Skip to main content

Agricultural Sustainability and Climate Change Nexus

  • Chapter
  • First Online:
Contemporary Environmental Issues and Challenges in Era of Climate Change

Abstract

The phenomenon of climate change is affecting life on Earth in numerous ways, and agricultural sector is affected utmost as it is highly sensitive to the climatic factors. Agricultural sustainability is the call of the time when the growing population in the world needs to be nourished, while at the same time struggling with the effects of increasing pollution and deterioration of available agricultural land. As the resources obtainable on the earth are increasingly constrained, the stressed agricultural system has to survive and excel to be able to arrange for the basic human necessity of food. Water, energy and food systems are interconnected, and these systems must be linked to each other. However, the process is two-way round, wherein the climate is also distressed by the intensive practices applied to meet the increasing demand. This is the nexus of agricultural sustainability and climate change. The more one segment is stressed, the more the other segments are affected. A balance cannot be attained unless the complexity of the interconnections among the different sectors is understood and the challenge of adaptation is accepted, giving preference to the interdependence of the factors of the agricultural system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams RM, Hurd BH, Lenhart S, Leary N (1998) Effects of global climate change on agriculture: an interpretative review. Clim Res 11:19–30

    Article  Google Scholar 

  • Agovino M (2018) Ecological indicators. https://doi.org/10.1016/j.ecolind.2018.04.064

    Article  Google Scholar 

  • Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revision, ESA working paper No. 12-03. FAO, Rome

    Google Scholar 

  • Allan JA (2003) Virtual water—the water, food, trade nexus, useful concept or misleading metaphor? Water Int 28(1):106–113

    Article  Google Scholar 

  • Barnett J, O’Neill S (2010) Maladaptation. Glob Environ Chang 20(2):211–213

    Article  Google Scholar 

  • Bhattacharya A (2019) Global climate change and its impact on agriculture. In: Changing climate and resource use efficiency in plants. Academic, London, pp 1–50

    Google Scholar 

  • Bigelow DP, Zhang H (2018) Supplemental irrigation water rights and climate change adaptation. Ecol Econ 154:156–167

    Article  Google Scholar 

  • Brouder SM, Gomez-Macpherson H (2014) The impact of conservation agriculture on smallholder agricultural yields: a scoping review of the evidence. Agric Ecosyst Environ 187:11–32

    Article  Google Scholar 

  • Brouwer F, Avgerinopoulos G, Fazekas D, Laspidou C, Mercure J-F, Pollitt H, Ramos EP, Howells M (2018) Energy modelling and the Nexus concept. Energ Strat Rev 19:1–6

    Article  Google Scholar 

  • Global Nutrition Report (2018) Shining a light to spur action on nutrition. Development Initiatives, Bristol

    Google Scholar 

  • Devlin RM (1975) Plant physiology. Van Nostrand Reinhold Company, New York

    Google Scholar 

  • Eagleman JR (1985) Meteorology: the atmosphere in action. Wadsworth, Belmont

    Google Scholar 

  • Edmond JB, Senn TL, Andrews FS, Halfacre RG (1978) Fundamentals of horticulture, 4th edn. McGraw-Hill, Inc, New York, pp 109–130

    Google Scholar 

  • Elsner MM, Cuo L, Voisin N, Deems JS, Hamlet AF, Vano JA, Mickelson KEB, Lee S-Y, Lettenmaier DP (2010) Implications of 21st century climate change for the hydrology of Washington State. Clim Chang 102(1–2):225–260

    Article  Google Scholar 

  • Endo A, Tsurita I, Burnett K, Orencio PM (2017) A review of the current state of research on the water, energy, and food nexus. J Hydrol Reg Stud 11:20–30

    Article  Google Scholar 

  • FAO (2009) The state of food and agriculture: livestock in the balance. FAO, Rome

    Google Scholar 

  • FAO (2010) Global forest resources assessment 2010 – main report. FAO Forestry Paper No. 163, Rome

