Skip to main content

The Role of Sulfatides in Axon–Glia Interactions

  • Chapter
  • First Online:
Myelin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1190))

Abstract

Myelin is heavily enriched in lipids (comprising approximately 70% of its dry weight), and the amount of cholesterol and glycolipids is higher than in any other cell membrane. Galactocerebroside (GalC) and its sulfated form, sulfatide, comprise the major glycolipid components of myelin. Their functional significance has been extensively studied using membrane models, cell culture, and in vivo experiments in which either GalC/sulfatide or sulfatide is deficient. From these studies, GalC and sulfatide have been distinctly localized within oligodendrocytes and their specific function in myelin has been elucidated. Here, the function of sulfatide in axo–glial interactions in myelin-forming cells as well as within myelin and its potential mechanisms of action are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alderson NL, Rembiesa BM, Walla MD, Bielawska A, Bielawski J, Hama H (2004) The human FA2H gene encodes a fatty acid 2-hydroxylase. J Biol Chem 279:485622–448568

    Article  CAS  Google Scholar 

  • Alderson NL, Maldonado EN, Kern MJ, Bhat NR, Hama H (2006) FA2H-dependent fatty acid 2-hydroxylation in postnatal mouse brain. J Lipid Res 47:2772–2780

    Article  CAS  PubMed  Google Scholar 

  • Bansal R, Pfeiffer SE (1989) Reversible inhibition of oligodendrocyte progenitor differentiation by a monoclonal antibody against surface galactolipids. Proc Natl Acad Sci U S A 86:6181–6185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bansal R, Pfeiffer SE (1994) Inhibition of protein and lipid sulfation in oligodendrocytes blocks biological responses to FGF-2 and retards cytoarchitectural maturation, but not developmental lineage progression. Dev Biol 162:511–524

    Article  CAS  PubMed  Google Scholar 

  • Bansal R, Warrington AE, Gard AL, Ranscht B, Pfeiffer SE (1989) Multiple and novel specificities of monoclonal antibodies O1, O4, and R-mAb used in the analysis of oligodendrocyte development. J Neurosci Res 24:548–557

    Article  CAS  PubMed  Google Scholar 

  • Bansal R, Winkler S, Bheddah S (1999) Negative regulation of oligodendrocyte differentiation by galactosphingolipids. J Neurosci 19:7913–7924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baron W, Ozgen H, Klunder B, de Jonge JC, Nomden A, Plat A, Trifillieff E, de Vries H, Hoekstra D (2015) The major myelin-resident protein PLP is transported to myelin membranes via a transcytotic mechanism: involvement of Sulfatide. Mol Cell Biol 35:288–302

    Article  PubMed  CAS  Google Scholar 

  • Benjamins JA, Hadden T, Skoff RP (1982) Cerebroside sulfotransferase in Golgi-enriched fractions from rat brain. J Neurochem 38:233–241

    Article  CAS  PubMed  Google Scholar 

  • Boggs JM (2017) Early glycolipid (POA) in pro-oligodendroblasts revealed to be sulfatide. J Neurochem 140:356–358

    Article  CAS  PubMed  Google Scholar 

  • Boggs JM, Gao W, Zhao J et al (2010) Participation of galactosylceramide and sulfatide in glycosynapses between oligodendrocyte or myelin membranes. FEBS Lett 584:1771–1778

    Article  CAS  PubMed  Google Scholar 

  • Borthakur G, Cruz MA, Dong JF, McIntire L, Li F, López JA, Thiagarajan P (2003) Sulfatides inhibit platelet adhesion to von Willebrand factor in flowing blood. J Thromb Haemost 1:1288–1295

    Article  CAS  PubMed  Google Scholar 

  • Bosio A, Binczek E, Stoffel W (1996a) Functional breakdown of the lipid bilayer of the myelin membrane in central and peripheral nervous system by disrupted galactocerebroside synthesis. Proc Natl Acad Sci U S A 93:13280–13285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosio A, Binczek E, Le Beau MM, Fernald AA, Stoffel W (1996b) The human gene CGT encoding the UDP-galactose ceramide galactosyl transferase (cerebroside synthase): cloning, characterization, and assignment to human chromosome 4, band q26. Genomics 34:69–75

