Skip to main content

Effects of the Roughness in the Optical Response of a 2DPC That Have Dielectric or Dispersive LHM Cylindrical Inclusions: The Triangular Lattice

  • Conference paper
  • First Online:
Book cover Progress in Optomechatronic Technologies

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 233))

  • 319 Accesses

Abstract

In this work, a numerical technique known as integral equation method (IEM) was used to model the optical response of two-dimensional photonic structures of hexagonal lattice with rods that have smooth and rough surfaces, under TM polarization. Photonic structures were modeled by different materials. One of them was formed with dielectric–dielectric media and the other with dielectric–dispersive LHM media. We found that the optical response was modulated by the roughness of the surface of the inclusions. We also observed that the scattering patterns depend on the type of photonic structure and the incidence angle. Additionally, when we consider the two-dimensional photonic structure with rough surfaces, we approach a real physical system and this causes changes in the reflective optical properties. This property is very useful and has multiple applications in waveguides, filters, omnidirectional mirrors, beam splitters, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008), Chaps. 4–6

    Google Scholar 

  2. A. Mukherjee, A.D. Ariza-Flores, R.F. Balderas-Valadez, V. Agarwal, Controlling the optical properties of composite multilayered photonic structures: effect of superposition. Opt. Express 21, 17324–17339 (2013). https://doi.org/10.1364/OE.21.017324

  3. T.V.K. Karthik, L. Martinez, V. Agarwal, Porous silicon ZnO/SnO2 structures for CO2 detection. J. Alloy. Compd. 731, 853–863 (2017). https://doi.org/10.1016/j.jallcom.2017.10.070

    Article  Google Scholar 

  4. T.F. Krauss, R.M. De La Rue, Photonic crystals in the optical regime: past, present and future. Prog. Quant. Electron. 23, 51–96 (1999). https://doi.org/10.1016/S0079-6727(99)00004-X

    Article  ADS  Google Scholar 

  5. A. Mendoza-Suárez, F. Villa-Villa, Numerical method based on the solution of integral equations for the calculation of the band structure and reflectance of one- and two-dimensional photonic crystals. J. Opt. Soc. Am. B 23, 2249–2256 (2006). https://doi.org/10.1364/JOSAB.23.002249

  6. A.A. Maradudin, T. Michel, A.R. McGurn, E.R. Méndez, Enhanced backscattering of light from a random grating. Annals Phys. 203(2), 255–307 (1990). https://doi.org/10.1016/0003-4916(90)90172-K

    Article  ADS  Google Scholar 

  7. H.I. Pérez, C.I. Valencia, E.R. Méndez, J.A. Sánchez-Gil, On the transmission of diffuse light through thick slits. J. Opt. Soc. Am. A 26(4), 909–918 (2009). https://doi.org/10.1364/JOSAA.26.000909

    Article  ADS  Google Scholar 

  8. H. Perez-Aguilar, A. Mendoza-Suárez, E.S. Tututi, I.F. Herrera-González, Disordered field patterns in a waveguide with periodic surfaces. Prog. Electromagn. Res. 48, 329–346 (2013). https://doi.org/10.2528/PIERB12120509

    Article  Google Scholar 

  9. T. Nordam, P.A. Letnes, I. Simonsen, A.A. Maradudin, Numerical solutions of the Rayleigh equations for the scattering of light from a two-dimensional randomly rough perfectly conducting surface. J. Opt. Soc. Am. A 31, 1126–1134 (2014). https://doi.org/10.1364/JOSAA.31.001126

    Article  ADS  Google Scholar 

  10. A. González-Alcalde, J.P. Banon, O.S. Hetland, A.A. Maradudin, E.R. Méndez, T. Nordam, I. Simonsen, Experimental and numerical studies of the scattering of light from a two-dimensional randomly rough interface in the presence of total internal reflection: optical Yoneda peaks. Opt. Express 24, 25995–26005 (2016). https://doi.org/10.1364/OE.24.025995