    Google Scholar 

  • FAO (2014) The state of world fisheries and aquaculture: opportunities and challenges. FAO, Rome

    Google Scholar 

  • Flammini A, Puri M, Pluschke L, Dubois O (2014) Walking the nexus talk: assessing the water-energy-food nexus in the context of the sustainable energy for all initiative. Climate, Energy and Tenure Division (NRC) Food and Agriculture Organization of the United Nations

    Google Scholar 

  • Füssel HM (2007) Adaptation planning for climate change: concepts, assessment approaches, and key lessons. Sustain Sci 2(2):265–275

    Article  Google Scholar 

  • Garibaldi L, Carvalheiro L, Vaissiere B, Gemmill-Herren B, Hipolito J, Freitas B et al (2016) Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 351:388–391

    Article  CAS  Google Scholar 

  • Garnett T, Appleby MC, Balmford A, Bateman IJ, Benton TG, Bloomer P, Burlingame B, Dawkins M, Dolan L, Fraser D, Herrero M, Hoffmann I, Smith P, Thornton PK, Toulmin C, Vermeulen SJ, Godfray SCJ (2013) Sustainable intensification in agriculture: premises and policies. Science 341(6141):33–34

    Article  CAS  Google Scholar 

  • Gliessman SR (2007) Agroecology. The ecology of sustainable food system. CRC Press, Boca Raton

    Google Scholar 

  • Global Nutrition Report (2018) Shining a light to spur action on nutrition. Development Initiatives, Bristol

    Google Scholar 

  • Hoff J (2011, November 16–18) Understanding the nexus. In: Background paper for the Bonn 2011conference: the water, energy and food security nexus, Bonn, Germany

    Google Scholar 

  • Ikerd JE (2005) Sustainable capitalism: amatter of common sense. ISBN: 1565492064, ISBN13: 9781565492066

    Google Scholar 

  • IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds). Cambridge University Press, Cambridge, 976 pp

    Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Climate change 2013: the physical science basis. Contribution of Working Group 1 to the 5th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Keating BA, Herrero M, Carberry PS, Gardner J, Cole MB (2014) Food wedges: framing the global food demand and supply challenge towards 2050. Glob Food Sec 3(3–4):125–132

    Article  Google Scholar 

  • Kleijn D, Sutherland WJ (2003) How effective are European agri-environment schemes in conserving and promoting biodiversity? J Appl Ecol 40:947–969

    Article  Google Scholar 

  • Kremen C, Miles A (2012) Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol Soc 17(4):40

    Google Scholar 

  • Kundzewicz ZW, Kanae S, Seneviratne SI, Handmer J, Nicholls N, Peduzzi P, Mechler R, Bouwer LM, Arnell N, Mach K, Muir-Wood R, Brakenridge GR, Kron W, Benito G, Honda Y, Takahashi K, Sherstyukov B (2014) Flood risk and climate change: global and regional perspectives. Hydrol Sci J 59(1):1–28

    Article  Google Scholar 

  • Lal R, Stewart BA (2010) Food security and soil quality. CRC Press, Boca Raton, p 416

    Book  Google Scholar 

  • Lipper L, Thornton P, Campbell BM, Baedeker T, Braimoh A, Bwalya M, Caron P, Cattaneo A, Garrity D, Henry K, Hottle R, Jackson L, Jarvis A, Kossam F, Mann W, McCarthy N, Meybeck A, Neufeldt H, Remington T, Sen PT, Sessa R, Shula R, Tibu A, Torquebiau EF (2014) Climate-smart agriculture for food security. Nat Clim Chang 4:1068–1072

    Article  Google Scholar 

  • Liu X, Zhang S, Bae J (2017) The nexus of renewable energy-agriculture-environment in BRICS. Appl Energy 204:489–496

