

    CAS  Google Scholar 

  • Neumann G (2006) Root exudates and organic composition of plant roots. In: Luster J, Finlay R, Brunner I, Fitz WJ, Frey B, Göttlein A et al (eds) Handbook of methods used in rhizosphere research. Swiss Federal Institute for Forest, Snow, and Landscape Research, Birmensdorf, pp 317–318

    Google Scholar 

  • Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230

    Article  CAS  Google Scholar 

  • Nielsen TH, Sørensen J (2003) Production of cyclic lipopeptides by Pseudomonas fluorescens strains in bulk soil and in the sugar beet rhizosphere. Appl Environ Microbiol 69:861–868

    Article  CAS  Google Scholar 

  • Nielsen TK, Rasmussen M, Demanèche S, Cecillon S, Vogel TM, Hansen LH (2017) Evolution of sphingomonad gene clusters related to pesticide catabolism revealed by genome sequence and mobilomics of Sphingobium herbicidovorans MH. Genome Biol Evol 9(9):2477–2490

    Article  CAS  Google Scholar 

  • Nonnoi F, Chinnaswamy A, la Torre VSG d, de la Pena TC, Lucas MM, Pueyo JJ (2012) Metal tolerance of rhizobial strains isolated from nodules of herbaceous legumes (Medicago spp. and Trifolium spp.) growing in mercury-contaminated soils. Appl Soil Ecol 61:49–59

    Article  Google Scholar 

  • Oberai M, Khanna V (2018) Rhizoremediation – plant microbe interactions in the removal of pollutants. Int J Curr Microbiol App Sci 7(1):2280–2287

    Article  CAS  Google Scholar 

  • Oh HW, Kim BC, Park DS, Jeong WJ, Kim H, Lee KH, Kim SU (2013) Pedobacter luteus sp. nov., isolated from soil. Int J Syst Evol Microbiol 63:1304–1310

    Article  CAS  Google Scholar 

  • Ontañon OM, González PS, Ambrosio LF, Paisio CE, Agostini E (2014) Rhizoremediation of phenol and chromium by the synergistic combination of a native bacterial strain and Brassica napus hairy roots. Int Biodeterior Biodegrad 88:192–198

    Article  CAS  Google Scholar 

  • Ortiz-Hernandez ML, Sánchez SE, González ED, Godínez MLC (2013) Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. InTech – Open Science Open Minds pp 251–287

    Google Scholar 

  • Pagnout C, Frache G, Poupin P, Maunit B, Muller JF, Ferard JF (2007) Isolation andcharacterization of a gene cluster involved in PAH degradation in Mycobacterium sp. strainSNP11: expression in Mycobacterium smegmatis mc 2 155. Res Microbiol 158(2):175–186

    Article  CAS  Google Scholar 

  • Pai SG, Riley MB, Camper ND (2001) Microbial degradation of mefenoxam in rhizosphere of zinnia anguistifolia. Chemosphere 44:577–582

    Article  CAS  Google Scholar 

  • Patel PR, Shaikh SS, Sayyed RZ (2016) Dynamism of PGPR in bioremediation and plant growth promotion in heavy metal contaminated soil. Indian J Exp Biol 54(4):286–290

    CAS  Google Scholar 

  • Pawlik M, Cania B, Thijs S, Vangronsveld J, Piotrowska-Seget Z (2017) Hydrocarbon degradation potential and plant growth-promoting activity of culturable endophytic bacteria of Lotus corniculatus and Oenothera biennis from a long-term polluted site. Environ Sci Pollut Res Int 24(24):19640–19652

    Article  CAS  Google Scholar 

  • Paz-Gonzalez A, Viera SR, Taboda Castro MT (2000) The effect of cultivation on the spatial variability of selected properties of an umbric horizon. Geoderma 97:273–292

    Article  CAS  Google Scholar 

  • Peng RH, Xiong AS, Xue Y, Fu XY, Gao F, Zhao W, Tian YS, Yao QH (2008) Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev 32:927–955

