Skip to main content

Natural and Artificial Soil Amendments for the Efficient Phytoremediation of Contaminated Soil

  • Chapter
  • First Online:
Phyto and Rhizo Remediation

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 9))

Abstract

Anthropogenic pollution caused by excessive use of chemicals, metals, radioactive substances, and organic pollutants has deteriorated quality of environmental assets, i.e., air, water, and soil. To restore the quality of all these essential systems, scientists and researchers are trying to stabilize contaminants in-situ rather than in in-vivo conditions. One of such effort is phytoremediation, which utilizes the application of green plants, herbs, and shrubs at contaminated sites to restrict the movement of pollutants and to decontaminate polluted sites. Application of various kinds of plants for bioremediation of polluted soils is an eco-friendly approach, with negligible effect over environment and also without disturbing the soil physicochemical properties. This technology also offers an opportunity to rejuvenate precious metals and utilize left biomass for the production of bioenergy. The present book chapter deals with different aspects of phytoremediation processes for remediation and recovery of contaminated soil and improving its efficiency with augmentation of different organic and inorganic amendments. Soil amendments can lessen up the bioavailability of contaminants in soils and decrease the risk of food chain contamination. These amendments include the application of biochar, vermicomposting, slow-release fertilizers, and nanoparticles to the soil to enhance the phytoremediation process. Role of these amendments on bioavailability of contaminants, their uptake, translocation, bioaccumulation, and its effect on growth and developments of plants has been thoroughly addressed in the present chapter. Further, different constraints like slow growth rate and effect of seasonal variations on development of plants have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abreu CA, Cantoni M, Coscione AR, Paz-Ferreiro J (2012) Organic matter and barium absorption by plant species grown in an area polluted with scrap metal residue. Appl Environ Soil Sci 2012:1–7

    Article  CAS  Google Scholar 

  • Acar YB, Alshawabkeh A (1993) Principle of electrokinetic remediation. J Environ Sci Technol 27(13):2638–2647

    Article  CAS  Google Scholar 

  • Adams GO, Fufeyin PT, Okoro SE, Ehinomen I (2015) Bioremediation, biostimulation and Bioaugmention: a review. Int J Environ Biorem Biodegrad 3(1):28–39

    CAS  Google Scholar 

  • Afzal M, Khan QM, Sessitsch A (2014) Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. Chemosphere 117:232–242

    Article  CAS  Google Scholar 

  • Aken VB (2009) Transgenic plants for enhanced phytoremediation of toxic explosives. Curr Opin Biotechnol 20:231–236

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—Concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Anderson A, Mitchell P (2003) Treatment of mercury-contaminated soil, mine waste and sludge using silica micro-encapsulation. TMS Annual Meeting. Extraction and Processing Division, San Diego, CA, pp 265–274

    Google Scholar 

  • Arora NK, Fatima T, Mishra I, Verma M, Mishra J, Mishra V (2018) Environmental sustainability: challenges and viable solutions. Environ Sustain 1(4):309–340

    Article  Google Scholar 

  • Atiyeh RM, Dominguez J, Sobler S, Edwards CA (2000) Changes in biochemical properties of cow manure during processing by earthworms (Eisenia andrei) and the effects on seedling growth. Pedobiologia 44:709–724

    Article  Google Scholar 

  • Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19(2):91–97

    Article  CAS  Google Scholar 

  • Balseiro-Romero M, Petra S, Kid PS, Monterroso C (2014) Influence of plant root exudates on the mobility of fuel volatile compounds in contaminated soils. Int J Phytorem 16:824–839

    Article  CAS  Google Scholar 

  • Bandiera M, Mosca G, Vamerali T (2009) Humic acids affect root characteristics of fodder radish (Raphanus sativus L. var. oleiformis Pers.) in metal-polluted wastes. Desalination 247:79–92

    Google Scholar 

  • Bian R, Chen D, Liu X, Cuia L, Li L, Pana G, Xie D, Zheng J, Zhang X, Zheng J, Chang A (2013) Biochar soil amendment as a solution to prevent Cd-tainted rice from China: results from a cross-site field experiment. Ecol Eng 58:378–383