  11. S. Hughes, S. Ramunno, J.F. Young, J.E. Sipe, Optical scattering loss due to disorder and fabrication roughness in semiconductor photonic crystal slab waveguides, in International Quantum Electronics Conference IThL5 (2004). https://doi.org/10.1364/IQEC.2004.IThL5

  12. A. Mandatori, M. Bertolotti, C. Sibilia, B.J. Hoenders, M. Scalora, Coherence effects in propagation through one-dimensional photonic bandgap structures with a rough glass interface. J. Opt. Soc. Am. B 24, 2921–2929 (2007). https://doi.org/10.1364/JOSAB.24.002921

  13. H.Y. Wu, M. Schaden, Perturbative roughness corrections to electromagnetic Casimir energies. Phys. Rev. D 89, 105003 (2014). https://doi.org/10.1103/PhysRevD.89.105003

    Article  ADS  Google Scholar 

  14. L. Ondič, M. Varga, I. Pelant, J. Valenta, A. Kromka, R.G. Elliman, Silicon nanocrystal-based photonic crystal slabs with broadband and efficient directional light emission. Scientific Reports 7, 5763 (2017). https://doi.org/10.1038/s41598-017-05973-y

    Article  ADS  Google Scholar 

  15. R.F. Balderas-Valadez, V. Agarwal, C. Pacholski, Fabrication of porous silicon-based optical sensors using metal-assisted chemical etching. RSC Adv. 6(26), 21430–21434 (2016). https://doi.org/10.1039/C5RA26816H

    Article  Google Scholar 

  16. J.E. Baker, R. Sriram, B.J. Miller, Two-dimensional photonic crystals for sensitive microscale chemical and biochemical sensing. Lab Chip 15, 971–990 (2015). https://doi.org/10.1039/C4LC01208A

    Article  Google Scholar 

  17. Y.X. Zong, J.B. Xia, Photonic band structure of two-dimensional metal/dielectric photonic crystals. J. Phys. D: Appl. Phys. 48(35), 355103 (2015). http://iopscience.iop.org/article/10.1088/0022-3727/48/35/355103/meta

  18. A. Mendoza-Suárez, F. Villa-Villa, J.A. Gaspar-Armenta, Band structure of two-dimensional photonic crystals that include dispersive left handed materials and dielectrics in the unit cell. J. Opt. Soc. Am. B 24, 3091–3098 (2007). https://doi.org/10.1364/JOSAB.24.003091

    Article  ADS  Google Scholar 

  19. V. Castillo-Gallardo, L.E. Puente-Díaz, H. Pérez-Aguilar, A. Mendoza-Suárez, F. Villa-Villa, Band structure of two-dimensional photonic crystals that include dispersive left-handed materials with rough surfaces in their lattice. Unpublished

    Google Scholar 

  20. D. Bria, B. Djafari-Rouhani, A. Akjouj, L. Dobrzynski, J.P. Vigneron, E.H. El Boudouti, A. Nougaoui, Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials. Phys. Rev. E 69, 066613 (2004). https://doi.org/10.1103/PhysRevE.69.066613

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported by Consejo Nacional de Ciencia y Tecnología through a scholarship for Castillo-Gallardo, Puente-Díaz and Lozano-Trejo. Also, Pérez-Aguilar and Mendoza-Suárez express their gratitude to the Coordinación de la Investigación Científica of the Universidad Michoacana de San Nicolás de Hidalgo for the financial support granted for the development of this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Pérez-Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castillo-Gallardo, V., Puente-Díaz, L., Lozano-Trejo, E., Pérez-Aguilar, H., Mendoza-Suárez, A. (2019). Effects of the Roughness in the Optical Response of a 2DPC That Have Dielectric or Dispersive LHM Cylindrical Inclusions: The Triangular Lattice. In: Martínez-García, A., Bhattacharya, I., Otani, Y., Tutsch, R. (eds) Progress in Optomechatronic Technologies . Springer Proceedings in Physics, vol 233. Springer, Singapore. https://doi.org/10.1007/978-981-32-9632-9_5

Download citation

Publish with us

Policies and ethics