    Article  CAS  Google Scholar 

  • Peng X, Yamamoto S, Vertès AA, Keresztes G, Inatomi KI, Inui M, Yukawa H (2012) Global transcriptome analysis of the tetrachloroethene-dechlorinating bacterium Desulfitobacterium hafniense Y51 in the presence of various electron donors and terminal electron acceptors. J Ind Microbiol Biotechnol 39:255–268

    Article  CAS  Google Scholar 

  • Pimental D, Leviton L (1986) Pesticides: amounts applied and amounts reaching pests. Bioscience 36(2):86–91

    Article  Google Scholar 

  • Pires C, Franco AR, Pereira SIA, Henriques I, Correia A, Magan N, Castro PML (2017) Metal(loid)-contaminated soils as a source of culturable heterotrophic aerobic bacteria for remediation applications. Geomicrobiol J 34(9):760–768

    Article  CAS  Google Scholar 

  • Pongratz R, Heumann KG (1999) Production of methylated mercury, lead and cadmium by marine bacteria as a significant natural source for atmospheric heavy metals in polar regions. Chemosphere 39(1):89–102

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014

    Article  Google Scholar 

  • Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Res Forum 38:282–295

    Article  Google Scholar 

  • Radwan SS, Al-Awadhi H, Sorkhoh NA, IM( E-N (1998) Rhizospherichydrocarbon-utilizing microorganisms as potential contributors to phytoremediation for the oily Kuwaiti desert. Microbiol Res 153:247–251

    Article  CAS  Google Scholar 

  • Rai UN, Pandey K, Sinha S, Singh A, Saxena R, Gupta DK (2004) Revegetating fly ash landfills with Prosopis juliflora L.: impact of different amendments and Rhizobium inoculation. Environ Int 30(3):293–300

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149

    Article  CAS  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  CAS  Google Scholar 

  • Rajasekhar L, Sain SK, Divya J (2016) Evaluation of microbial consortium for ‘plant health management’ of pigeon pea. Int J Plant Ani Environl Sci 6(2):107–113

    Google Scholar 

  • Ramesh V, Chhonkar PK (2001) Chemical characteristics of an acid sulphate soil from Kerela amended with lime and fly ash. J Indian Soc Soil Sci 49:719–726

    Google Scholar 

  • Raudales RE, Stone E, Gardener BBM (2009) Seed treatment with 2,4-Diacetylphloroglucinol-producing pseudomonads improves crop health in low-pH soils by altering patterns of nutrient uptake. Phytopathology 99(5):506–511

    Article  CAS  Google Scholar 

  • Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921

    Article  CAS  Google Scholar 

  • Rezek J, Cid W, Mackova M, Zadrazil F, Macek T (2008) The effect of ryegrass (Lolium perenne) on decrease of PAH content in long term contaminated soil. Chemosphere 70:1603–1608

    Article  CAS  Google Scholar 

  • Reilley KA, Banks MK, Schwab AP (1996) Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere. J Environ Qual 25:212–219

    Article  CAS  Google Scholar 

  • Rigas F, Papadopoulou K, Dritsa V, Doulia D (2007) Bioremediation of a soil contaminated by lindane utilizing the fungus Ganoderma australe via response surface methodology. J Hazard Mater 140(1–2):325–332

    Article  CAS  Google Scholar 

  • Rodrigues S, Henriques B, Reis A, Duarte A, Pereira E, Römkens PFAM (2012) Hg transfer from contaminated soils to plants and animals. Environ Chem Lett 10:61–67

    Article  CAS  Google Scholar 

  • Rohrbacher F, St-Arnaud M (2016) Root exudation: the ecological driver of hydrocarbon rhizoremediation. Agronomy 6(19):10