    Article  Google Scholar 

  • Bielská L, Kah M, Sigmund G, Hofmann T, Höss S (2017) Bioavailability and toxicity of pyrene in soilsupon biochar and compost addition. Sci Total Environ 595:132–140

    Article  CAS  Google Scholar 

  • Branzini A, Zubillaga (2012) Comparative use of soil organic and inorganic amendments in heavy metals stabilization. Appl Environ Soil Sci

    Google Scholar 

  • Braud A, Jezequel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation withsiderophore-producing bacteria. Chemosphere 74:280–286

    Article  CAS  Google Scholar 

  • Brennan A, Jiménez EM, Alburquerque JA, Knapp CW, Switzer C (2014) Effects of biochar and activated carbon amendment on maize growth and the uptake and measured availability of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs). Environ Pollut 193:79–87

    Article  CAS  Google Scholar 

  • Cabello-Conejo MI, Becerra-Castro C, Monterroso C, Prieto-Fernández A, Mench M, Kidd PS (2011) Effects of rhizobacterial inoculation on biomass and nickel concentration in Alyssum pintodasilvae. In: Proceedings of the 11th International Conference on the Biogeochemistry of Trace Elements (ICOBTE), Florence, Italy

    Google Scholar 

  • Castiglione MR, Giorgetti L, Becarelli S, Siracusa G, Lorenzi R, Di Gregorio S (2016) Polycyclic aromatic hydrocarbon-contaminated soils: bioaugmentation of autochthonous bacteria and toxicological assessment of the bioremediation process by means of Vicia faba L. Environ Sci Pollut Res 23:7930–7941

    Article  CAS  Google Scholar 

  • Chang Y, Corapcioglu MY (1998) Plant-enhanced subsurface bioremediation of nonvolatile hydrocarbons. J Environ Eng 112:162–169

    Article  Google Scholar 

  • Chen H, Cutright T (2001) EDTA and HEDTA effects on cadmium, Cr, and Ni uptake by Helianthus annuus. Chemosphere 45:21–28

    Article  CAS  Google Scholar 

  • Chen Y, Zhao R, Xu J, Li J (2013a) Generation and distribution of PAHs in the process of medical waste incineration. Waste Manag 33:1165–1173

    Article  CAS  Google Scholar 

  • Chen J, Liu X, Zheng J, Zhang B, Lu H, Chi Z, Pan G, Li L, Zheng J, Zhang X, Wang J, Yu X (2013b) Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China. Appl Soil Ecol 71:33–44

    Article  Google Scholar 

  • Coinchelin D, Bartoli F, Robin C, Echevarria G (2012) Ecophysiology of nickel phytoremediation: a simplified biophysical approach. J Exp Bot

    Google Scholar 

  • Cui L, Li L, Zhang A, Pan G, Bao D, Chang A (2011) Biochar amendment greatly reduces rice cd uptake in a contaminated paddy soil: a two-year field experiment. Bioresources 6(3):2605–2618

    CAS  Google Scholar 

  • da Gomes MA, Hauser-Davis RA, de Souza AN, Vitória AP (2016) Metal phytoremediation: general strategies, genetically modified plants and applications in metal nanoparticle contamination. Ecotoxicol Environ Saf 134:133–147

    Article  CAS  Google Scholar 

  • Dell’Amico E, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40:74–84

    Article  CAS  Google Scholar 

  • Dermatas D, Meng X (2003) Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Eng Geol 70(3–4):377–394

    Article  Google Scholar 

  • Doichinova V, Velizarova E (2013) Reuse of paper industry wastes as additives in phytoremediation of heavy metals polluted substrates from the spoil banks of the Kremikovtsi region, Bulgaria. Procedia Environ Sci 18:731–736

    Article  CAS  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytologist

    Google Scholar 

  • Duquène L, Vandenhove H, Tack F, Meers E, Baeten J, Wannijn J (2009) Enhanced phytoextraction of uranium and selected heavy metals by Indian mustard and ryegrass using biodegradable soil amendments. Sci Total Environ 407:1496–1505

    Article  CAS  Google Scholar 

  • Efe SI, Okpali AE (2012) Management of Petroleum Impacted Soil with phytoremediation and soil amendments in Ekpan Delta state, Nigeria. J Environ Prot 3:386–393