    Article  CAS  PubMed  Google Scholar 

  • Bosio A, Büssow H, Adam J, Stoffel W (1998) Galactosphingolipids and axono-glial interaction in myelin of the central nervous system. Cell Tissue Res 292:199–210

    Article  CAS  PubMed  Google Scholar 

  • Cesani M, Lorioli L, Grossi S, Amico G, Fumagalli F, Spiga I, Filocamo M, Biffi A (2016) Mutation update of ARSA and PSAP genes causing metachromatic leukodystrophy. Hum Mutat 37:16–27

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Wang M, Li JL, Cairns NJ, Han X (2013) Specific changes of sulfatide levels in individuals with pre-clinical Alzheimer’s disease: an early event in disease pathogenesis. J Neurochem 127:733–738

    Article  CAS  PubMed  Google Scholar 

  • Chiu SY (2011) Matching mitochondria to metabolic needs at nodes of Ranvier. Neuroscientist 17:343–350

    Article  CAS  PubMed  Google Scholar 

  • Cochran E, Bacci B, Chen Y, Patton A, Gambetti P, Autilio-Gambetti L (1991) Amyloid precursor protein and ubiquitin immunoreactivity in dystrophic axons is not unique to Alzheimer’s diseases. Am J Pathol 139:485–489

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coetzee T, Fujita N, Dupree J et al (1996) Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell 86:209–219

    Article  CAS  PubMed  Google Scholar 

  • Coetzee T, Suzuki K, Popko B (1998) New perspectives on the function of myelin galactolipids. Trends Neurosci 21:126–130

    Article  CAS  PubMed  Google Scholar 

  • Dick KJ, Eckhardt M, Paisán-Ruiz C, Alshehhi AA, Proukakis C, Sibtain NA, Maier H, Sharifi R, Patton MA, Bashir W, Koul R, Raeburn S, Gieselmann V, Houlden H, Crosby AH (2010) Mutation of FA2H underlies a complicated form of hereditary spastic paraplegia (SPG35). Hum Mutat 31:E1251–E1260

    Article  CAS  PubMed  Google Scholar 

  • Dupree JL, Coetzee T, Suzuki K et al (1998) Myelin abnormalities in mice deficient in galactocerebroside and sulfatide. J Neurocytol 27:649–659

    Article  CAS  PubMed  Google Scholar 

  • Dupree JL, Girault JA, Popko B (1999) Axo-glial interactions regulate the localization of axonal paranodal proteins. J Cell Biol 147:1145–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dupree JL, Mason JL, Marcus JR, Stull M, Levinson R, Matsushima GK, Popko B (2004) Oligodendrocytes assist in the maintenance of sodium channel clusters independent of the myelin sheath. Neuron Glia Biol 1:179–192

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckhardt M, Yaghootfam A, Fewou SN, Zöller I, Gieselmann V (2005) A mammalian fatty acid hydroxylase responsible for the formation of α-hydroxylated galactosylceramide in myelin. Biochem J 388:245–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckhardt M, Hedayati KK, Pitsch J, Lüllmann-Rauch R, Beck H, Fewou SN, Gieselmann V (2007) Sulfatide storage in neurons causes hyperexcitability and axonal degeneration in a mouse model of metachromatic leukodystrophy. J Neurosci 27:9009–9021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edvardson S, Hama H, Shaag A et al (2008) Mutations in the fatty acid 2-hydroxylase gene are associated with leukodystrophy with spastic paraparesis and dystonia. Am J Hum Genet 83:643–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Einheber S, Bhat MA, Salzer JL (2006) Disrupted axo-glial junctions result in accumulation of abnormal mitochondria at nodes of Ranvier. Neuron Glia Biol 2:165–174

    Article  PubMed  PubMed Central  Google Scholar 

  • Eshed Y, Feinberg K, Poliak S, Sabanay H, Sarig-Nadir O, Spiegel I, Bermingham JR, Peles E (2005) Gliomedin mediates Schwann cell-axon interaction and the molecular assembly of the nodes of Ranvier. Neuron 47:215–229

