Skip to main content

Acousto-Optic Dispersion Applicability to Plastic Auto-Part Color Characterization

  • Conference paper
  • First Online:
Book cover Progress in Optomechatronic Technologies

Abstract

Acousto-optic dispersion occurs when light interacts with a translucent material in which a sound-induced spatial distribution of its refractive index is present. That diffracted light can then be analyzed for different properties of the source. The experimental and theoretical basis of the phenomena were proposed in early twentieth century, mainly by Brillouin and Raman, respectively. Over time, acousto-optics has transited towards applied technology such as image processing in military applications. In this paper, we propose an acousto-optic image acquiring system to study plastic auto-parts color characterization via hyperspectral imaging. Current methodologies regarding the same subject use mainly colorimeters, which by default cannot provide the same amount of spectral information than an acousto-optic system could gather. Therefore, a distinctive potential of acousto-optic technology lies within the subject of plastic auto-parts cosmetic corrosion (PACC) characterization, term which would refer to the study of undesirable changes in color (in plastic auto-parts) due to time and exposure.

This research was partially supported by a grant from CONACYT-México. Problemas Nacionales program: PN3967-2016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. Global status report on road safety 2013. Supporting a decade of action, Accessed in 1 December 2015

    Google Scholar 

  2. INE with data from INEGI & IHS MARKIT (2018)

    Google Scholar 

  3. M. Melgosa et al., Measuring color differences in automotive samples with lightness flop: a test of the AUDI2000 color-difference formula. Opt. Express 22(3), 3458–3467 (2014)

    Article  ADS  Google Scholar 

  4. O. Gómez et al., Visual and instrumental assessments of color differences in automotive coatings. Color Res. Appl. 41(4), 384–391 (2016)

    Article  Google Scholar 

  5. N.J. Berg, J.N. Lee, Acousto-optic signal processing: theory and implementation, in New York, Marcel Dekker, Inc. Optical Engineering. vol. 2 (1983), 496 pp. No individual items are abstracted in this volume

    Google Scholar 

  6. W.T. Rhodes, Acousto-optic signal processing: convolution and correlation. Proc. IEEE 69(1), 65–79 (1981)

    Article  ADS  Google Scholar 

  7. N. Gat, Imaging spectroscopy using tunable filters: a review, in Wavelet Applications VII. International Society for Optics and Photonics, vol. 4056 (2000), pp. 50–65

    Google Scholar 

  8. L.J. Denes, M.S. Gottlieb, B. Kaminsky, Acousto-optic tunable filters in imaging applications. Opt. Eng. 37(4), 1262–1267 (1998)

    Article  ADS  Google Scholar 

  9. L. Bei et al., Acousto-optic tunable filters: fundamentals and applications as applied to chemical analysis techniques. Prog. Quantum Electron. 28(2), 67–87 (2004)

    Article  ADS  Google Scholar 

  10. C.D. Tran, Principles and analytical applications of acousto-optic tunable filters, an overview. Talanta 45(2), 237–248 (1997)

    Article  Google Scholar 

  11. V.B. Voloshinov, V.Y. Molchanov, J.C. Mosquera, Spectral and polarization analysis of optical images by means of acousto-optics. Opt. Laser Technol. 28(2), 119–127 (1996)

    Article  ADS  Google Scholar 

  12. A. Korpel, Acousto-optics - a review of fundamentals. Proc. IEEE 69(1), 48–53 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  13. I.C. Chang, Tunable acousto-optic filters: an overview. Opt. Eng. 16(5), 455–460 (1977)

    Article  ADS  Google Scholar 

  14. H. Zhao et al., Field imaging system for hyperspectral data, 3D structural data and panchromatic image data measurement based on acousto-optic tunable filter. Opt. Express 26(13), 17717–17730 (2018)

    Article  ADS  Google Scholar 

  15. L. Granero-Montagud, et al., SYDDARTA: new methodology for digitization of deterioration estimation in paintings, in Proceedings of SPIE, vol. 8790 (2013), p. 879011

    Google Scholar 

  16. R. Abdlaty, et al., High throughput AOTF hyperspectral imager for randomly polarized light, in Photonics, vol. 5, no. 1, p. 3. Multidisciplinary Digital Publishing Institute (2018)

    Google Scholar 

  17. B. Zagajewski et al., Intraspecific differences in spectral reflectance curves as indicators of reduced vitality in high-arctic plants. Remote Sens. 9(12), 1289 (2017)