    Article  CAS  Google Scholar 

  • Egamberdieva D, Hua M, Reckling M, Worth S, Kimura SD (2018) Potential effects of biochar-based microbial inoculants in agriculture. Environ Sustain 1(1):19–24

    Article  Google Scholar 

  • Elouear Z, Bouhamed F, Boujelben N, Bouzid J (2016) Application of sheep manure and potassium fertilizer to contaminated soil and its effect on zinc, cadmium and lead accumulation by alfalfa plants. Sustain Environ Res 26:131–135

    Article  CAS  Google Scholar 

  • EPA (2006) Off-gas treatment for soil vapor extraction systems: State of the practice, EPA 542/R-05/028. Office of solid waste and emergency response. https://clu-in.org/download/remed/EPA542R05028.pdf Accessed 10 April 2017

  • Erakhrumen AA (2007) Phytoremediation: an environmentally sound technology for pollution prevention, control and remediation in developing countries. Edu Res Rev 2:151–156

    Google Scholar 

  • Fellet G, Marmiroli M, Marchiol L (2014) Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar. Sci Total Environ 468–469:598–608

    Article  CAS  Google Scholar 

  • Fenoll J, Ruiza E, Flores P, Vela N, Hellín P, Navarro S (2011) Use of farming and agro-industrial wastes as versatile barriers in reducing pesticide leaching through soil columns. J Hazard Mater 187:206–212

    Article  CAS  Google Scholar 

  • Figueroa JA, Wrobel K, Afton S, Caruso JA, Felix Gutierrez Corona J, Wrobel K (2008) Effect of some heavy metals and soil humic substances on the phytochelatin production in wild plants from silver mine areas of Guanajuato, Mexico. Chemosphere 70:2084–2091

    Article  CAS  Google Scholar 

  • Galende MA, Becerril JM, Gómez-Sagasti MT, Barrutia O, Garbisu C, Hernández A (2014) Agro-industrial wastes as effective amendments for ecotoxicity reduction and soil health improvement in aided phytostabilization. Environ Sci Pollut Res

    Google Scholar 

  • Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Eur J Miner Process Environ Prot 3:58–66

    Google Scholar 

  • Gerhardt KE, Huang X, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    Article  CAS  Google Scholar 

  • Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ 6:214–231

    Google Scholar 

  • Ghosh P, Rathinasabapathi B, Ma LQ (2011) Arsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris vittata L. Bioresour Technol 102:8756–8761

    Article  CAS  Google Scholar 

  • Gopinath KA, Venkteswarlu B, Mina BL, Natraja K, Devi KG (2010) Utilization of vermicompost as a soil amendment in organic crop production. Dyn Soil Dyn Plant 4(Special issue I):48–57

    Google Scholar 

  • Grobelak A (2016) In: Ansari AA et al (eds) Organic soil amendments in the phytoremediation process. Phytoremediation, Springer International Publishing, Switzerland

    Chapter  Google Scholar 

  • Hadi F, Ul Arifeen MZ, Aziz T, Nawab S, Nabi G (2015) Phytoremediation of cadmium by Ricinus communis L. in Hydrophonic condition. Am Eurasian J Agric Environ Sci 15(6):1155–1162

    Google Scholar 

  • Hartley W, Dickinson NM, Riby P, Lepp NW (2009) Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus. Environ Pollut 157:2654–2662

    Article  CAS  Google Scholar 

  • Hattab N, Soubrand M, Guégan R, Motelica-Heino M, Bourrat X, Faure O, Bouchardon JL (2014) Effect of organic amendments on the mobility of trace elements in phytoremediated techno-soils: role of the humic substances. Environ Sci Pollut Res 21:10470–10480

    Article  CAS  Google Scholar 

  • Hejazi RF (2002) Oily sludge degradation study under arid conditions using a combination of landfarm and bioreactor technologies, PhD thesis, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St John’s, Canada

    Google Scholar 

  • Hou J, Liu W, Wanga B, Wang Q, Luo Y, Franks AE (2015) PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community. Chemosphere 138:592–598

    Article  CAS  Google Scholar 

  • Houben D, Evrard L, Sonnet P (2013) Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biomass Bioenergy 57:196–204