    Article  Google Scholar 

  • Lobell DB, Schlenker W, Lobell DB (2010) Robust negative impacts of climate change on African agriculture. Environ Res Lett 5(1):1–8

    Google Scholar 

  • Mader SS (1993) Biology: the cell. Wm. C. Brown Publishers. Science, 896 pages

    Google Scholar 

  • Malek K, Adam J, Stockle C, Peters T (2017) Climate change reduces water availability for agriculture by decreasing non-evaporative irrigation losses. J Hydrol 561:444–460. https://doi.org/10.1016/j.jhydrol.2017.11.046

    Article  Google Scholar 

  • Mall RK, Singh R, Gupta A, Srinivasan G, Rathore LS (2007) Impact of climate change on Indian agriculture: a review. Clim Chang 82(1–2):225–231

    Article  Google Scholar 

  • Mendelsohn R, Dinar A (1999) Climate change, agriculture, and developing countries: does adaptation matter? World Bank Res Obs 14(2):277–293

    Article  Google Scholar 

  • Michler JD, Baylis K, Arends-Kuenning M, Mazvimavi K (2018) Conservation agriculture and climate resilience. J Environ Econ Manag 93:148–169. https://doi.org/10.1016/j.jeem.2018.11.008

    Article  Google Scholar 

  • Miller D (2001) Distributing responsibilities. J Polit Philos 9(4):453–471

    Article  Google Scholar 

  • Mitchell D et al (2017) Half a degree additional warming, prognosis and projected impacts (HAPPI): background and experimental design. Geosci Model Dev 10:571–583

    Article  CAS  Google Scholar 

  • Montpellier Panel Report (2013) On sustainable intensification: a new paradigm for African agriculture

    Google Scholar 

  • Murad W, Molla RI, Mokhtar M, Raquib MA (2010) Climate change and agricultural growth: an examination of the link in Malaysia. Int J Clim Change Strategies Manage 2(4):403–417

    Article  Google Scholar 

  • NRE (2015) Malaysia biennial update report to the UNFCC. Ministry of Natural Resources and Environment Malaysia, Putrajaya

    Google Scholar 

  • Pimentel D, Pimentel MH (eds) (2007) Food, energy, and society, 3rd edn. CRCPress, Boca Raton

    Google Scholar 

  • Poincelot RP (1980) Horticulture: principles and practical applications. Published by Prentice Hall College Div. ISBN 10: 0133948099 ISBN 13: 9780133948097

    Google Scholar 

  • Pretty J, Morison JIL, Hine RE (2003) Reducing food poverty by increasing agricultural sustainability in developing countries. Agric Ecosyst Environ 95:217–234

    Article  Google Scholar 

  • Rasul G, Sharma B (2016) The nexus approach to water–energy–food security: an option for adaptation to climate change. J Clim Policy 16(6):682–702. Published online: 18 Apr 2015

    Article  Google Scholar 

  • Rosenwelg C, Parry ML (1994) Potential impact of climate change on world food supply. Nature 367:133–138

    Article  Google Scholar 

  • Rotter RP, Hoffman MP, Koch M, Muller C (2019) Progress in modelling agricultural impacts of and adaptations to climate change. Curr Opin Plant Biol 1721:1–7

    Google Scholar 

  • Sahoo A, Kumar D, Naqvi SMK (eds) (2013) Climate resilient small ruminant production. In: National initiative on climate resilient agriculture (NICRA). Central Sheep and Wool Research Institute, Izatnagar, pp 1–106

    Google Scholar 

  • Sapkota TB, Vetter SH, Jat ML, Sirohi S, Shirsath P, Singh R, Jat HS, Smith P, Hillier J, Stirling CM (2019) Cost-effective opportunities for climate change mitigation in Indian agriculture. Sci Total Environ 655:1342–1354

    Article  CAS  Google Scholar 

  • Scherr S, McNeely JA (2008) Biodiversity conservation and agricultural sustainability: towards a new paradigm of “eco-agriculture” landscapes. Philos Trans R Soc B 363:477–494

