Skip to main content

Natural Gas Hydrates: Possible Environmental Issues

  • Chapter
  • First Online:
Contemporary Environmental Issues and Challenges in Era of Climate Change

Abstract

During the past 50 years, there has been a growing awareness of environmental issues related to energy technologies and natural resource utilization. A growing global population demands augmenting amounts of energy and goods without big discovery of conventional resources (apart from Zohr and Glafkos offshore fields in Mediterranean Sea, Egypt, and Republic of Cyprus, respectively); leading companies and countries turn their interest in unconventional resources such as shale oil, shale gas, and gas hydrates. Although gas hydrates are assumed part of the alternative energy sources of the future, they exhibit possible environmental risks for both the marine ecosystem and atmosphere environment. This chapter presents the fickleness of methane hydrate (MH) that either takes place naturally or is triggered by anthropogenic activities. Furthermore, it explains the climate change (methane discharged to the atmosphere has 21 times more global warming contingent than carbon dioxide) and the sea acidification (more than half of the dissolved methane retains inside seafloor by microbial anaerobic oxidation of methane) caused by methane hydrate release. Moreover, it presents the seafloor instability when methane hydrated block sediments due to augmentation of temperature or pressure difference. Finally yet importantly, environmental risks and hazards during the operation of production and drilling hydrate reservoirs occupy a significant position in the presentation of this research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams MA (2005) Significance of hydrocarbon seepage relative to petroleum generation and entrapment. Mar Pet Geol 22:457–477

    Article  CAS  Google Scholar 

  • Bangtang Y, Xiangfang L, Baojiang S et al (2014) Hydraulic model of steady state multiphase flow in wellbore annuli. Pet Explor Dev 41(3):359–366

    Google Scholar 

  • Barker JW, Gomez RK (1989) Formation of hydrates during deepwater drilling operations. JPT 41(3):297

    Article  CAS  Google Scholar 

  • Biastoch A, Treude T, Rüpke LH, Riebesell U, Roth C, Burwicz EB et al (2011) Rising Arctic ocean temperatures cause gas hydrate destabilization and ocean acidification. Geophys Res Lett 38:L08602

    Article  CAS  Google Scholar 

  • Bo W (2007) Research on the method of wellbore temperature and pressure calculation during deep-water drilling. China University of Petroleum, Dongying

    Google Scholar 

  • Boldyreff VM (2016) Water vapor and “greenhouse effect”. Inf Agency Regnum. https://doi.org/10.3334/CDIAC/atg.032

  • Boswell R, Collett T, Cook A (2010) Developments in gas hydrates. Oil Field Rev 1:18–33

    Google Scholar 

  • Brooks JM, Cox HB, Bryant WR, Kennicut MC (1986) Association of gas hydrates and oil seepage in the Gulf of Mexico. Org Geochem 10(1–3):221–234

    Article  CAS  Google Scholar 

  • Brown A (2000) Evaluation of possible gas micro seepage mechanisms. Am Assoc Pet Geol Bull 84:1775–1789

    CAS  Google Scholar 

  • Carroll JJ (2009) Natural gas hydrates – a guide for engineers, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Change IPOC (2007) Climate change 2007: the physical science basis, Agenda, vol 6. Cambridge University Press, Cambridge, p 333

    Google Scholar 

  • Deutsch C, Ferrel A, Seibel B, Pörtner H-O, Huey RB (2015) Climate change tightens a metabolic constraint on marine habitats. Science 348:1132–1135

    Article  CAS  Google Scholar 

  • Dimitrov L (2002) Mudvolcanoes the most important pathway for degassing deeply buried sediments. Earth Sci Rev 59:49–76

    Article  CAS  Google Scholar 

  • Dou B, Jiang G, Qin M, Gao H (2011) Analytical natural gas hydrates dissociation effects on globe climate change and hazards. ICGH, Edinburgh

    Google Scholar 

  • E.I.A. US (2013) Annual energy outlook 2016. U.S. Department of Energy, Washington, DC

    Google Scholar 

  • Etiope G, Klusman RW (2002) Geologic emissions of methane to the atmosphere. Chemosphere 49:777–789

    Article  CAS  Google Scholar 

  • Etiope G, Klusman RW (2008) Micro seepage in drylands: flux and implications in the global atmospheric source/sink budget of methane. Glob Planet Chang (in press)

    Google Scholar 

  • Etiope G, Martinelli G (2002) Migration of carrier and trace gases in the geosphere: an overview. Phys Earth Planet Inter 129(3–4):185–204

    Article  CAS  Google Scholar 

  • Etiope G, Milkov AV (2004) A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere. Environ Geol 46:997–1002

    Article  CAS  Google Scholar 

  • Etiope G, Papatheodorou G, Christodoulou D, Ferentinos G, Sokos E, Favali P (2006) Methane and hydrogen sulfide seepage in the NW Peloponnesus petroliferous basin (Greece): origin and geohazard. Am Assoc Pet Geol Bull 90(5):701–713