    Google Scholar 

  • Romano RL, Liria CW, Machini MT, Colepicolo P, Zambotti-Villela L (2017) Cadmium decreases the levels of glutathione and enhances the phytochelatin concentration in the marine dinoflagellate Lingulodinium polyedrum. J Appl Phycol 29:811–820

    Article  CAS  Google Scholar 

  • Rufino RD, Luna JM, Takaki GMC, Sarubbo LA (2014) Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electron J Biotechnol 17:34–38

    Article  CAS  Google Scholar 

  • Saha S, Saha BN, Pati S, Pal B, Hazra GC (2017) Agricultural use of sewage sludge in India: benefits and potential risk of heavy metals contamination and possible remediation options – a review. Int J Environ Technol Manag 20:183–199

    Article  Google Scholar 

  • Salam LB, Idris H (2019) Consequences of crude oil contamination on the structure and function of autochthonous microbial community of a tropical agricultural soil. Environ Sustain. https://doi.org/10.1007/s4239

  • Salt DE, Smith RD, Raskin L (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49(1):643–668

    Article  CAS  Google Scholar 

  • Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97(3):1005–1016

    Article  CAS  Google Scholar 

  • Saratale GD, Saratale RG, Chang JS, Govindwar SP (2011) Fixed – bed decolorization of Reactive Blue 172 by Proteus vulgaris NCIM2027 immobilized on Luffa cylindrica sponge. Int Biodeterior Biodegrad 65:494–503

    Article  CAS  Google Scholar 

  • Saravanan VS, Kalaiarasan P, Madhaiyan M, Thangaraju M (2007) Solubilization of insoluble zinc compounds by Gluconacetobacter diazotrophicus and the detrimental action of zinc ion (Zn2+) and zinc chelates on root knot nematode Meloidogyne incognita. Lett Appl Microbiol 44(3):235–324

    Article  CAS  Google Scholar 

  • Schiml S, Puchta H (2016) Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas. Plant Methods 12:8

    Article  CAS  Google Scholar 

  • Schroll R, Becher HH, Dörfler U, Gayler S, Grundmann S, Hartmann HP, Ruoss J (2006) Quantifying the effect of soil moisture on the aerobic microbial mineralization of selected pesticides in different soils. Environ Sci Technol 40:3305–3312

    Article  CAS  Google Scholar 

  • Segura A, Rodriguez-Conde S, Ramos C, Ramos JL (2009) Bacterial responses and interactions with plants during rhizoremediation- a minireview. J Microbiol Biotechnol 2:452–464

    Article  CAS  Google Scholar 

  • Seo JSY, Keum S, Hu Y, Lee SE, Li QX (2006) Phenanthrene degradation in Arthrobacter sp. P1-1: initial 1,2-,3,4- and 9,10-dioxygenation, and meta- and ortho-cleavages ofNaphthalene-1,2-diol after its formation from naphthalene-1,2–dicarboxylic acid and hydroxyl naphthoic acids. Chemosphere 65:2388–2394

    Article  CAS  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60(100):182–194

    Article  CAS  Google Scholar 

  • Shafqat M, Khalid A, Mahmood T, Siddique MT, Han J-I, Habteselassie MY (2017) Evaluation of bacteria isolated from textile wastewater and rhizosphere to simulataneously degarade azo dyes and promote plant growth. J Chem Technol Biotechnol 92:2760–2768

    Article  CAS  Google Scholar 

  • Sharma A, Johri BN (2003a) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248

    Article  CAS  Google Scholar 

  • Sharma A, Johri BN (2003b) Combat of iron-deprivation through a plant growth promoting fluorescent pseudomonas strain GRP3A in mung bean (Vigna radiata L. Wilzeck). Microbiol Res 158:77–81

    Article  CAS  Google Scholar 

  • Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156(3):1164–1170

    Article  CAS  Google Scholar 

  • Shin KH, Kim KW, Ahn Y (2006) Use of biosurfactant to remediate phenanthrene-contaminated soil by the combined solubilization-biodegradation process. J Hazard Mater 137(3):1831–1837