    Article  CAS  Google Scholar 

  • Islam MN, Jo YT, Park JH (2012) Remediation of PAHs contaminated soil by extraction using subcritical water. J Ind Eng Chem 18:1689–1693

    Article  CAS  Google Scholar 

  • Jagatheeswari D, Vedhanarayanan P, Ranganathan P (2013) Phytoaccumulation of mercuric chloride polluted soil using tomato plants (Lycopersicon esculentum Mill.). Int J Res Bot 3(2):30–33

    Google Scholar 

  • Jiang J, Xu RK, Jiang TY, Li Z (2012) Immobilization of cu(II), Pb(II) and cd(II) by the addition of rice straw derived biochar to a simulated polluted Ultisol. J Hazard Mater 229–230:145–150

    Article  CAS  Google Scholar 

  • Kamel KA (2013) Phytoremediation potentiality of aquatic macrophytes in heavy metal contaminated water of El-Temsah Lake, Ismailia, Egypt. Middle-East J Sci Res 14(12):1555–1568

    Google Scholar 

  • Kanissery RG, Sims GK (2011) Biostimulation for the enhanced degradation of herbicides in soil. Appl Environ Soil Sci

    Google Scholar 

  • Khan FI, Husain T, Hejazi R (2004) An overview and analysis of site remediation technologies. J Environ Manag 71:95–122

    Article  Google Scholar 

  • Kim J, Yoo G, Kim D, Ding W, Kang H (2017) Combined application of biochar and slow-release fertilizer reduces methane emission but enhances rice yield by different mechanisms. Appl Soil Ecol 117-118:57–62

    Article  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behaviour, fate, bioavailability and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  Google Scholar 

  • Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K, Naidu R (2016) Ex-situ remediation technologies for environmental pollutants: a critical perspective. Rev Environ Contam Toxicol 236:117–192

    CAS  Google Scholar 

  • Lamichhane KM, Babcock RW Jr, Turnbull SJ, Schenck S (2012) Molasses enhanced phyto and bioremediation treatability study of explosives contaminated Hawaiian soils. J Hazard Mater 243:334–339

    Article  CAS  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota- a review. Soil Biol Biochem 43:1812–1836

    Article  CAS  Google Scholar 

  • Li WC, Ye ZH, Wong M (2007) Effects of bacteria on enhanced metal uptake of the cd/Zn hyperaccumulating plant, Sedum alfredii. J Exp Bot 58:4173–4182

    Article  CAS  Google Scholar 

  • Li W, Ye Z, Wong M (2009) Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a cd/Zn hyperaccumulating plant, Sedum alfredii. Plant Soil 326:453–467

    Article  CAS  Google Scholar 

  • Li Z, Zhou M, Lin W (2014) The research of nanoparticle and microparticle hydroxyapatite amendment in multiple heavy metals contaminated soil remediation. J Nanomater 2:1–8

    Google Scholar 

  • Liang J, Yang Z, Tang L, Zeng G, Yu M, Li X, Wu H, Qian Y, Li X, Luo Y (2017) Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost. Chemosphere 181:281–288

    Article  CAS  Google Scholar 

  • Liu XY, Zhang AF, Ji CY, Joseph S, Bian RJ, Li LQ, Pan GX, Paz-Ferreiro J (2013) Biochar’s effect on crop productivity and the dependence on experimental conditions-a metal-analysis of literature data. Plant Soil

    Google Scholar 

  • Lu K, Yang X, Jiajia Shen J, Robinson B, Huang H, Liu D, Bolane N, Pei J, Wang H (2014) Effect of bamboo and rice straw biochars on the bioavailability of cd, cu, Pb and Zn to Sedum plumbizincicola. Agric Ecosyst Environ 191:124–132

    Article  CAS  Google Scholar 

  • Luo C, Shen Z, Li X (2005) Enhanced phytoextraction of cu, Pb, Zn and cd with EDTA and EDDS. Chemosphere 59:1–11

    Article  CAS  Google Scholar 

  • MacCarthy P (2001) The principles of humic substances. Soil Sci 166:738–751

    Article  CAS  Google Scholar 

  • Madden AS, Hochella MF, Luxton TP (2006) Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2þ sorption. Geochim Cosmochim Acta 70:4095–4104