    Article  CAS  PubMed  Google Scholar 

  • Eshed Y, Feinberg K, Carey DJ, Peles E (2007) Secreted gliomedin is a perinodal matrix component of peripheral nerves. J Cell Biol 177:551–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feinberg K, Eshed-Eisenbach Y, Frechter S, Amor V, Salomon D, Sabanay H, Dupree JL, Brumet M, Brophy PJ, Shrager P, Peles E (2010) A glial signal consisting of gliomedin and NrCAM clusters axonal Na+ channels during the formation of nodes of Ranvier. Neuron 65:490–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fewou SN, Fernandes A, Stockdale K et al (2010) Myelin protein composition is altered in mice lacking either sulfated or both sulfated and non-sulfated galactolipids. J Neurochem 112:599–610

    Article  CAS  PubMed  Google Scholar 

  • Finsterer J, Löscher W, Quasthoff S, Wanschitz J, Auer-Grumbach M, Stevanin G (2012) Hereditary spastic paraplegias with autosomal dominant, recessive, X-linked, or maternal trait of inheritance. J Neurol Sci 318:1–18

    Article  PubMed  Google Scholar 

  • Fujimoto H, Tadano-Aritomi K, Tokumasu A, Ito K, Hikita T, Suzuki K, Ishizuka I (2000) Requirement of seminolipid in spermatogenesis revealed by UDP-galactose:ceramide galactosyltransferase-deficient mice. J Biol Chem 275:22623–22626

    Article  CAS  PubMed  Google Scholar 

  • Garcia J, Callewaert N, Borsig L (2007) P-selectin mediated metastatic progression through binding to sulfatides on tumor cells. Glycobiology 17:185–196

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Fresco GP, Sousa AD, Pillai AM, Moy SS, Crawley JN, Tessarollo L, Dupree JL, Bhat MA (2006) Disruption of axo-glial junctions causes cytoskeletal disorganization and degeneration of Purkinje neuron axons. Proc Natl Acad Sci U S A 103:513705142

    Article  CAS  Google Scholar 

  • Gentleman SM, Nash MJ, Sweeting CJ, Graham DI, Roberts GW (1993) β-Amyloid precursor protein (βAPP) as a marker for axonal injury after head injury. Neurosci Lett 160:139–144

    Article  CAS  PubMed  Google Scholar 

  • Grassi S, Prioni S, Cabitta L et al (2016) The role of 3-O-sulfogalactosylceramide, sulfatide, in the lateral organization of myelin membrane. Neurochem Res 41:130–143

    Article  CAS  PubMed  Google Scholar 

  • Griggs RB, Yermakov LM, Susuki K (2017) Formation and disruption of functional domains in myelinated CNS axons. Neurosci Res 116:77–87

    Article  CAS  PubMed  Google Scholar 

  • Han X, Holtzman DM, McKeel DW Jr, Kelley J, Morris JC (2002) Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis. J Neurochem 82:809–818

    Article  CAS  PubMed  Google Scholar 

  • Han X (2007) Potential mechanisms contributing to sulfatide depletion at the earliest clinically recognizable stage of Alzheimer’s disease: a tale of shotgun lipidomics. J Neurochem 103(s1):171–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han X, Cheng H, Fryer JD, Fagan AM, Holtzman DM (2003) Novel role for apolipoprotein E in the central nervous system. Modulation of sulfatide content. J Biol Chem 278:8043–8051

    Article  CAS  PubMed  Google Scholar 

  • Hayashi A, Kaneko N, Tomihira C et al (2013) Sulfatide decrease in myelin influences formation of the paranodal axo-glial junction and conduction velocity in the sciatic nerve. Glia 61:466–474

    Article  PubMed  Google Scholar 

  • Hirahara Y, Bansal R, Honke K et al (2004) Sulfatide is a negative regulator of oligodendrocyte differentiation: development in sulfatide-null mice. Glia 45:269–277

    Article  PubMed  Google Scholar 

  • Hirahara Y, Wakabayashi T, Mori T et al (2017) Sulfatide species with various fatty acid chains in oligodendrocytes at different developmental stages determined by imaging mass spectrometry. J Neurochem 140:435–450

    Article  CAS  PubMed  Google Scholar 

  • Honke K (2013) Biosynthesis and biological function of sulfoglycolipids. Proc Jpn Acad Ser B Phys Biol Sci 89:129–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honke K (2017) Biological functions of sulfoglycolipids and the EMARS method for identification of co-cultured molecules in the membrane microdomains. J Biochem 163:253–263