    Article  CAS  Google Scholar 

  • Singh BK, Walker A, Wright DJ (2006) Bioremedial potential of fenamiphos and chloropyrifos degrading isolates: influence of different environmental conditions. Soil Biol Biochem 38:2682–2693

    Article  CAS  Google Scholar 

  • Sinha A, Lulu S, SV OWJ (2019) Reactive green dye remediation by Alternanthera philoxeroides in association with plant growth promoting Klebsiella sp. VITAJ23: a pot culture study. Microbiol Res 220:42–52

    Article  CAS  Google Scholar 

  • Sirguey C, PT d SES, Schwartz C, Simonnot MO (2008) Impact of chemical oxidation on soil quality. Chemosphere 72(2):282–289

    Article  CAS  Google Scholar 

  • Solanki R, Dhankhar R (2011) Biochemical changes and adaptive strategies of plants under heavy metal stress. Biologia 66(2):195–204

    Article  CAS  Google Scholar 

  • Soni SK, Singh R, Singh M, Awasthi A, Wasnik K, Kalra A (2014) Pretreatment of Cr(VI)-amended soil with chromate-reducing rhizobacteria decreases plant toxicity and increases the yield of Pisum sativum. Arch Environ Contam Toxicol 66(4):616–627

    Article  CAS  Google Scholar 

  • Sparks DL (2005) Toxic metals in the environment: the role of surfaces. Elements 1:193–197

    Article  CAS  Google Scholar 

  • Stockholm Convention on Persistent Organic Pollutants (2011) Report of the Conference of the Parties to the Stockholm Convention on persistent organic pollutants on the work of its fifth meeting, Geneva

    Google Scholar 

  • Stockwell VO, Johnson KB, Sugar D, Loper JE (2011) Mechanistically compatible mixtures of bacterial antagonists improve biological control of Fire blight of pear. Phytopathology 101:113–112

    Article  CAS  Google Scholar 

  • Taiwo AM, Gbadebo AM, Oyedepo JA, Ojekunle ZO, Alo OM, Oyeniran AA, Onalaja OJ, Ogunjimi D, Taiwo OT (2016) Bioremediation of industrially contaminated soil using compost and plant technology. J Hazard Mater 304:166–172

    Article  CAS  Google Scholar 

  • Tan KH (2009) Environmental soil science,. Third Edition (Taylor & Francis). CRC Press, Boca Raton. https://doi.org/10.1201/9781439895016

    Book  Google Scholar 

  • Tank N, Saraf M (2003) Phosphate solubilization exopolysaccharide production and indole acetic acid secretion by rhizobacteria isolated from Trigonella foenum-graecum. Indian J Microbiol 43:37–40

    Google Scholar 

  • Tewari S, Arora NK (2014) Multifunctional exopolysaccharides from pseudomonas aeruginosa PF23 involved in plant growth stimulation, biocontrol and stress amelioration in sunflower under saline conditions. Curr Microbiol 69(4):484–494

    Article  CAS  Google Scholar 

  • Tewari S, Arora NK (2016) Fluorescent Pseudomonas sp. PF17 as an efficient plant growth regulator and biocontrol agent for sunflower crop under saline conditions. Symbiosis 68(1–3):99–108

    Article  CAS  Google Scholar 

  • Tewari S, Arora NK (2018) Role of salicylic acid from Pseudomonas aeruginosa PF23EPS+ in growth promotion of sunflower in saline soils infested with phytopathogen Macrophomina phaseolina. Environ Sust 1(1):49–59

    Google Scholar 

  • Thijs S, Sillen W, Truyens S, Beckers B, van Hmme J, van Dillevijn P, Carleer R, Weyens N, Vangronsveld J (2018) The sycamore maple bacterial culture collection from a TNT polluted site shows novel plant-growth promoting and explosives degrading bacteria. Front Plant Sci 9:1134