    Article  CAS  Google Scholar 

  • Maji D, Misra P, Singh S, Kalra A (2016) Humic acid rich vermicompost promotes plant growth by improving microbial community structure of soil as well as root nodulation and mycorrhizal colonization in the roots of Pisum sativum. Appl Soil Ecol

    Google Scholar 

  • Malik RN, Husain SZ, Nazir I (2010) Heavy metal contamination and accumulation in soil and wild plant species from industrial area of Islamabad, Pakistan. Pak J Bot 42:291–301

    CAS  Google Scholar 

  • Manousaki E, Kalogerakis N (2011) Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind Eng Chem Res 50:656–660

    Article  CAS  Google Scholar 

  • Marques APGC, Oliveira RS, Rangel AOSS, Castro PML (2008) Application of manure and compost to contaminated soils and its effect on zinc accumulation by Solanum nigrum inoculated with arbuscular mycorrhizal fungi. Environ Pollut 151:608–620

    Article  CAS  Google Scholar 

  • Matovic D (2011) Biochar as a viable carbon sequestration option: global and Canadian perspective. Energy 36:1839–2314

    Article  CAS  Google Scholar 

  • Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FMG (2005) Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58:1011–1022

    Article  CAS  Google Scholar 

  • Mekki A, Arous F, Aloui F, Sayadi S (2013) Disposal of agro-industrials wastes as soil amendments. Am J Environ Sci 9(6):458–469

    Article  CAS  Google Scholar 

  • Mesjasz-Przybylowicz J, Nakonieczny M, Migula P, Augustyniak M, Tarnawska M, Reimold WU, Koeberl C, Przybylowicz W, Glowacka E (2004) Uptake of cadmium, lead, nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biol Cracov Ser Bot 46:75–85

    Google Scholar 

  • Michálková Z, Komárek M, Åœilerov H, Puppa LD, Joussein E, VanÄ›k AB, VanÄ›k O, Ettler V (2014) Evaluating the potential of three Fe- and Mn-(nano)oxides for the stabilization of cd, cu and Pb in contaminated soils. J Environ Econ Manag 146:226–234

    Google Scholar 

  • Mimmo T, Hann S, Jaitz L, Cesco S, Gessa CE, Puschenreiter M (2011) Time and substrate dependent exudation of carboxylates by Lupinus albus L. and Brassica napus L. Plant Physiol Biochem 49:1272–1278

    Article  CAS  Google Scholar 

  • Mohsenzadeh F, Rad AC (2012) Bioremediation of heavy metal pollution by nano-particles of noaea mucronata. Int J Biosci Biochem Bioinform 2:85–89

    Google Scholar 

  • Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165(5):363–375

    Article  CAS  Google Scholar 

  • Mukhopadhyay S, Maiti SK (2010) Phytoremediation of metal enriched mine waste. Glob J Environ Sci Manag 4(3):135–150

    CAS  Google Scholar 

  • Nichols EG, Cook RL, Landmeyer JE, Atkinson B, Malone DR, Shaw G, Woods L (2014) Phytoremediation of a petroleum-hydrocarbon contaminated shallow aquifer in Elizabeth City, North Carolina, USA. Remediation Spring 2014:29–46

    Article  Google Scholar 

  • Niemeyer CM (2001) Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem 40(22):4128–4158

    Article  CAS  Google Scholar 

  • Ouédraogo E, Mando A, Zombré NP (2001) Use of compost to improve soil properties and crop productivity under low input agricultural system in West Africa. Agric Ecosyst Environ 84:259–266

    Article  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gramnegative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    Article  CAS  Google Scholar 

  • Pazos M, Rosales E, Alcantara T, Gomez J, Sanroman M (2010) Decontamination of soils containing PAHs by electroremediation: a review. J Hazard Mater 177:1–11

    Article  CAS  Google Scholar 

  • Phillips LA, Greer CW, Farrell RE, Germida JJ (2012) Plant root exudates impact the hydrocarbon degradation potential of a weathered-hydrocarbon contaminated soil. Appl Soil Ecol 52:56–64