    Article  ADS  Google Scholar 

  18. F. Zhao et al., Simulated impact of sensor field of view and distance on field measurements of bidirectional reflectance factors for row crops. Remote Sens. Environ. 156, 129–142 (2015)

    Article  ADS  Google Scholar 

  19. J.L. Widlowski et al., The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: actual canopy scenarios and conformity testing. Remote Sens. Environ. 169, 418–437 (2015)

    Article  ADS  Google Scholar 

  20. J. Liang, et al., 3D plant modelling via hyperspectral imaging, in Proceedings of the IEEE International Conference on Computer Vision Workshops (2013)

    Google Scholar 

  21. S. Liang et al., A long-term Global LAnd Surface Satellite (GLASS) data-set for environmental studies. Int. J. Digit. Earth 6(sup1), 5–33 (2013)

    Article  ADS  Google Scholar 

  22. S. Heist et al., 5D hyperspectral imaging: fast and accurate measurement of surface shape and spectral characteristics using structured light. Opt. Express 26(18), 23366–23379 (2018)

    Article  ADS  Google Scholar 

  23. W. Feng et al., 3D compressive spectral integral imaging. Opt. Express 24(22), 24859–24871 (2016)

    Article  ADS  Google Scholar 

  24. M. Kim et al., 3D imaging spectroscopy for measuring hyperspectral patterns on solid objects. ACM Trans. Graph. 31(4), 38 (2012)

    Google Scholar 

  25. Z. Cherfi et al., Case study: color control in the automotive industry. Qual. Eng. 15(1), 161–170 (2002)

    Article  Google Scholar 

  26. M.K. Chao, B.P. Hake, Colorimetry applications in the automotive industry, in Electro-Optical Instrumentation for Industrial Applications. International Society for Optics and Photonics vol. 411 (1983), pp. 47–49

    Google Scholar 

  27. B. Claudé et al., Consequences of photoageing on the durability of plastic glasses for automotive applications. Polym. Test. 20(7), 771–778 (2001)

    Article  Google Scholar 

  28. T.M. Kruse, O.S. Woo, L.J. Broadbelt, Detailed mechanistic modeling of polymer degradation: application to polystyrene. Chem. Eng. Sci. 56(3), 971–979 (2001)

    Article  Google Scholar 

  29. M. Day, et al., Thermal degradation of automotive plastics: a possible recycling opportunity, in Polymer Durability: Degradation, Stabilization, and Lifetime Prediction (1993), pp. 47–57

    Google Scholar 

  30. G. Luckeneder et al., Corrosion mechanisms and cosmetic corrosion aspects of zincaluminium-magnesium and zinc-chromium alloy coated steel strip. BHM Berg-und Hüttenmännische Monatshefte 157(3), 121–125 (2012)

    Article  Google Scholar 

  31. N. LeBozec, D. Thierry, Influence of climatic factors in cyclic accelerated corrosion test towards the development of a reliable and repeatable accelerated corrosion test for the automotive industry. Mater. Corros. 61(10), 845–851 (2010)

    Article  Google Scholar 

  32. T. Prosek et al., Corrosion performance of Zn-Al-Mg coatings in open and confined zones in conditions simulating automotive applications. Mater. Corros. 61(5), 412–420 (2010)

    Google Scholar 

  33. Y. Liu et al., Precipitation in an AA6111 aluminium alloy and cosmetic corrosion. Acta Mater. 55(1), 353–360 (2007)

    Article  Google Scholar 

  34. N. LeBozec, N. Blandin, D. Thierry, Accelerated corrosion tests in the automotive industry: a comparison of the performance towards cosmetic corrosion. Mater. Corros. 59(11), 889–894 (2008)

    Article  Google Scholar 

  35. B. Milligan, The degradation of automotive upholstery fabrics by light and heat. Color. Technol. 16(1), 1–7 (1986)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support of this work by grant PN3967-2016 from Consejo Nacional de Ciencia y Tecnología (CONACYT), México, Sistema Nacional de Investigadores (SNI) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Amilcar Rizzo Sierra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rizzo Sierra, J.A., Isaza, C., Anaya Rivera, E.K., Zavala de Paz, J.P., Mosquera, J. (2019). Acousto-Optic Dispersion Applicability to Plastic Auto-Part Color Characterization. In: Martínez-García, A., Bhattacharya, I., Otani, Y., Tutsch, R. (eds) Progress in Optomechatronic Technologies . Springer Proceedings in Physics, vol 233. Springer, Singapore. https://doi.org/10.1007/978-981-32-9632-9_7

Download citation

Publish with us

Policies and ethics