    Article  Google Scholar 

  • Thijs S, Sillen W, Rineau F, Weyens N, Vangronsveld J (2016) Towards an enhanced understanding of plant-microbiome interactions to improve phytoremediation: engineering the metaorganism. Front Microbiol 7:341

    Article  Google Scholar 

  • Truu J, Truu M, Espenberg M, Nõlvak H, Juhanson J (2015) Phytoremediation and plant-assisted bioremediation in soil and treatment wetlands: a review. Open Biotechnol J 9(Suppl 1-M9):85–92

    Article  Google Scholar 

  • Ullah A, Heng S, Munis MFH, Fahad S, Yang X (2015) Phytoremediation of heavy metals assisted by plant growth promoting (PGP) bacteria: a review. Environ Exp Bot 117:28–40

    Article  CAS  Google Scholar 

  • United Nation University-Institute of water, Environment and Health (UNU-INWEH) (2014) World losing farm soil daily to salt-induced degradation. http://inweh.unu.edu/world-losing-farm-soil-daily-salt-induced-degradation

  • Upadhyay N, Vishwakarma K, Singh J, Mishra M, Kumar V, Rani R, Mishra RK, Chauhan DK, Tripathi DK, Sharma S (2017) Tolerance and reduction of chromium(VI) by Bacillus sp. MNU16 isolated from contaminated coal mining soil. Front Plant Sci 8:778

    Article  Google Scholar 

  • Van Aken B, Peres C, Doty S, Yoon J, Schnoor J (2004b) Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultative methylotrophic, methane-utilising bacterium isolated from poplar trees (Populus deltoids x nigra DN34). Evol Microb 54:1191–1196

    Article  CAS  Google Scholar 

  • Van Aken B, Yoon J, Schnoor J (2004a) Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine inside poplar tissues (Populus deltoids x nigra DN34). Appl Environ Microbiol 70:508–517

    Article  CAS  Google Scholar 

  • Vancura V, Hovadik A (1965) Root exudates of plants. IV. Composition of root exudates of some vegetables. Plant Soil 22:21–32

    Article  CAS  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Prigent- Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    Article  Google Scholar 

  • Velázquez-Fernández JB, Martínez-Rizo AB, Ramírez-Sandoval M, Domínguez-Ojeda D (2012) Biodegradation and bioremediation of organic pesticides, pesticides – recent trends in pesticide residue assay. In: Soundararajan RP(ed) Recent trends in pesticide residue assay ISBN:978-953-51-0681-4

    Google Scholar 

  • Vergani L, Mapelli F, Marasco R, Crotti E, Fusi M, Di Guardo A, Armiraglio S, Daffonchio D, Borin S (2017) Bacteria associated to plants naturally selected in a historical PCB polluted soil show potential to sustain natural attenuation. Front Microbiol 8:1385

    Article  Google Scholar 

  • Verma M, Mishra J, Arora NK (2019) Plant growth-promoting rhizobacteria: diversity and applications. In: Sobti R, Arora N, Kothari R (eds) Environmental biotechnology: for sustainable future. Springer, Singapore

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Wang MC, Chen YT, Chen SH, Chien SWC, Sunkara SV (2012) Phytoremediation of pyrene contaminated soils amended with compost and planted with ryegrass and alfalfa. Chemosphere 87:217–225

    Article  CAS  Google Scholar 

  • Wang Y, Kou S, Jiang Q, Xu B, Liu X, Xiao J, Tian Y, Zhou C, Zhang C, Xiao M (2014) Factors affecting transfer of degradative plasmids between bacteria in soils. Appl Soil Ecol 84:254–261

    Article  Google Scholar 

  • Wang Y, Oyaizu H (2011) Enhanced remediation of dioxins-spiked soil by a plant–microbe system using a dibenzofuran-degrading Comamonas sp. and Trifolium repens. Chemosphere 85:1109–1114

