Skip to main content

Regulatory Mechanism of Peripheral Nerve Myelination by Glutamate-Induced Signaling

  • Chapter
  • First Online:
Myelin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1190))

Abstract

Regulation of differentiation and proliferation of Schwann cells is an essential part of the regulation of peripheral nerve development, degeneration, and regeneration. ZNRF1, a ubiquitin ligase, is expressed in undifferentiated/repair Schwann cells, directs glutamine synthetase to proteasomal degradation, and thereby increase glutamate levels in Schwann cell environment. Glutamate elicits subcellular signaling in Schwann cells via mGluR2 to modulate Neuregulin-1/ErbB2/3 signaling and thereby promote undifferentiated phenotype of Schwann cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadinejad F, Geir Moller S, Hashemzadeh-Chaleshtori M, Bidkhori G, Jami MS (2017) Molecular mechanisms behind free radical scavengers function against oxidative stress. Antioxidants (Basel) 6(3)

    Article  Google Scholar 

  • Albrecht J, Sonnewald U, Waagepetersen HS, Schousboe A (2007) Glutamine in the central nervous system: function and dysfunction. Front Biosci 12:332–343

    Article  CAS  Google Scholar 

  • Araki T, Milbrandt J (2003) ZNRF proteins constitute a family of presynaptic E3 ubiquitin ligases. J Neurosci 23(28):9385–9394

    Article  CAS  Google Scholar 

  • Araki T, Nagarajan R, Milbrandt J (2001) Identification of genes induced in peripheral nerve after injury. Expression profiling and novel gene discovery. J Biol Chem 276(36):34131–34141

    Article  CAS  Google Scholar 

  • Boerboom A, Dion V, Chariot A, Franzen R (2017) Molecular mechanisms involved in Schwann cell plasticity. Front Mol Neurosci 10:38

    Article  Google Scholar 

  • Bunge MB, Williams AK, Wood PM, Uitto J, Jeffrey JJ (1980) Comparison of nerve cell and nerve cell plus Schwann cell cultures, with particular emphasis on basal lamina and collagen formation. J Cell Biol 84(1):184–202

    Article  CAS  Google Scholar 

  • Campana WM, Mantuano E, Azmoon P, Henry K, Banki MA, Kim JH et al (2017) Ionotropic glutamate receptors activate cell signaling in response to glutamate in Schwann cells. FASEB J 31(4):1744–1755

    Article  CAS  Google Scholar 

  • Chen S, Velardez MO, Warot X, Yu ZX, Miller SJ, Cros D et al (2006) Neuregulin 1-erbB signaling is necessary for normal myelination and sensory function. J Neurosci 26(12):3079–3086

    Article  CAS  Google Scholar 

  • Cooper A (1988) Glutamine synthetase. In: Kvamme E (ed) Glutamine and glutamate in mammals. CRC, Boca Raton, pp 7–31

    Google Scholar 

  • Coulter DA, Eid T (2012) Astrocytic regulation of glutamate homeostasis in epilepsy. Glia 60(8):1215–1226

    Article  Google Scholar 

  • Fawcett JW, Keynes RJ (1990) Peripheral nerve regeneration. Annu Rev Neurosci 13:43–60

    Article  CAS  Google Scholar 

  • Freidin M, Asche S, Bargiello TA, Bennett MV, Abrams CK (2009) Connexin 32 increases the proliferative response of Schwann cells to neuregulin-1 (Nrg1). Proc Natl Acad Sci U S A 106(9):3567–3572

    Article  CAS  Google Scholar 

  • Fricker FR, Lago N, Balarajah S, Tsantoulas C, Tanna S, Zhu N et al (2011) Axonally derived neuregulin-1 is required for remyelination and regeneration after nerve injury in adulthood. J Neurosci 31(9):3225–3233

    Article  CAS  Google Scholar 

  • Gess B, Baets J, De Jonghe P, Reilly MM, Pareyson D, Young P (2015) Ascorbic acid for the treatment of Charcot-Marie-Tooth disease. Cochrane Database Syst Rev (12):CD011952

    Google Scholar 

  • Grossmann KS, Wende H, Paul FE, Cheret C, Garratt AN, Zurborg S et al (2009) The tyrosine phosphatase Shp2 (PTPN11) directs Neuregulin-1/ErbB signaling throughout Schwann cell development. Proc Natl Acad Sci U S A 106(39):16704–16709

    Article  CAS  Google Scholar 

  • Hinder LM, Vincent AM, Burant CF, Pennathur S, Feldman EL (2012) Bioenergetics in diabetic neuropathy: what we need to know. J Peripher Nerv Syst 17(Suppl 2):10–14

    Article  CAS  Google Scholar 

  • Hyung S, Yoon Lee B, Park JC, Kim J, Hur EM, Francis Suh JK (2015) Coculture of primary motor neurons and Schwann cells as a model for in vitro myelination. Sci Rep 5:15122

    Article  CAS  Google Scholar 

  • Jessen KR, Mirsky R (2005) The origin and development of glial cells in peripheral nerves. Nat Rev Neurosci 6(9):671–682

    Article  CAS  Google Scholar 

  • Jessen KR, Mirsky R (2016) The repair Schwann cell and its function in regenerating nerves. J Physiol 594(13):3521–3531

    Article  CAS  Google Scholar 

  • Jessen KR, Mirsky R, Lloyd AC (2015) Schwann cells: development and role in nerve repair. Cold Spring Harb Perspect Biol 7(7):a020487