    Article  CAS  Google Scholar 

  • Honke K, Hirahara Y, Dupree J et al (2002) Paranodal junction formation and spermatogenesis require sulfoglycolipids. Proc Natl Acad Sci U S A 99:4227–4232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshi M, Williams M, Kishimoto Y (1973) Characterization of brain cerebrosides at early stages of development in the rat. J Neurochem 21:709–712

    Article  CAS  PubMed  Google Scholar 

  • Hoshi T, Suzuki A, Hayashi S et al (2007) Nodal protrusions, increased Schmidt-Lanterman incisures, and paranodal disorganization are characteristic features of sulfatide-deficient peripheral nerves. Glia 55:584–594

    Article  PubMed  Google Scholar 

  • Ishibashi T, Dupree JL, Ikenaka K et al (2002) A myelin galactolipid, sulfatide, is essential for maintenance of ion channels on myelinated axon but not essential for initial cluster formation. J Neurosci 22:6507–6514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishibashi T, Kodama A, Baba H (2015) Disruption of paranodal axo-glial interaction and/or absence of sulfatide causes irregular type I inositol 1,4,5-trisphosphate receptor deposition in cerebellar Purkinje neuron axons. J Neurosci Res 93:19–27

    Article  CAS  PubMed  Google Scholar 

  • Kajigaya H, Tanaka KF, Hayashi A et al (2011) Increased numbers of oligodendrocyte lineage cells in the optic nerves of cerebroside sulfotransferase knockout mice. Proc Jpn Acad Ser B 87:415–424

    Article  CAS  Google Scholar 

  • Kruer MC, Paisán-Ruiz C, Boddaert N, Yoon MY, Hama H, Gregory A, Malandrini A, Woltjer RL, Munnich A, Gobin S, Polster BJ, Palmeri S, Edvardson S, Hardy J, Houlden H, Hayflick SJ (2010) Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA). Ann Neurol 68:611–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruer MC, Gregory A, Hayflick SJ (2011) Fatty acid hydroxylase-associated neurodegeneration. In: Adam MP et al (eds) GeneReviews [internet]. University of Washington, Seattle. [updated 2012]

    Google Scholar 

  • Li S, Liquari P, McKee KK, Harrison D, Patel R, Lee S, Yurchenco PD (2005) Laminin-sulfatide binding initiates basement membrane assembly and enables receptor signaling in Schwann cells and fibroblasts. J Cell Biol 169:179–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maertens B, Hopkins D, Franzke CW, Keene DR, Bruckner-Tuderman L, Greenspan DS, Koch M (2007) Cleavage and oligomerization of gliomedin, a transmembrane collagen required for node of Ranvier formation. J Biol Chem 282:10647–10659

    Article  CAS  PubMed  Google Scholar 

  • Maier O, Hoekstra D, Baron W (2008) Polarity development in oligodendrocytes: sorting and trafficking of myelin components. J Mol Neurosci 35:35–53

    Article  CAS  PubMed  Google Scholar 

  • Marbois BN, Faull KF, Fluharty AL, Raval-Fernandes S, Rome LH (2000) Analysis of sulfatide from rat cerebellum and multiple sclerosis white matter by negative ion electrospray mass spectrometry. Biochim Biophys Acta 1484:59–70

    Article  CAS  PubMed  Google Scholar 

  • Marcus J, Honigbaum S, Shroff S et al (2006) Sulfatide is essential for the maintenance of CNS myelin and axon structure. Glia 53:372–381

    Article  CAS  PubMed  Google Scholar 

  • Mikoshiba K (2007) IP3 receptor/Ca2+ channel: from discovery to new signaling concepts. J Neurochem 102:1426–1446

    Article  CAS  PubMed  Google Scholar 

  • Morell P, Radin NS (1969) Synthesis of cerebroside by brain from uridine diphosphate galactose and ceramide containing hydroxy fatty acid. Biochemistry 8:506–512

    Article  CAS  PubMed  Google Scholar 

  • Nelson AD, Jenkins PM (2017) Axonal membranes and their domains: assembly and function of the axon initial segment and node of Ranvier. Front Cell Neurosci 11:136