    Article  CAS  Google Scholar 

  • Wenzel WW, Jockwer F (1999) Accumulations of heavy metals in plants grown on mineralized soils of the Austrian Alps. Environ Pollut 104:145–155

    Article  CAS  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  CAS  Google Scholar 

  • Wilson SC, Jones KC (1993) Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): a review. Environ Pollut 81(3):229–249

    Article  CAS  Google Scholar 

  • Wild S, Jones K (1993) Biological and abiotic losses of polynuclear aromatic hydrocarbons (PAHs) from soils freshly amended with sewage sludge. Environ Toxicol Chem 12:5–12

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Commun Soil Sci Plant Anal 42:111–122

    Google Scholar 

  • Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72(2):1129–1134

    Article  CAS  Google Scholar 

  • Xu G, Fan X, Miller AJ (2012) Plant Nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63:153–182

    Article  CAS  Google Scholar 

  • Xun F, Xie B, Liu S, Guo C (2015) Effect of plant growth-promoting bacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation. Environ Sci Pollut Res Int 22(1):598–608

    Article  CAS  Google Scholar 

  • Yadav P, Krishna SK (2015) Plant growth promoting rhizobacteria: an effective tool to remediate residual organophosphate pesticide methyl parathion, widely used in indian agriculture. J Environ Res Dev 9(4):1138–1149

    Google Scholar 

  • Yang Y, Liang Y, Han X, Chiu T, Ghosh A, Chen H, Tang M (2016) The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Sci Rep 6:20469

    Article  CAS  Google Scholar 

  • Yan J, Wang L, Fu PP, Yu H (2004) Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list. Mutat Res 557(1):99–108

    Article  CAS  Google Scholar 

  • Yi H, Crowley DE (2007) Biostimulation of PAH degradation with plants containing high concentrations of linoleic acid. Environ Sci Technol 41:4382–4388

    Article  CAS  Google Scholar 

  • Yu YL, Chen YX, Luo YM, Pan XD, He YF, Wong MH (2003) Rapid degradation of butachlor in wheat rhizosphere soil. Chemosphere 50:771–774

    Article  CAS  Google Scholar 

  • Zablotowicz RM, Hoagland RE, Locke MA (1994) Glutathione S-transferase activity in rhizosphere bacteria and the potential for herbicide detoxification. In: Anderson TA, Coats JR (eds) Bioremediation through rhizosphere technology. American Chemical Society, Washington, DC, pp 184–198

    Chapter  Google Scholar 

  • Zhang Y, Maier WJ, Miller RM (1997) Effect of rhamnolipids onthe dissolution, bioavailability and biodegradation of Phenanthrene. Environ Sci Technol 31:2211–2217

    Article  CAS  Google Scholar 

  • Zhang X, Xia H, Li Z, Zhuang P, Gao B (2010) Potential of four grasses in remediation of Cd and Zn contaminated soils. Bioresour Technol 101:2063–2066

    Google Scholar 

  • Zhang Q, Wang BC, Cao ZY, Yu YL (2012) Plasmid-mediated bioaugmentation for the degradation of chlorpyrifos in soil. J Hazard Mater 221-222:178–184

    Article  CAS  Google Scholar 

  • Zhu ZQ, Yang XE, Wang K, Huang HG, Zhang X, Fang H, Li TQ, Alva AK, He ZL (2012) Bioremediation of Cd-DDT co-contaminated soil using the Cd-hyperaccumulator Sedum alfredii and DDT-degrading microbes. J Hazard Mater 235-236:144–151

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, I., Arora, N.K. (2019). Rhizoremediation: A Sustainable Approach to Improve the Quality and Productivity of Polluted Soils. In: Arora, N., Kumar, N. (eds) Phyto and Rhizo Remediation. Microorganisms for Sustainability, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-32-9664-0_2

Download citation

Publish with us

Policies and ethics