    CAS  Google Scholar 

  • Etiope G, Feyzullayev A, Baciu C (2009) Terrestrial methane seeps and mud volcanoes: a global perspective of gas origin. Mar Pet Geol 26:333–344

    Article  CAS  Google Scholar 

  • Exxon Mobil (2016) The outlook for energy: A vıew to 2040, Technical Report

    Google Scholar 

  • Grover T (2008) Natural gas hydrates-issues for gas production and geomechanical stability. PhD thesis, Texas A & M University, Texas, pp 6

    Google Scholar 

  • Gudmundsson JS, Hveding F, Bomhaug A (1995) Transport or natural gas as frozen hydrate. In: Proceedings of the fifth international offshore and polar engineering conference, The Hague, The Netherlands, June 11–16

    Google Scholar 

  • Hammerschmidt EG (1934) Formation of gas hydrates in natural gas transmission lines. Ind Eng Chem 26(8):851–855

    Article  CAS  Google Scholar 

  • Hautala SL, Solomon EA, Johnson HP, Harris RN, Miller UK (2014) Dissociation of Cascadia margin gas hydrates in response to contemporary ocean warming. Geophys Res Lett 41:8486–8494

    Article  CAS  Google Scholar 

  • Hope CW (2006) The marginal impacts of CO2, CH4 and SF6 emissions. Clim Pol 6:537–544

    Article  Google Scholar 

  • I.E.A (2011) World energy outlook special report: are we entering the golden age of gas? International Energy Agency, Paris

    Google Scholar 

  • I.E.A (2013) World energy outlook. International Energy Agency, Paris

    Google Scholar 

  • Jordi A, Wang D-P (2008) Near inertial motions in and around the Palamós submarine canyon (NW Mediterranean) generated by a severe storm. Cont Shelf Res 28:2523–2534

    Article  Google Scholar 

  • Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334

    Article  CAS  Google Scholar 

  • Koh CA, Sloan ED, Sum AK, Wu DT (2011) Fundamentals and applications of gas hydrates. Annu Rev Chem Biomol Eng 2:237–257

    Article  CAS  Google Scholar 

  • Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284

    Article  CAS  Google Scholar 

  • Lifshits SK, Spektor VB, Kershengolts BM, Spektor VV (2018) The role of methane and methane hydrates in the evolution of global climate. Am J Clim Chang 7:236–252

    Article  Google Scholar 

  • Longinos S (2015) Analysis of gas hydrates by using geochemical instruments. Thesis, Ankara

    Google Scholar 

  • Makogon YF (1965) A gas hydrate formation in the gas saturated layers under low temperature. Gazov Promst 5:14–15

    Google Scholar 

  • Makogon, Y.F., F.A. Trebin, Trofimuk A.A., (1971) Finding of a pool of gas in the hydrate state: DAN SSSR, v. 196, p. 197–206

    Google Scholar 

  • Makogon YF (1994) Russia’s contribution to the study of gas hydrates. Ann N Y Acad Sci 715:119–145

    Article  CAS  Google Scholar 

  • Makogon YF (1997) Hydrates of hydrocarbons. Pennwell Books, Tulsa, p 482

    Google Scholar 

  • Makogon Y (2010) Natural gas hydrates – a promising source of energy. Nat Gas Sci Eng 2:49–59

    Article  CAS  Google Scholar 

  • Makogon YF, Holditch SA, Makogon TY (2007) Natural gas-hydrates – a potential energy source for the 21st century. J Pet Sci Eng 56:14–31

    Article  CAS  Google Scholar 

  • Maslin M, Mikkelsen N, Vilela C, Haq B (1998) Sea-level–and gas-hydrate–controlled catastrophic sediment failures of the Amazon Fan. Geology 26:1107–1110

    Article  Google Scholar 

  • Mellors R, Kilb D, Aliyev A, Gasanov A, Yetirmishli G (2007) Correlations between earthquakes and large mud volcano eruptions. J Geophys Res 112:B04304

    Article  Google Scholar 

  • Merey S, Longinos SN (2018a) Does the Mediterranean Sea have potential for producing gas hydrates? J Nat Gas Sci Eng 55:113–134

    Article  Google Scholar 

  • Merey S, Longinos SN (2018b) Numerical simulations of gas production from Class 1 hydrate and Class 3 hydrate in the Nile Delta of the Mediterranean Sea. J Nat Gas Sci Eng 52:248–266

    Article  Google Scholar 

  • Merey S, Longinos SN (2018c) Investigation of gas seepages in Thessaloniki mud volcano in the Mediterranean Sea. J Pet Sci Eng 168:81–97

    Article  CAS  Google Scholar 

  • Miller SL (1969) Clathrate hydrates of air in Antarctic ice. Sci New Ser 165(3892):489–490

    CAS  Google Scholar 

  • Motghare PD, Musale A (2017) Gas hydrates: drilling challenges and suitable technology, SPE-185424-MS

    Google Scholar 

  • PiNero E, Marquardt M, Hensen C, Haeckel M, Wallmann K (2012) Estimation of the global inventory of methane hydrates in marine sediments using transfer functions. Biogeosciences 10:959–975