    Article  Google Scholar 

  • Pillai SS, Girija N, Williams GP, Koshy M (2013) Impact of organic manure on the phytoremediation potential of Vetiveria zizanioides in chromium-contaminated soil. Chem Ecol 29(3):270–279

    Article  CAS  Google Scholar 

  • Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Prieto C, Lozano JC, Rodríguez BP, Tomé VF (2013) Enhancing radium solubilization in soils by citrate, EDTA, and EDDS chelating amendments. J Hazard Mater 250-251:439–446

    Article  CAS  Google Scholar 

  • Quartacci MF, Argilla A, Baker AJM, Navari-Izzo F (2006) Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere 63:918–925

    Article  CAS  Google Scholar 

  • Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F, Hosseinzadeh S (2011) Phytoremediation potential of Populus alba and Morus alba for cadmium, chromuim and nickel absorption from polluted soil. Int J Environ Res 5:961–970

    CAS  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574

    Article  CAS  Google Scholar 

  • Saifullah GA, Zia MH, Murtaza G, Waraich EA, Bibi S, Srivastava P (2010) Comparison of organic and inorganic amendments for enhancing soil lead Phytoextraction by wheat (Triticum aestivum L.). Int J Phytorem 12:633–649

    Article  CAS  Google Scholar 

  • Santra SC (2005) Land pollution. Environmental Scienc, 2nd edn. New Central Book Agency (P) Ltd, Kolkata, pp 257–272

    Google Scholar 

  • Schwitzguébel J (2015) Phytoremediation of soils contaminated by organic compounds: hype, hope and facts. J Soils Sediments

    Google Scholar 

  • Schwitzguébel JP, Comino E, Plata N, Khalvati M (2011) Is phytoremediation a sustainable and reliable approach to clean-up contaminated water and soils in Alpine areas? Environ Sci Pollut Res 18:842–856

    Article  Google Scholar 

  • Sessitsch A, Kuffner M, Kidd P, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant-associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60(100):182–194

    Article  CAS  Google Scholar 

  • Shabani N, Sayadi MH (2012) Evaluation of heavy metals accumulation by two emergent macrophytes from the polluted soil: an experimental study. Environmentalist 32:91–98

    Article  Google Scholar 

  • Shaheen SM, Rinklebe J (2015) Impact of emerging and low cost alternative amendments on the (im)mobilization and phytoavailability of cd and Pb in a contaminated floodplain soil. Ecol Eng 74:319–326

    Article  Google Scholar 

  • Sharma S, Singh B, Manchanda VK (2015) Phytoremediation: Role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environ Sci Pollut Res 22:946–962

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2016) Engineered gold nanoparticles and plant adaptation potential. Nanoscale Res Lett 11:400

    Article  CAS  Google Scholar 

  • Siddiqi KS, Husen A (2017) Plant response to engineered metal oxide nanoparticles. Nanoscale Res Lett 12:92

    Article  CAS  Google Scholar 

  • Sinha S, Mukherjee SK (2008) Cadmium-induced siderophore production by a high cd-resistant bacterial strain relieved cd toxicity in plants through root colonization. Curr Microbiol 56:55–60

    Article  CAS  Google Scholar 

  • Sinha R, Heart S, Valani D, Chauhan KK (2009) Earthworms vermicompost: a powerful crop nutrient over the conventional compost & protective soil conditioner against the destructive chemical fertilizers for food safety and security. Am Eurasian J Agric Environ Sci 5(S):01–55

    Google Scholar 

  • Son AJ, Shin KH, Lee JU, Kim KW (2003) Chemical and ecotoxicity assessment of PAH-contaminated soils remediated by enhanced soil flushing. Environ Eng Sci 20(3):197–206

    Article  CAS  Google Scholar 

  • Stingu A, Volf I, Popa VI, Gostin I (2012) New approaches concerning the utilization of natural amendments in cadmium phytoremediation. Ind Crop Prod 35:53–60

    Article  CAS  Google Scholar 

  • Susarla S, Victor F, Medina VF, McCutcheon SC (2002) Phytoremediation: an ecological solution to organic chemical contamination. Ecol Eng 18:647–658