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohno N, Kidd GJ, Mahad D, Kiryu-Seo S, Avishai A, Komuro H, Trapp BD (2011) Myelination and axonal electrical activity modulate the distribution and motility of mitochondria at CNS nodes of Ranvier. J Neurosci 31:7249–7258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozgen H, Schrimpf W, Hendrix J et al (2014) The lateral membrane organization and dynamics of myelin proteins PLP and MBP are dictated by distinct galactolipids and the extracellular matrix. PLoS One 7:e101834

    Article  Google Scholar 

  • Ozgen H, Baron W, Hoekstra D et al (2016) Oligodendroglial membrane dynamics in relation to myelin biogenesis. Cell Mol Life Sci 73:3291–3310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palavicini JP, Wang C, Chen L, Ahmar S, Higuera JD, Dupree JL, Han X (2016) Novel molecular insights into the critical role of sulfatide in myelin maintenance/function. J Neurochem 139:45–54

    Article  CAS  Google Scholar 

  • Pesheva P, Gloor S, Schachner M et al (1997) Tenascin-R is an intrinsic autocrine factor for oligodendrocyte differentiation and promotes cell adhesion by a sulfatide-mediated mechanism. J Neurosci 17:4642–4651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer SE, Warrington AE, Bansal R (1993) The oligodendrocyte and its many cellular processes. Trends Cell Biol 3:191–197

    Article  CAS  PubMed  Google Scholar 

  • Pillai AM, German P, Garcia-Fresco GP, Sousa AD, Dupree JL, Philpot BD, Bhat MA (2007) No effect of genetic deletion of contactin-associated protein (CASPR) on axonal orientation and synaptic plasticity. J Neurosci Res 85:2318–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poliak S, Gollan L, Salmon D, Berglund EO, Ohara R, Ranscht B, Peles E (2001) Localization of Caspr2 in myelinated nerves depends on axon-glia interactions and the generation of barriers along the axon. J Neurosci 21:7568–7575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan H, Hedayati KK, Lüllmann-Rauch R, Wessig C, Fewou SN, Maier H, Goebel HH, Gieselmann V, Eckhardt M (2007) Increasing sulfatide synthesis in myelin-forming cells of arylsulfatase A-deficient mice causes demyelination and neurological symptoms reminiscent of human metachromatic leukodystrophy. J Neurosci 27:9482–9490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranscht B, Clapshaw PA, Price J, Noble M, Seifert W (1982) Development of oligodendrocytes and Schwann cells studied with a monoclonal antibody against galactocerebroside. Proc Natl Acad Sci U S A 79:2709–2713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh T, Ross CA, Villa A, Supattapone S, Pozzan T, Snyder SH, Meldolesi J (1990) The inositol 1,4,5,-trisphosphate receptor in cerebellar Purkinje cells: quantitative immunogold labeling reveals concentration in an ER subcompartment. J Cell Biol 111:615–624

    Article  CAS  PubMed  Google Scholar 

  • Schafer DP, Bansal R, Hedstrom KL, Pfeiffer SE, Rasband MN (2004) Does paranode formation and maintenance require partitioning of neurofascin 155 into lipid rafts? J Neurosci 24:3176–3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt S, Castelvetri LC, Simons M (2015) Metabolism and functions of lipids in myelin. Biochim Biophys Acta 1851:999–1005

    Article  CAS  PubMed  Google Scholar 

  • Schulte S, Stoffel W (1993) Ceramide UDP galactosyltransferase from myelinating rat brain: purification, cloning, and expression. Proc Natl Acad Sci U S A 90:10265–10269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shroff S, Pomicter AD, Fox MA et al (2009) Adult sulfatide null mice maintain an increased number of oligodendrocytes. J Neurosci Res 87:3403–3414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprong H, Kruithof B, Leijendekker R, Slot JW, van Meer G, van der Sluijs P (1998) UDP-galactose:ceramide galactosyltransferase is a class I integral membrane protein of the endoplasmic reticulum. J Biol Chem 273:25880–25888

    Article  CAS  PubMed  Google Scholar 

  • Stirling DP, Stys PK (2010) Mechanisms of axonal injury: internodal nanocomplexes and calcium deregulation. Trends in Mo Med 16:160–170