    Article  Google Scholar 

  • Kim CH, Lee J, Lee JY, Roche KW (2008) Metabotropic glutamate receptors: phosphorylation and receptor signaling. J Neurosci Res 86(1):1–10

    Article  CAS  Google Scholar 

  • Leimeroth R, Lobsiger C, Lussi A, Taylor V, Suter U, Sommer L (2002) Membrane-bound neuregulin1 type III actively promotes Schwann cell differentiation of multipotent progenitor cells. Dev Biol 246(2):245–258

    Article  CAS  Google Scholar 

  • Michailov GV, Sereda MW, Brinkmann BG, Fischer TM, Haug B, Birchmeier C et al (2004) Axonal neuregulin-1 regulates myelin sheath thickness. Science 304(5671):700–703

    Article  CAS  Google Scholar 

  • Miller KE, Richards BA, Kriebel RM (2002) Glutamine-, glutamine synthetase-, glutamate dehydrogenase- and pyruvate carboxylase-immunoreactivities in the rat dorsal root ganglion and peripheral nerve. Brain Res 945(2):202–211

    Article  CAS  Google Scholar 

  • Morris JK, Lin W, Hauser C, Marchuk Y, Getman D, Lee KF (1999) Rescue of the cardiac defect in ErbB2 mutant mice reveals essential roles of ErbB2 in peripheral nervous system development. Neuron 23(2):273–283

    Article  CAS  Google Scholar 

  • Nagarajan R, Le N, Mahoney H, Araki T, Milbrandt J (2002) Deciphering peripheral nerve myelination by using Schwann cell expression profiling. Proc Natl Acad Sci U S A 99(13):8998–9003

    Article  CAS  Google Scholar 

  • Napoli I, Noon LA, Ribeiro S, Kerai AP, Parrinello S, Rosenberg LH et al (2012) A central role for the ERK-signaling pathway in controlling Schwann cell plasticity and peripheral nerve regeneration in vivo. Neuron 73(4):729–742

    Article  CAS  Google Scholar 

  • Newbern J, Birchmeier C (2010) Nrg1/ErbB signaling networks in Schwann cell development and myelination. Semin Cell Dev Biol 21(9):922–928

    Article  CAS  Google Scholar 

  • Oliver CN, Starke-Reed PE, Stadtman ER, Liu GJ, Carney JM, Floyd RA (1990) Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci U S A 87(13):5144–5147

    Article  CAS  Google Scholar 

  • Passage E, Norreel JC, Noack-Fraissignes P, Sanguedolce V, Pizant J, Thirion X et al (2004) Ascorbic acid treatment corrects the phenotype of a mouse model of Charcot-Marie-Tooth disease. Nat Med 10(4):396–401

    Article  CAS  Google Scholar 

  • Saifi GM, Szigeti K, Snipes GJ, Garcia CA, Lupski JR (2003) Molecular mechanisms, diagnosis, and rational approaches to management of and therapy for Charcot-Marie-Tooth disease and related peripheral neuropathies. J Investig Med 51(5):261–283

    Article  CAS  Google Scholar 

  • Saitoh F, Araki T (2010) Proteasomal degradation of glutamine synthetase regulates Schwann cell differentiation. J Neurosci 30(4):1204–1212

    Article  CAS  Google Scholar 

  • Saitoh F, Wakatsuki S, Tokunaga S, Fujieda H, Araki T (2016) Glutamate signals through mGluR2 to control Schwann cell differentiation and proliferation. Sci Rep 6:29856

    Article  CAS  Google Scholar 

  • Salzer JL (2008) Switching myelination on and off. J Cell Biol 181(4):575–577

    Article  CAS  Google Scholar 

  • Sekido H, Suzuki T, Jomori T, Takeuchi M, Yabe-Nishimura C, Yagihashi S (2004) Reduced cell replication and induction of apoptosis by advanced glycation end products in rat Schwann cells. Biochem Biophys Res Commun 320(1):241–248

    Article  CAS  Google Scholar 

  • Sherman DL, Brophy PJ (2005) Mechanisms of axon ensheathment and myelin growth. Nat Rev Neurosci 6(9):683–690

    Article  CAS  Google Scholar 

  • Syed N, Reddy K, Yang DP, Taveggia C, Salzer JL, Maurel P et al (2010) Soluble neuregulin-1 has bifunctional, concentration-dependent effects on Schwann cell myelination. J Neurosci 30(17):6122–6131

    Article  CAS  Google Scholar 

  • Syroid DE, Maycox PR, Burrola PG, Liu N, Wen D, Lee KF et al (1996) Cell death in the Schwann cell lineage and its regulation by neuregulin. Proc Natl Acad Sci U S A 93(17):9229–9234

    Article  CAS  Google Scholar 

  • Taveggia C, Zanazzi G, Petrylak A, Yano H, Rosenbluth J, Einheber S et al (2005) Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47(5):681–694

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Araki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Araki, T. (2019). Regulatory Mechanism of Peripheral Nerve Myelination by Glutamate-Induced Signaling. In: Sango, K., Yamauchi, J., Ogata, T., Susuki, K. (eds) Myelin. Advances in Experimental Medicine and Biology, vol 1190. Springer, Singapore. https://doi.org/10.1007/978-981-32-9636-7_2

Download citation

Publish with us

Policies and ethics