    Article  Google Scholar 

  • Tariq SR, Ashraf A (2016) Comparative evaluation of phytoremediation of metal contaminated soil of firing range by four different plant species. Arab J Chem 9:806–814

    Article  CAS  Google Scholar 

  • Thomé A, Reddy KR, Reginatto C, Cecchin I (2015) Review of nanotechnology for soil and groundwater remediation: Brazilian perspectives. Water Air Soil Pollut 226:121

    Article  CAS  Google Scholar 

  • Toyama T, Furukawa T, Maeda N, Inoue DD, Sei K, Mori K, Kikuchi S, Ike M (2011) Accelerated biodegradation of pyrene and benzo[a]pyrene in the Phragmites australis rhizosphere by bacteria-root exudate interactions. Water Res 45:1629–1638

    Article  CAS  Google Scholar 

  • U.S. EPA (2006) In situ treatment technologies for contaminated soil. Solid waste emergency responses. United State Environmental Protection Agency., EPA 542/F-06/013, Washington, DC, U.S

    Google Scholar 

  • Vidonish JE, Zygourakis K, Masiello CA, Sabadell G, Alvarez PJJ (2016) Thermal treatment of hydrocarbon-impacted soils: a review of technology innovation for sustainable remediation. Engineering 2:426–437

    Article  CAS  Google Scholar 

  • Wenger K, Gupta SK, Furrer G, Schulin R (2003) The role of nitrilotriacetate in copper uptake by tobacco. J Environ Qual 32:1669–1676

    Article  CAS  Google Scholar 

  • West Coast Seeds (2011) Soil amendments and how to use them. Ladner: West Coast Seeds. https://www.westcoastseeds.com/blogs/garden-wisdom/soil-amendments. Accessed 15 Apr 2017

  • Wiszniewska A, Hanus-Fajerska E, Grabski K, Tukaj Z (2013) Promoting effects of organic medium supplements on the micropropagation of promising ornamental Daphne species (Thymelaeaceae). In Vitro Cell Dev Biol Plant 49:51–59

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Int Sch Res Notices Ecol 2011:1–20

    Article  Google Scholar 

  • Xing W, Wu H, Hao B, Huang W, Liu G (2013) Bioaccumulation of heavy metals by submerged macrophytes: looking for hyperaccumulators in eutrophic lakes. Environ Sci Technol 47:4695–4703

    Article  CAS  Google Scholar 

  • Yadav R, Arora P, Kumar S, Chaudhury A (2010) Perspectives for genetic engineering of poplars for enhanced phytoremediation abilities. Ecotoxicology 19:1574–1588

    Article  CAS  Google Scholar 

  • Yadav BK, Siebei MA, Bruggen JJ (2011) Rhizofilteration of a heavy metal (lead) containing wastewater using the wetland plant ca rex pendula. Clean Soil Air Water 39:467–474

    Article  CAS  Google Scholar 

  • Yao Z, Li J, Xi H, Yu C (2012) Review on remediation technologies of soil contaminated by heavy metals. Procedia Environ Sci 16:722–729

    Article  CAS  Google Scholar 

  • Yin BK, Zhou LQ, Yin B, Chen L (2016) Effects of organic amendments on rice (Oryza sativa L.) growth and uptake of heavy metals in contaminated soil. J Soils Sediments 16:537–546

    Article  CAS  Google Scholar 

  • Zhou R, Liu X, Luo L, Zhou Y, Wei J, Chen A, Tang L, Wu H, Deng Y, Zhang F, Wang Y (2017) Remediation of cu, Pb, Zn and cd-contaminated agricultural soil using a combined red mud and compost amendment. Int Biodeterior Biodegradation 118:73–81

    Article  CAS  Google Scholar 

  • Zhu Y, Zhang S, Huang H, Wen B (2009) Effects of maize root exudates and organic acids on the desorption of phenanthrene from soils. J Environ Sci 21(7):920–926

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Poonam, Kumar, N. (2019). Natural and Artificial Soil Amendments for the Efficient Phytoremediation of Contaminated Soil. In: Arora, N., Kumar, N. (eds) Phyto and Rhizo Remediation. Microorganisms for Sustainability, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-32-9664-0_1

Download citation

Publish with us

Policies and ethics