    Article  CAS  Google Scholar 

  • Pryor S, Barthelmie R (2010) Climate change impacts on wind energy: a review. Renew Sust Energ Rev 14:430–437

    Article  Google Scholar 

  • Rhakmanov RR (1987) Mud volcanoes and their importance in forecasting of subsurface petroleum potential. Nedra, Moscow (in Russian)

    Google Scholar 

  • Riedel M, Hyndman RD, Spence GD, Chapman NR, Novosel I, Edwards N (2014) Hydrate on the cascadia accretionary margin of North America, AAPG Hedberg research conference

    Google Scholar 

  • Ribeiro Jr CP, Lage PLC., Modelling of hydrate formation kinetics: State of the art and future directions, Chemical Engineering Science, 2008,63(8): p.2007–2034

    Article  CAS  Google Scholar 

  • Roos I, Soosaar S, Volkova A, Streimikene D (2012) Greenhouse gas emission reduction perspectives in the Baltic States in frames of EU energy and climate policy. Renew Sust Energ Rev 16:2133–2146

    Article  Google Scholar 

  • Sanjairaj V, Iniyan S, Goic R (2012) A review of climate change, mitigation and adaptation. Renew Sust Energ Rev 16:878–897

    Article  Google Scholar 

  • Saxton MA, Samarkin VA, Schutte CA et al (2016) Biogeochemical and 16S rRNA gene sequence evidence supports a novel mode of anaerobic methanotrophy in permanently ice-covered Lake Fryxell, Antarctica. Limnol Oceanogr 61:S119–S130

    Article  CAS  Google Scholar 

  • Schiermeier Q (2008) Fears surface over methane leaks. Nature 455:572–573

    Article  CAS  Google Scholar 

  • Sloan ED, Carolyn AK (2008) Clathrate hydrates of natural gases, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  • Sloan ED Jr (1991) Natural gas hydrates, JPT SPE technology today series, SPE 23562, pp 1414–1417

    Article  CAS  Google Scholar 

  • Sloan ED Jr (2003) Fundamentals principles and applications of natural gas hydrates. Nat Publ Group 426:353–359

    CAS  Google Scholar 

  • Sloan ED Jr (1990) Clathrate hydrates of natural gases. Marcel Dekker Inc, New York, 641 pp

    Google Scholar 

  • Sloan ED, Koh CA (2007) Natural gas hydrates: recent advances and challenges in energy and environmental applications, AIChE

    Google Scholar 

  • Solomon S (2007) Climate change 2007-the physical science basis: working group I contribution to the fourth assessment report of the IPCC. Cambridge University Press, New York

    Google Scholar 

  • Tan CP, Freij-Ayoub R, Clennell MB, Tohidi B (2005) Managing wellbore instability risk in gas hydrate-bearing sediments, SPE 92960

    Google Scholar 

  • Thomsen L, Barnes C, Best M, Chapman R, Pirenne B, Thomson R et al (2012) Ocean circulation promotes methane release from gas hydrate outcrops at the NEPTUNE Canada Barkley Canyon node. Geophys Res Lett 39:L16605

    Article  CAS  Google Scholar 

  • Watts N, Adger WN, Agnolucci P, Blackstock J, Byass P, Cai W et al (2015) Health and climate change: policy responses to protect public health. Lancet 386:1861–1914

    Article  Google Scholar 

  • Wilkox WI, Carson DB, Katz DL (1941) Natural gas hydrates. Ind Eng Chem 33(5):662–665

    Article  Google Scholar 

  • Yang J, Haixiong T, Zhengli L et al (2013) Prediction model of casing annulus pressure for deepwater well drilling and completion operation. Petroleum 40(5):2

    Google Scholar 

  • Yonghai G, Baojiang S, Wang Z et al (2008) Calculation and analysis of wellbore temperature field in deepwater drilling. J China Univ Pet Ed Nat Sci 32(2):58–62

    Google Scholar 

  • Zhang L, Zhang C, Huang H, Qi D, Zhang Y, Ren S, Wu Z, Fang M (2014) Gas hydrate risks and prevention for deep water drilling and completion: a case study of well QDN-X in Qiongdongnan Basin, South China Sea, Petroleum Exploration & Development

    Google Scholar 

  • Zhang XH, Lu XB, Chen XD et al (2016) Mechanism of soil stratum instability induced by hydrate dissociation. Ocean Eng 122:74–83

    Article  Google Scholar 

  • Zhao J, Song Y, Lim XL, Lam WH (2017) Opportunities and challenges of gas hydrate policies with consideration of environmental impacts. Renew Sust Energ Rev 70:875–885

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Longinos, S.N., Longinou, DD., Achinas, S. (2020). Natural Gas Hydrates: Possible Environmental Issues. In: Singh, P., Singh, R., Srivastava, V. (eds) Contemporary Environmental Issues and Challenges in Era of Climate Change. Springer, Singapore. https://doi.org/10.1007/978-981-32-9595-7_16

Download citation

Publish with us

Policies and ethics