    Article  Google Scholar 

  • Schlenker W, Lobell B (2010) Robust negative impacts of climate change on African agriculture. Environ Res Lett 5(1):1–8

    Article  Google Scholar 

  • Searchinger TD, Estes L, Thornton PK, Beringer T, Notenbaert A, Rubenstein D, Heimlich R, Licker R, Herrero M (2015) High carbon and biodiversity costs from converting Africa’s wet savannahs to cropland. Nat Clim Chang 5:481–486

    Article  Google Scholar 

  • Smith P, Olesen JE (2010) Synergies between the mitigation of, and adaptation to, climate change in agriculture. J Agric Sci 148:543–552. Cambridge University Press

    Article  CAS  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen HH, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes RJ, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith JU (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B 363:789–813

    Article  CAS  Google Scholar 

  • Srivastava V, De Araujo ASF, Vaish B, Bartelt-Hunt S, Singh P, Singh RP (2016) Biological response of using municipal solid waste compost in agriculture as fertilizer supplement. Rev Environ Sci Biotechnol 15:677–696

    Article  Google Scholar 

  • State of the Climate (2017) Global climate report for annual 2017. NOAA National Centres for Environmental Information, published online January 2018. Retrieved on August 2, 2018 from https://www.ncdc.noaa.gov/sotc/global/201713

  • Stokes C, Howden M (eds) (2010) Adapting agriculture to climate change. Csiro Publishing, Melbourne

    Google Scholar 

  • Suddick EC, Whitney P, Townsend AR et al (2013) Biogeochemistry 114:1. https://doi.org/10.1007/s10533-012-9795-z

    Article  CAS  Google Scholar 

  • Tang KHD (2019) Climate change in Malaysia: trends, contributors, impacts, mitigation and adaptations. Sci Total Environ 650(2019):1858–1871

    Article  CAS  Google Scholar 

  • Thornton PK, Whitbread A, Baedeker T, Cairns J, Claessens L, Baethgen W, Bunnh C, Friedmanni M, Giller KE, Herrero M, Howden M, Kilcline K, Nangia V, Ramirez-Villegas J, Kumar S, West PC, Keating B (2018) A framework for priority-setting in climate smart agriculture research. Agric Syst 167:161–175

    Article  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138

    Article  Google Scholar 

  • Tubiello FN, Salvatore M, Ferrara AF, House J, Federici S, Rossi S, Biancalani R, Condor Golec RD, Jacobs H, Flammini A, Prosperi P (2015) The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Glob Chang Biol 21(7):2655–2660

    Article  Google Scholar 

  • Wagena MB, Easton ZM (2018) Agricultural conservation practices can help mitigate the impact of climate change. Sci Total Environ 635:132–143

    Article  CAS  Google Scholar 

  • Wasko C, Sharma AK (2017) Global assessment of flood and storm extremes with increased temperatures. Sci Rep 7:7945. https://doi.org/10.1038/s41598-017-08481-1

    Article  CAS  Google Scholar 

  • Wheeler T, von Braun J (2013) Climate change impacts on global food security. Science 341(6145):508–513

    Article  CAS  Google Scholar 

  • World Bank (2006) World development report 2007: development and the next generation. World Bank. © World Bank

    Google Scholar 

  • Zhang P, Zhang L, Chang Y, Xu M, Hao Y, Liang S, Liu G, Yanga Z, Wang C (2019) Food-energy-water (FEW) nexus for urban sustainability: a comprehensive review. Resour Conserv Recycl 142:215–224

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepika Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, D. (2020). Agricultural Sustainability and Climate Change Nexus. In: Singh, P., Singh, R., Srivastava, V. (eds) Contemporary Environmental Issues and Challenges in Era of Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-32-9595-7_4

Download citation

Publish with us

Policies and ethics