    Article  CAS  Google Scholar 

  • Suzuki A, Hoshi T, Ishibashi T et al (2004) Paranodal axoglial junction is required for the maintenance of the Nav1.6-type sodium channel in the node of Ranvier in the optic nerves but not in peripheral nerve fibers in the sulfatide-deficient mice. Glia 46:274–283

    Article  PubMed  Google Scholar 

  • Svennerholm L, Gottfries C-G (1994) Membrane lipids, selectively diminished in Alzheimer brains, suggest synapse loss as a primary event in early-onset form (type I) and demyelination in late-onset form (type II). J Neurochem 62:1039–1047

    Article  CAS  PubMed  Google Scholar 

  • Takagishi Y, Katanosaka K, Mizoguchi H, Murata Y (2016) Disrupted axon-glia interactions at the paranode in myelinated nerves cause axonal degeneration and neuronal cell death in the aged Caspr mutant mouse shambling. Neurobiol Aging 43:34–46

    Article  CAS  PubMed  Google Scholar 

  • Takano M, Hikishima K, Fujiyoshi K et al (2012) MRI characterization of paranodal junction failure and related spinal cord changes in mice. PLoS One 7:e52904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takei K, Mignery GA, Mugnaini E, Südohof TC, De Camilli P (1994) Inositol 1,4,5-trisphosphate receptor causes formation of ER cisternal stacks in transfected fibroblasts and in cerebellar Purkinje cells. Neuron 12:327–342

    Article  CAS  PubMed  Google Scholar 

  • Taylor CM, Marta CB, Bansal R et al (2004) The transport, assembly, and function of myelin lipids. In: Lazzarini RA (ed) Myelin biology and disorders, vol 2. Elsevier, London, pp 57–88

    Google Scholar 

  • Teigler A, Komljenovic D, Draguhn A et al (2009) Defects in myelination, paranode organization and Purkinje cell innervation in the ether lipid-deficient mouse cerebellum. Hum Mol Genet 18:1897–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tennekoon G, Zaruba M, Wolinsky J (1983) Topography of cerebroside sulfotransferase in Golgi-enriched vesicles from rat brain. J Cell Biol 97:1107–1112

    Article  CAS  PubMed  Google Scholar 

  • van Meer G, Lisman Q (2002) Sphingolipid transport: rafts and translocators. J Biol Chem 277:25855–25858

    Article  PubMed  CAS  Google Scholar 

  • van Rappard DF, Boelens JJ, Wolf NI (2015) Metachromatic leukodystrophy: disease spectrum and approaches for treatment. Best Pract Res Clin Endocrinol Metab 29:261–273

    Article  PubMed  Google Scholar 

  • Vos JP, Lopes-Cardozo M, Cadella BM (1994) Metabolic and functional aspects of sulfogalactolipids. Biochim Biophys Acta 1211:125–149

    Article  CAS  PubMed  Google Scholar 

  • Watanabe S, Endo S, Oshima E, Hoshi T, Higashi H, Yamada K, Tohyama K, Yamashita T, Hirabayashi Y (2010) Glycosphingolipid synthesis in cerebellar Purkinje neurons: roles in myelin formation and axonal homeostasis. Glia 58:1197–1207

    Article  PubMed  Google Scholar 

  • Winzeler AM, Mandemarkers WJ, Sun MZ, Stafford M, Phillips CT, Barres BA (2011) The lipid sulfatide is a novel myelin-associated inhibitor of CNS axon outgrowth. J Neurosci 31:6481–6492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zöller I, Büssow H, Gieselmann V, Eckhardt M (2005) Oligodendrocyte-specific ceramide galactosyltransferase (CGT) expression phenotypically rescues CGT-deficient mice and demonstrates that CGT activity does not limit brain galactosylceramide level. Glia 52:190–198

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroko Baba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Baba, H., Ishibashi, T. (2019). The Role of Sulfatides in Axon–Glia Interactions. In: Sango, K., Yamauchi, J., Ogata, T., Susuki, K. (eds) Myelin. Advances in Experimental Medicine and Biology, vol 1190. Springer, Singapore. https://doi.org/10.1007/978-981-32-9636-7_11

Download citation

Publish with us

Policies and ethics